Hoare logic and Model checking

Revision class

Christopher Pulte cp526 University of Cambridge

CST Part II - 2023/24

Program variable assignment vs heap assignment

(Program variable) assignment

X := E updates program variable X.

Heap assignment

 $[E_1] := E_2$ (note the brackets) evaluates E_1 and, if E_1 evaluates to a pointer to an allocated heap location ℓ , writes to the heap at ℓ .

E.g. heap assignment [X] := E (note the brackets) reads program variable X and, if the current value of X is a pointer to an allocated heap location ℓ , writes to the heap at ℓ , leaving X unchanged.

Whether to apply the rule for **(program variable)** assignment from lecture 1, or the separation logic rule for **heap assignment** depends on the command.

Hoare logic and separation logic

The concept of ownership

Ownership of a heap cell is the permission to safely read/write/dispose of it. **This ownership is not duplicable**.

E.g.: use-after-free: dispose(X); [X] := 5

Separation logic: If ownership was duplicable:

How is ownership related to framing?

If we have proved $\{P\}$ C $\{Q\}$ for some program C and we want to use this triple in a proof involving assertion R, we can use the frame rule to conclude $\{P*R\}$ C $\{Q*R\}$: R is preserved by C.

$$\frac{\vdash \{P\} \ C \ \{Q\} \qquad mod(C) \cap FV(R) = \emptyset}{\vdash \{P * R\} \ C \ \{Q * R\}}$$

Intuitively: P must have all the ownership required for the safe execution of C — all the parts of the heap that C manipulates. The separating conjunction ensures that R cannot have ownership of those heap locations (or the precondition is false).

Recall: P * R requires the disjointness of the heap cells for which P and R assert ownership.

Pure assertions

What is the meaning of pure assertions, such as \top or $t_1 = t_2$? Do they implicitly require the heap to be empty?

3

Semantics of pure assertions

$$\llbracket t_1 = t_2 \rrbracket(s) = \{ h \mid \llbracket t_1 \rrbracket(s) = \llbracket t_2 \rrbracket(s) \} = \begin{cases} Heap & \text{if } \llbracket t_1 \rrbracket(s) = \llbracket t_2 \rrbracket(s) \\ \emptyset & \text{otherwise} \end{cases}$$

More generally, the semantics of a pure assertion in a stack s:

Informally: "check the pure assertion in s"; if it holds in s, return the set of all heaps, if not return the empty set of heaps.

Formally: don't worry about it, because we have not defined it.

Semantics of pure assertions, wrt. heap (continued). Fixed

The 2019 exam paper 8, question 7 asks:

$$\{N = n \land N \ge 0\}$$

$$X := \text{null; while } N > 0 \text{ do } (X := \text{alloc}(N, X); N := N - 1)$$

$$\{\text{list}(X, [1, ..., n])\}$$

(I have not checked whether that year used different definitions from ours, but) This seems to be missing emp in the pre-condition: $\{N = n \land N \ge 0 \land \text{emp}\}$

Why? $\{N=n \land N \ge 0\}$ makes no statement about the heap — the precondition is satisfied by any heap (and suitable stack). But without the emp requirement, we would not be able to prove the post-condition $\{\text{list}(X,[1,\ldots,n])\}$, which asserts that the **only** ownership is that of the list predicate instance.

Another error

Related: error in 2021 Paper 8 Question 8.

The pre-condition should have

$$\cdots \wedge 1 \leq S$$

instead of

$$\cdots * 1 \leq S$$

7

9

Conjunction and separating conjunction (continued)

$$\llbracket P * Q \rrbracket(s) \stackrel{\text{def}}{=} \left\{ h \in Heap \middle| egin{array}{c} h_1 \in \llbracket P \rrbracket(s) \land \\ h_2 \in \llbracket Q \rrbracket(s) \land \\ h = h_1 \uplus h_2 \end{array} \right\}$$
 $\llbracket P \land Q \rrbracket(s) \stackrel{\text{def}}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$

$$p_1 \mapsto v_1 * p_2 \mapsto v_2$$
 vs. $p_1 \mapsto v_1 \wedge p_2 \mapsto v_2$

