
Hoare logic and Model checking
Part II: Model checking

Lecture 11: Relating temporal models

Christopher Pulte cp526
University of Cambridge

CST Part II – 2023/24

In the last lecture we saw a (very naïve) implementation of CTL
model checking.

In applying model checking to realistic artefacts, such as complex
software or hardware, we may face the problem that the temporal
model’s state space is too large to explore.

In this lecture we will discuss the topic of abstracting a temporal
model to reduce its state space.

1

Assume we wish to verify some artefact, and we have developed a
concrete temporal model – a model that captures state space and
transitions of the real artefact.

If the state space of the model is too large to model check directly,
we can develop a more abstract model.

But how do we develop a good abstract model?

2

Abstracting temporal models

The premise of model checking is that checking the model
translates to confidence in the modelled artefact.

If we have a concrete temporal model that is closer to the real
artefact it is easier to gain confidence in this model.

We will see two ways of relating an abstract model to a concrete
model/two criteria for showing that an abstract model is a good
abstraction:

• simulation
• bisimulation

3



Easy abstraction

Assume we have a concrete temporal model M.

Easy optimisation: compute the reachable states Sr in M, and
define a slightly simpler model M ′:

• M ′�S = Sr ⊆ M�S
• M ′�S0 = M�S0

• s1 M ′�T s2 whenever s1 M�T s2 for two states s1, s2 ∈ M ′�S
• M ′�` s = M�` s for every state s ∈ M ′�S

4

Easy abstraction

Then the sets of paths from initial states in M and M ′ are the
same, so: for all CTL* formulas ψ,

M ′ � ψ ⇒ M � ψ

Since M ′ has a smaller state space, checking M ′ against ψ is
simpler than checking M.

M ′ is a sound abstraction: properties verified about M ′ translate to
properties verified about M, and (if M is a good concrete model)
to properties verified about the artefact.

Can we generalise this observation?

5

Temporal model simulation, informally

The abstract model can match the steps of the concrete model
and similarly labels states with atomic propositions.

concrete model

abstract model

• abstract temporal model can merge states
• a path in the abstract model may represent several paths in

concrete model
6

Temporal model simulation, formally

Let M = 〈S,S0,T , `〉 be a temporal model over AP and
M ′ = 〈S ′,S ′

0,T ′, `′〉 a temporal model over AP ′ ⊆ AP . A relation
R : S × S ′ → B is a simulation1 M 4R M ′ if:

1. R is consistent with labels:
∀s ∈ S, s ′ ∈ S ′. s R s ′ ⇒ `′ s ′ = ` s ∩ AP ′

2. R relates initial states of M to initial states in M ′:
∀s ∈ S. S0 s ⇒ ∃s ′ ∈ S ′. S ′

0 s ′ ∧ s R s ′

(continued on the next slide)

1Adopting Jan Willemse’s definition

7



Temporal model simulation formally (continued)

3. Any step in M can be matched by a step in M ′ from any
R-related start state to some R-related end state:

∀sa, sb ∈ S, s ′a ∈ S ′. (sa R s ′a) ∧ (sa T sb) ⇒
∃s ′b ∈ S ′. s ′a T ′ s ′b ∧ sb R s ′b

sa

sb

s ′a

T ⇒

R

∃s ′b .

sa

sb

s ′a

s ′b

T T ′

R

R

8

Temporal model simulations

Often, only the existence of a simulation is important, not the
simulation itself.

M 4 M ′ def
= ∃R .M 4R M ′

It means that M ′ is “more abstract” than M.

9

Examples: a simulation (adapted from Grumberg)

AP ::= • | • | • | go | stop AP ′ ::= go | stop

a : {•, stop}

b : {•, •, go}

c: {•, go}

d: {•, go}

f: {stop}

e: {go}

M M ′

This is a simulation between M and M ′

10

Examples: not a simulation

AP ::= • | • | • | go | stop AP ′ ::= go | stop

a : {•, stop}

b : {•, •, go}

c: {•, go}

d: {•, go}

e: {go}

M M ′

R is not consistent with labels: a R e, but go ∈ `′ e and go /∈ ` a.
11



Examples: another simulation

AP ::= N ∪ {even, odd} AP ′ ::= {even, odd}

{0, even}

{1, odd}

{2, even}

{3, odd}

{4, even}

{5, odd}
...

{even}

{odd}

M M ′R

12

ACTL∗ is compatible with simulation

ACTL* is compatible with the simulation preorder. (Recall: ACTL*
is the universal fragment of CTL*: assuming negation normal form,
the fragment of CTL* using only universal path quantification.)

Let M be a temporal model over AP , M ′ a temporal model over
AP ′ ⊆ AP and ψ an ACTL* formula over AP ′. Then:

M 4 M ′ ∧ M ′ � ψ ⇒ M � ψ

This means, we can model check M ′ against ψ, and if M ′ satisfies
ψ, so does M.

Note: the implication only holds in one direction.
If M ′ � ψ fails this does not imply that M � ψ fails — this is a
potential source of spurious counter examples.

