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Problem setting

Example problem: What is the probability of getting exactly 1 heads in 3
tosses of a fair coin?

Prerequisites: set theory (language of sets).

Many basic probability problems are counting problems.
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What is counting?

An experiment in probability: experiment −→ outcome

Counting: How many possible outcomes can occur from performing this
experiment?

Can be generalised: 2 experiments, two outcomes, what is a joint
outcome of 2 experiments?
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Example of counting

How many possible outcomes are there when rolling 1 die?
Answer

6 outcomes {1,2,3,4,5,6}

Example

How many possible outcomes are there when rolling 2 dice?
Answer

36 outcomes {(1, 1), (1, 2), . . . , (1, 6),
(2, 1), (2, 2), . . . , (2, 6),

...

(6, 1), (6, 2), . . . , (6, 6)}

Example
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Generalising counting

r experiments

experiment 1: n1 outcomes

experiment 2: based on n1 inputs has n2 outcomes

experiment 3: based on combined outcome of experiment 1 and 2, so
n1 · n2 inputs has n3 outcomes
...

total of n1 · n2 · · · nr possible outcomes of r experiments
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Example

University committee consists of 4 UGs, 5 PGs, 7 profs, 2 non-uni
people. A subcommittee of 4, consisting of 1 person from each
category, is to be chosen. How many different subcommittees are
possible?

Answer

The choice of a subcommittee is the combined outcome of the 4
separate experiments of choosing a single representative from each of
the categories. Thus: 4 · 5 · 7 · 2 = 280 possible subcommittees.

Example

Intro to Probability Counting 9



Example

University committee consists of 4 UGs, 5 PGs, 7 profs, 2 non-uni
people. A subcommittee of 4, consisting of 1 person from each
category, is to be chosen. How many different subcommittees are
possible?

Answer

The choice of a subcommittee is the combined outcome of the 4
separate experiments of choosing a single representative from each of
the categories. Thus: 4 · 5 · 7 · 2 = 280 possible subcommittees.

Example

Intro to Probability Counting 9



Sum rule

An experiment has either one of m outcomes or one of n outcomes, where
none of the outcomes in both sets are the same. Then there are m + n
possible outcomes of the experiment.

|A| = m or |B| = n where A ∩ B = ∅
then # outcomes: |A|+ |B| = m + n

Set definition of Sum rule

I can travel either to Italy to Rome, Naples, Milan, Venice and Florence,
or to Spain to Madrid or Barcelona. How many cities can I travel to?

Answer

|Italy |+ |Spain| = 5 + 2 = 7

Example
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Product rule

Experiment has 2 parts. The first part results in one of m outcomes and the
second in one of n outcomes regardless of the outcome of the first part. Then
there are m · n possible outcomes of the experiment.

|A| = m and |B| = n
then # outcomes: |A| · |B| = m · n

Set definition of Product rule

How many possible outcomes are there from rolling two 6-sided dice?
Answer

|Dice1| · |Dice2| = 6 · 6 = 36

Example
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Inclusion-exclusion

The outcome of an experiment can be either from set A or set B where A and
B may overlap.

|A| = m or |B| = n where it may be A ∩ B ̸= ∅
then # outcomes: |A ∪ B| = |A|+ |B| − |A ∩ B|

Generalised Sum rule

An 8-bit string is sent over a network. The receiver only accepts strings
that either start with 01 or end with 10. How many 8-bit strings will the
receiver accept?

Answer

strings starting with 01 in set A: 01?????? thus |A| = 26 = 64
strings ending with 10 in set B: ??????10 thus |B| = 26 = 64
overlaping strings A ∩ B: 01????10 thus |A ∩ B| = 24 = 16
total: |A ∪ B| = 64 + 64 − 16 = 112

Example
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General principle of counting

An experiment has r parts such that part i has ni outcomes for all
i = 1, . . . , r . Then the total number of outcomes for the experiment is:

r∏
i=1

ni = n1 · n2 · · · nr

Generalised Product rule

Non-personalised UK licence plates consist of 2 letters, 2 numbers
followed by 3 letters. How many possible licence plates can be
generated?