- $p_1 \mapsto v_1 * p_2 \mapsto v_2$ holds for a heap h that is the disjoint union of heaplets h_1 and h_2 , where h_1 contains just cell p_1 , with value v_1 , and h_2 just cell p_2 , with value v_2 . So: ownership of **two disjoint** heap cells p_1 and p_2 with $p_1 \neq p_2$.
- $p_1 \mapsto v_1 \land p_2 \mapsto v_2$ holds for a heap h that satisfies two assertions simultaneously (is in the intersection of their interpretations): (1) $p_1 \mapsto v_1$: h is a heap of just one heap cell, p_1 with value v_1 (2) $p_2 \mapsto v_2$: h is a heap of just one heap cell, p_2 with value v_2 So: ownership of just **one** heap cell, $p_1 = p_2$ with value $v_1 = v_2$.

Conjunction and separating conjunction

What are the differences between them and when to use which? And how do they interact with pure assertions?

$$\llbracket P st Q
rbracket (s) \stackrel{ ext{def}}{=} \left\{ egin{align*} h \in ext{Heap} \ \exists h_1, h_2. & h_2 \in \llbracket Q
rbracket (s) \wedge \ h = h_1 \uplus h_2 \end{array}
ight\}$$
 $\llbracket P \wedge Q
rbracket (s) \stackrel{ ext{def}}{=} \llbracket P
rbracket (s) \cap \llbracket Q
rbracket (s)$

Conjunction and separating conjunction (continued)

$$\llbracket P * Q \rrbracket(s) \stackrel{\text{def}}{=} \left\{ h \in Heap \middle| \begin{array}{l} h_1 \in \llbracket P \rrbracket(s) \land \\ h_2 \in \llbracket Q \rrbracket(s) \land \\ h = h_1 \uplus h_2 \end{array} \right\}$$
$$\llbracket P \land Q \rrbracket(s) \stackrel{\text{def}}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$$

$$(p\mapsto 1)*Y=0$$
 vs. $(p\mapsto 1)\land Y=0$

- $(p \mapsto 1) * Y = 0$ holds for a stack s and a heap h where h is the disjoint union of heaplets h_1 and h_2 , such that h_1 contains ownership of one cell, p with value 1, and h_2 is an arbitrary heap if s satisfies Y = 0. So, s must map Y to 0 and h is the disjoint union of the heaplet of just p with value 1 and an arbitrary disjoint heap h_2 .
- assertion simultaneously: $p \mapsto 1$ and Y = 0. This means s must map Y to 0 and h must be the heap consisting of just that one cell.

It is good to be careful about the unexpected interaction of the usual logical connectives with the new separation logic connectives!

11

13

Example: 2019-p08-q07, e

```
\{ list(X,\alpha) * list(Y,\beta) \} if X = null then Z := Y else ( Z := X; \ U := Z; \ V := [Z+1]; while V \neq null do (U := V ; V := [V+1]); [U+1] := Y ) \{ list(Z,\alpha++\beta) \}
```

Example: 2019-p08-q07, e

Give a loop invariant for the following list concatenation triple:

```
\begin{aligned} &\{\operatorname{list}(X,\alpha) * \operatorname{list}(Y,\beta)\} \\ &\text{if } X = \operatorname{null then} \\ &Z := Y \\ &\text{else (} \\ &Z := X; \ U := Z; \ V := [Z+1]; \\ &\text{while } V \neq \operatorname{null do (U := V ; V := [V+1]);} \\ &[U+1] := Y \\ &) \\ &\{\operatorname{list}(Z,\alpha ++ \beta)\} \end{aligned}
```