13

Examples: traffic light simulation (adapted from Grumberg)

AP ::= • | • | • | go | stop AP ′ ::= go | stop

a : {•, stop}

b : {•, •, go}

c: {•, go}

d: {•, go}

f: {stop}

e: {go}

M M ′

• ACTL* formula A G A F (go) holds in M ′; by M 4 M ′ this
implies it also holds in M.

• ACTL* formula A G A F (stop) fails in M ′; this does not
imply it also fails in M.

14

Simulation as criterion for “good” abstraction

+ simulation does not impose very strong requirements on the
similarity of the models: more scope for “optimising” the
abstract model2

– simulation is not compatible with arbitrary properties: only
ACTL* formulas

2cf. Willemse slides

15



Tea & coffee machines

Mnice simulates Mbad. But: A G (£ → E X �) holds in Mnice, but
not in Mbad.

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

MniceMbad

16

Temporal model bisimulation

Let M = 〈S,S0,T , `〉 and M ′ = 〈S ′,S ′
0,T ′, `′〉 be temporal models

over AP . Relation R : S ×S ′ → B is a bisimulation3 M ≈R M ′ if:

1. R is consistent with labels:
∀s ∈ S, s ′ ∈ S ′. s R s ′ ⇒ `′ s ′ = ` s

2. R relates initial states:
∀s ∈ S. S0 s ⇒ ∃s ′ ∈ S ′. S ′

0 s ′ ∧ s R s ′

∀s ′ ∈ S ′. S ′
0 s ′ ⇒ ∃s ∈ S. S0 s ∧ s R s ′

(continued on the next slide)

3Adopting Jan Willemse’s definition

17

3.a) M ′ can match the steps of M:

∀sa, sb ∈ S, s ′a ∈ S ′. (sa R s ′a) ∧ (sa T sb) ⇒
∃s ′b ∈ S ′. s ′a T ′ s ′b ∧ sb R s ′b

sa

sb

s ′a

T ⇒

R

∃s ′b .

sa

sb

s ′a

s ′b

T T ′

R

R

3.b) M can match the steps of M ′:

∀s ′a, s ′b ∈ S ′, sa ∈ S. (sa R s ′a) ∧ (s ′a T ′ s ′b) ⇒
∃sb ∈ S. sa T sb ∧ sb R s ′b

sa

s ′b

s ′a

T ′ ⇒

R

∃sb .

sa

sb

s ′a

s ′b

T T ′

R

R
18

Bisimilarity

As in the case of simulations, sometimes only the existence of a
bisimulation is important, not the bisimulation itself

M ≈ M ′ def
= ∃R .M ≈R M ′

We then call M and M ′ bisimilar.

19



Bisimulation preserves CTL*

All of CTL* is compatible with bisimulation equivalence.

Let M and M ′ be temporal models over AP and ψ a CTL* formula
over AP . Then:

M ≈ M ′ ⇒ (M � ψ ⇔ M ′ � ψ)

This means, if we model check M ′ against ψ:

• if M ′ satisfies ψ, then we know M also satisfies ψ,
• if M ′ fails ψ, then so does M (no spurious counter examples)

20

Caution: bisimulation and simulations

Bisimulation implies simulations in both directions

M ≈ M ′ ⇒ (M 4 M ′ ∧ M ′ 4 M)

� but in general not the other way around!

For example, on a variation of the tea & coffee machines example:

∅

{£}

{ }

∅

{£} {£}

{ }

Here the blue relation is not the inverse of the red relation. 21

Revisiting stuttering

What if we want to abstract multiple steps of the concrete model
with one step of the abstract model?

; We can change our notion of path to allow staying any finite
number of times in any state (in addition to allowing forever on
states with self-loops).

We can then adapt most of the notions we have seen so far.
However, in this setting, we do not want to use the X temporal
operator.

22

CEGAR – Counter Example Guided Abstraction Refinement

Counter example

Model check M′ � ψ

Generate initial abstractionGoal M � ψ

Refine abstraction Done

Is it a counter example in M?

fail

success

no yes

Lots of detail to fill out:

• how to generate the abstraction
• how to check counter examples in M
• how to refine abstractions

23



Summary

Abstracting a concrete temporal model into an abstract one is a
method for reducing the large state space in concrete models of
complex artefacts.

Simulation guarantees that model checking the abstract model is
sound for ACTL* properties, bisimulation for CTL* properties.

CEGAR is a method based on iterative refinement of abstract
models.

24

Overall summary

We have seen model checking as a method for checking the
correctness of various kinds of artefacts, including software and
hardware systems.

Artefacts are mathematically captured in temporal models that
model checkers check against temporal logic specifications.

Designing suitable temporal models can require effort and expert
knowledge, but model checking an existing model against a
specification is typically push-button/automatic.

25

Some links

• SPIN model checker (supports LTL specs).
Download, Tutorial, Successes

• NuSMV model checker (supports LTL and CTL specs).
Download, Tutorial

• TLA+ model checker.
Download, Tutorial, Successes

• CBMC model checker for C.
Download, Manual, Projects

26