Answer

Each one of 7 places on the license plate is a separate event, where
letters have 26 possibilities and numbers have 10 possibilities.
Total: 26 · 26 · 10 · 10 · 26 · 26 · 26 = 1,188,137,600

Example
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Pigeonhole principle

If m objects are place into n buckets, then at least one bucket has at
least ⌈m

n ⌉ objects.

Pigeonhole principle

Reminder:
⌈X⌉: ceiling – smallest integer that is bigger than X
⌊X⌋: floor – largest integer that is smaller than X

10 pigeons are placed into 9 pigeonholes. How many pigeons are
placed in any one pigeonhole at most?

Answer

At least one pigeonhole must contain ⌈m
n ⌉ = 2 pigeons.

Example
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Permutations

Permutation is a counting task of sorting n objects.

A permutation is an ordered arrangement of n distinct objects. Then the
number of ways in which these n objects can be permuted (put into
unique orderings) is:

n · (n − 1) · (n − 2) · · · 2 · 1 = n!

Permutation rule (distinct)

Consider the acronym CAM. How many different ordered arrangements
of the letters C, A and M are possible?

Answer

{(A,C,M), (A,M,C), (C,A,M), (C,M,A), (M,A,C), (M,C,A)}, thus 6
possible permutations, i.e., 3! = 3 · 2 · 1.

Example
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Indistinct permutations

There are n objects and n1 are the same (indistinguishable), n2 are the
same, . . . , nr are the same. Then the number of distinct permutations of
these n objects is:

n!
n1! · n2! · · · nr !

Permutation of indistinct objects

How many distinct bit strings can be formed from two 0’s and three 1’s?
Answer

5!
2! · 3!

=
120
2 · 6

= 10.

Example
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Combinations

A combination in an unordered selection of r objects from a set of n
objects. If all objects are distinct, then the number of ways of making
the selection is:

n!
r !(n − r)!

=

(
n
r

)
Combinations for one group

Reminder: note that
(n

r

)
is a a binomial coefficient, read as “n choose r ”.

permutations of all n objects

select the first r in the permutation: 1 way,
but the order is irrelevant thus r ! ways to permute

(n − r)! ways to permute nonselected objects
How many ways are there to select 3 unordered objects from a set of 7
objects?

Answer

n!
r !(n − r)!

=

(
7
3

)
=

7!
3!4!

= 35

Example
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Example of counting combinations

How many ways are there to select 3 books from a set of 6 books, if
there are two books that should not both be chosen together? For
example, you are choosing 3 out of 6 probability books, but don’t want
to choose both the 8th and 9th edition of the Ross textbook.

Answer

Case 1: Select 8th Ed and 2 other non-9th Ed –
(4

2

)
ways to do so.

Case 2: Select 9th Ed and 2 other non-8th Ed –
(4

2

)
ways to do so.

Case 3: Select 3 from books that are not 8th nor 9th Ed –
(4

3

)
ways to do so.

Total: using Sum Rule of counting, we get
(4

2

)
+

(4
2

)
+

(4
3

)
= 6 + 6 + 4 = 16.

Example
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Multinomial combinations

If there are n distinct objects, then the number of ways of selecting r
distinct groups of respective sizes n1, n2, . . . , nr such that

∑r
i=1 ni = n is:

n!
n1!n2! · · · nr !

=

(
n

n1, n2, . . . , nr

)

where
( n

n1,n2,...,nr

)
is known as multinomial coefficient.

Combinations for multiple groups of objects

There are 13 children on the playground who need to be split into 3
groups of sizes 6, 4 and 3. How many different divisions are possible?

Answer

(
13

6, 4, 3

)
=

13!
6!4!3!

= 60060

Example
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Multinomial combinations

If there are n distinct objects, then the number of ways of selecting r
distinct groups of respective sizes n1, n2, . . . , nr such that

∑r
i=1 ni = n is:

n!
n1!n2! · · · nr !

=

(
n

n1, n2, . . . , nr

)

where
( n

n1,n2,...,nr

)
is known as multinomial coefficient.