Example: 2019-p08-q07, e

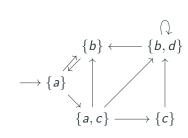
```
\{(\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta)) \land X \neq \operatorname{null}\}
\{\exists t, p, \delta. \ \alpha = [t] + \delta \land (X \mapsto t, p * list(p, \delta) * list(Y, \beta))\}
Z := X;
\{\exists t, p, \delta. \ \alpha = [t] + \delta \land (Z \mapsto t, p * list(p, \delta) * list(Y, \beta))\}
U := Z:
\{\exists t, p, \delta. \ \alpha = [t] + \delta \land U = Z \land (Z \mapsto t, p * list(p, \delta) * list(Y, \beta))\}
V := [Z + 1];
\{\exists t, \delta. \ \alpha = [t] + \delta \land U = Z \land (Z \mapsto t, V * list(V, \delta) * list(Y, \beta))\}
I: \{\exists \gamma, t, \delta. \ \alpha = \gamma + \{t\} + \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], V) * \mathsf{list}(V, \delta) * \mathit{list}(Y, \beta))\}
while V \neq null do (U := V ; V := [V + 1]);
\{\exists \gamma, t, \delta. \ \alpha = \gamma + [t] + \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], V) * \mathsf{list}(V, \delta) * \mathit{list}(Y, \beta))\}
     \land \neg (V \neq \text{null})
[U + 1] := Y
\{\exists \gamma, t, \delta. \ \alpha = \gamma + \vdash [t] + \vdash \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], Y) * \mathsf{list}(V, \delta) * \mathit{list}(Y, \beta))\}
     \land \neg (V \neq \text{null})
                                                                                                                                                                    15
{\{\operatorname{list}(Z, \alpha ++ \beta)\}}
```

Temporal operators, e.g. in CTL

- $AX\psi$ and $EX\psi$:
 - \bullet Does the state satisfying ψ have to be different from the starting state?
 - \bullet Does ψ have to continue holding?
- $A(\psi_1 U \psi_2)$ and $E(\psi_1 U \psi_2)$:
 - Does ψ_1 have to continue holding?
 - What about ψ_2 ?

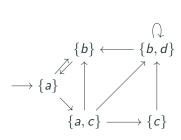
Model Checking

LTL examples



$\overline{\phi}$	$M \vDash \phi$
а	yes
Xa	no
Fb	yes
Fc	no
$(a \lor b)Uc$	no
dUa	yes
$G(a \lor b \lor c)$	yes
GFb	yes
FGb	no

CTL examples



ψ	$M \vDash \psi$
$EX(b \wedge \neg c)$	yes
AFd	no
EFd	yes
E(aUd)	yes
AGEFd	yes
AFEGd	no
EFEGd	yes
$E((a \lor c)U(EGb))$	yes

18

LTL/CTL expressivity

An LTL formula not expressible in CTL: $\phi = (F p) \rightarrow (F q)$.

a) CTL formula $\psi_1 = (A F p) \rightarrow (A F q)$. ϕ does not hold, ψ_1 does.

b) CTL formula $\psi_2 = A G (p \rightarrow (A F q))$. ϕ holds, ψ_2 does not.

$$\rightarrow 4: \{q\} \longrightarrow 5: \{p\}$$

LTL/CTL expressivity

An elevator property: "If it is possible to answer a call to some level in the next step, then the elevator does that"

CTL:
$$\psi = A G ((Call_2 \land E X Loc_2) \rightarrow A X Loc_2)$$

 $\ensuremath{\mathsf{Q}} \colon \mathsf{Can}$ we express the same in LTL with

$$\phi = \mathsf{G} \left(\mathsf{Call}_2 \wedge \left(\mathsf{Loc}_1 \vee \mathsf{Loc}_3 \right) \right) \to \mathsf{X} \; \mathsf{Loc}_2?$$

This depends on the details of the elevator temporal model. In any case, ψ and ϕ are not generally equivalent. The point is: expressing properties of the tree of possible paths out of a given state — such as asserting the **existence** of some path — is not possible with LTL.

LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3 forever. Both kinds of paths **eventually** reach a state in which p holds **generally** (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

- all paths π from 1 satisfy F A G p, so
- all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not satisfied, because there exists a path π_2 that goes to 2 from there.

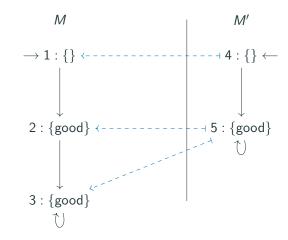
 $^{^{-1}}$ I think — the way we have sketched the elevator in lecture 7 — this will not work: Loc₁ \vee Loc₃ does not imply there exists a next step such that Loc₂ holds.

It is good to be careful about the unexpected interaction of the temporal operators, with other temporal operators and with path quantifiers.

Good luck!

Why have simulation relations and not simulation functions?

$$AP = AP' = \{good\}$$



M simulates M'