Combinations for multiple groups of objects

There are 13 children on the playground who need to be split into 3
groups of sizes 6, 4 and 3. How many different divisions are possible?

Answer

(
13

6, 4, 3

)
=

13!
6!4!3!

= 60060

Example

Intro to Probability Combinatorics 20



Multinomial example

In order to organise a basketball tournament, 20 children at a
playground divide themselves in 4 teams of 5 players. How many
different divisions are possible?

Answer

The answer is NOT (
20

5, 5, 5, 5

)
because the order of the four teams is irrelevant. It would be correct if
being in team A were considered different from being in team D. But
here we are only interested in the possible divisions, so since there are
4! permutations between team “labels", the answer is( 20

5,5,5,5

)
4!

=

(
20

5, 5, 5, 5, 4

)

Example
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Summary of combinatorics

Counting tasks on n objects (without replacement)
Permutations Combinations
(sort objects) (choose r objects)

Distinct Indistinct Distinct 1 group Distinct k groups

n!
n!

n1! · n2! · · · nr !

(
n
r

)
=

n!
r !(n − r)!

(
n

n1, n2, . . . , nk

)
=

n!
n1!n2! · · · nk !

Useful identity:

(
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)
where 1 ≤ r ≤ n

Binomial theorem: (x + y)n =
n∑

r=0

(
n
r

)
x r yn−r
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Random experiments

Randomness is described by conducting experiments (or trials) with
uncertain outcomes.

Sample space S: a set of all possible outcomes of an experiment.

Event E : some subset of S, i.e., E ⊆ S.

Probability P is a number between 0 and 1 to which we ascribe a
meaning: our belief that an event E occurs: P [E ] ∈ [0, 1].

Intro to Probability Probability space 24



Sample spaces

The set of all possible outcomes of an experiment is called the sample
space and is denoted by S.

Sample space

Give sample spaces for the following:
1. Gender of a newborn child

2. Flipping of 2 coins

3. Rolling 2 dice

4. YouTube hours in a day

Answer

1. S = {G,B}
2. S = {(H,H), (H,T ), (T ,H), (T ,T )}
3. S = {(i, j) : i, j ∈ {1, 2, 3, 4, 5, 6}}
4. S = {x : x ∈ R, 0 ≤ x ≤ 24}

Examples

Intro to Probability Probability space 25
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Answer

1. S = {G,B}
2. S = {(H,H), (H,T ), (T ,H), (T ,T )}
3. S = {(i, j) : i, j ∈ {1, 2, 3, 4, 5, 6}}
4. S = {x : x ∈ R, 0 ≤ x ≤ 24}

Examples
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Event spaces

An event space E is some subset of S that we ascribe meaning to:
E ⊆ S.

Event space

Give event spaces for the following:
1. A newborn child is a girl.

2. There is 1 or more heads on 2 coin flips.

3. At least one of the numbers is a 6 in a rolling of 2 dice.

4. Wasted day where 5 or more hours have been spent on YT.

Answer

1. E = {G}
2. E = {(H,H), (H,T ), (T ,H)}
3. E = {(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),(1,6),(2,6),(3,6),(4,6),(5,6)}

4. E = {x : x ∈ R, 5 ≤ x ≤ 24}

Examples
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Set operations on events

Given event space S and events E and F :

Union: E ∪ F is the event containing all outcomes of E or F .
E = {(H,H), (H,T )} and F = {(H,T ), (T ,T )} then
E ∪ F = {(H,H), (H,T ), (T ,T )}

Intersection: E ∩ F (also denoted EF ) is the event containing all outcomes
of E and F .
E = {(H,H), (H,T )} and F = {(H,T ), (T ,T )} then
E ∩ F = EF = {(H,T )}

Complement: Ec is the event containing all outcomes in S that are not in E .
Note, thus we have E ∪ Ec = S and E ∩ Ec = ∅.
S = {(H,H), (H,T ), (T ,H), (T ,T )} and E = {(H,H), (H,T )}
then Ec = {(T ,H), (T ,T )}

The usual commutative, associative and distributive laws hold.
De Morgan’s laws: (

⋃n
i=1 Ei)

c =
⋂n

i=1 Ec
i and (

⋂n
i=1 Ei)

c =
⋃n

i=1 Ec
i
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Probability definition

P [E ] = lim
n→∞

n(E)

n
where n = # of total trials and n(E) = # trials where E occurs.

Frequentist definition of probability

Interpretation of probability:

Probability of desired event E is the ratio of the # of trials that result in an
outcome in E to the number of trials performed (in the limit as your
number of trials approaches infinity).

P [E ] is a measure of the chance of E occurring.

Often probability is a measure of the individual’s degree of belief of E
occurring (Bayesian definition).

Interpretation is a mess, a philosophical argument.

Choice of interpretation doesn’t matter, as long as the axioms of
probability hold.

Intro to Probability Axioms 29



Probability axioms

Axiom 1: For any event E , 0 ≤ P [E ] ≤ 1

Axiom 2: Probability of the sample space S is P [S ] = 1

Axiom 3: If E and F are mutually exclusive (E ∩ F = ∅), then
P [E ] + P [F ] = P [E ∪ F ].
In general, for all mutually exclusive events E1,E2, . . .

P

[
∞⋃
i=1

Ei

]
=

∞∑
i=1

P [Ei ]

Probability axioms
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Probability identities

Proposition 1: P
[

Ec ] = 1 − P [E ] = P [S ]− P [E ]

Proposition 2: If E ⊆ F then P [E ] ≤ P [F ]

Proposition 3: P [E ∪ F ] = P [E ] + P [F ]− P [EF ]

Proposition 4 (general inclusion-exclusion principle):

P

[
n⋃

i=1

Ei

]
=

n∑
r=1

(−1)r+1
n∑

i1<i2<···<ir

P [Ei1 ∩ · · · ∩ Eir ]

(Proofs in book).

For sample space S in which all outcomes are equally likely, we have
P [ each outcome ] = 1

|S| and for any event E ⊆ S,

P [E ] =
# outcomes in E
# outcomes in S

=
|E |
|S|

Probability with equally likely outcomes

Intro to Probability Axioms 31



Probability identities

Proposition 1: P
[

Ec ] = 1 − P [E ] = P [S ]− P [E ]

Proposition 2: If E ⊆ F then P [E ] ≤ P [F ]

Proposition 3: P [E ∪ F ] = P [E ] + P [F ]− P [EF ]

Proposition 4 (general inclusion-exclusion principle):

P

[
n⋃

i=1

Ei

]
=

n∑
r=1

(−1)r+1
n∑

i1<i2<···<ir

P [Ei1 ∩ · · · ∩ Eir ]

(Proofs in book).

For sample space S in which all outcomes are equally likely, we have
P [ each outcome ] = 1

|S| and for any event E ⊆ S,

P [E ] =
# outcomes in E
# outcomes in S

=
|E |
|S|

Probability with equally likely outcomes

Intro to Probability Axioms 31



Probability identities

Proposition 1: P
[

Ec ] = 1 − P [E ] = P [S ]− P [E ]

Proposition 2: If E ⊆ F then P [E ] ≤ P [F ]

Proposition 3: P [E ∪ F ] = P [E ] + P [F ]− P [EF ]

Proposition 4 (general inclusion-exclusion principle):

P

[
n⋃

i=1

Ei

]
=

n∑
r=1

(−1)r+1
n∑

i1<i2<···<ir

P [Ei1 ∩ · · · ∩ Eir ]

(Proofs in book).

For sample space S in which all outcomes are equally likely, we have
P [ each outcome ] = 1

|S| and for any event E ⊆ S,

P [E ] =
# outcomes in E
# outcomes in S

=
|E |
|S|

Probability with equally likely outcomes

Intro to Probability Axioms 31



Probability identities

Proposition 1: P
[

Ec ] = 1 − P [E ] = P [S ]− P [E ]

Proposition 2: If E ⊆ F then P [E ] ≤ P [F ]

Proposition 3: P [E ∪ F ] = P [E ] + P [F ]− P [EF ]

Proposition 4 (general inclusion-exclusion principle):

P

[
n⋃

i=1

Ei

]
=

n∑
r=1

(−1)r+1
n∑

i1<i2<···<ir

P [Ei1 ∩ · · · ∩ Eir ]

(Proofs in book).

For sample space S in which all outcomes are equally likely, we have
P [ each outcome ] = 1

|S| and for any event E ⊆ S,

P [E ] =
# outcomes in E
# outcomes in S

=
|E |
|S|

Probability with equally likely outcomes

Intro to Probability Axioms 31



Probability identities

Proposition 1: P
[

Ec ] = 1 − P [E ] = P [S ]− P [E ]

Proposition 2: If E ⊆ F then P [E ] ≤ P [F ]

Proposition 3: P [E ∪ F ] = P [E ] + P [F ]− P [EF ]

Proposition 4 (general inclusion-exclusion principle):

P

[
n⋃

i=1

Ei

]
=

n∑
r=1

(−1)r+1
n∑

i1<i2<···<ir

P [Ei1 ∩ · · · ∩ Eir ]

(Proofs in book).

For sample space S in which all outcomes are equally likely, we have
P [ each outcome ] = 1

|S| and for any event E ⊆ S,

P [E ] =
# outcomes in E
# outcomes in S

=
|E |
|S|

Probability with equally likely outcomes

Intro to Probability Axioms 31



Examples

You order 2 dishes online with probability of 0.6 of liking the first dish,
0.4 of liking the second dish, and 0.3 of liking both dishes. What is the
probability you will like neither dish?

Answer

Ei : event "you like dish i".

P [ you will like neither dish ] = P [ (E1 ∪ E2)
c ] = 1 − P [E1 ∪ E2 ] =

1 − (P [E1 ] + P [E2 ]− P [E1 ∩ E2 ]) = 1 − (0.6 + 0.4 − 0.3) = 0.3

Example
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Examples

3 people are randomly selected from a group of 11 people which is
made of 5 women and 6 men. What is the probability that 2 women and
1 man are selected?

Answer

S =
(11

3

)
are all subsets of size 3 from 11 people.

Random selection means each subset is equally likely.(5
2

)(6
1

)
are all subsets with 2 women and 1 man.

P [ 2 women,1 man ] =

(5
2

)(6
1

)(11
3

) =
4
11

Example
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Birthday paradox

If n people are in a room, what is the probability that 2 have the same
birthday? (Assume that there are 365 days and probability of being born
on a given day is 1

365 ).

Answer

Simpler to calculate probability that "no two people in the room have the same
birthday" (= P [Ec

n ]) where En ="two people have birthday on the same day",
and then use P [En ] = 1 − P [Ec

n ].

|S| =365n

|Ec
n | =365 · 364 · · · (365 − n + 1) (# of ways to have no two people with the same bday)

P
[

Ec
n
]
=

365 · 364 · · · (365 − n + 1)
365n

P [En ] =1 −
365 · 364 · · · (365 − n + 1)

365n
(# of ways two people have the same bday)

if n = 23 then P [E23 ] = 50.7%
if n = 70 then P [E70 ] = 99.9%

Example
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Boole’s inequality

For any events E1,E2, . . . ,En we have

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei ]

Union bound AKA Boole’s inequality

For E1 and E2 it is easy to see:

P [E1 ∪ E2 ] = P [E1 ] + P [E2 ]− P [E1 ∩ E2 ] ≤ P [E1 ] + P [E2 ] .

Useful in applications that need to show that the probability of union for some
events is less than some value.

E.g., in random graphs that are used to analyse social networks, wireless
networks, the internet: given nodes and edges with associated probabilities,
what is the probability that there exists an isolated node in the graph that is
not connected to any other nodes in the graph.
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Summary of probability problems

Find the sample space S.

Define events of interest E .

Determine outcome probabilities.

Compute event probabilities.

Intro to Probability Union bound 37


	Set theory
	Counting
	Combinatorics
	Probability space
	Axioms
	Union bound

