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What’s the big deal?
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The human-centric approach to 
labelling

■ Explicitly acknowledges human work involved in building and deploying ML systems

■ A central role is for humans to specify behaviour through training labels

■ Are labels an objective mathematical truth? 

■ End-user activity of labelling is particularly interesting

The human-centric approach to machine learning explicitly acknowledges the human 
work involved in building and deploying machine learning systems. A central role for 
humans is to specify the desired behaviour of the system through the provision of 
training data with labels. When viewed through the lens of traditional statistical 
philosophy, these labels are intended to capture an objective mathematical property 
of the data. However, when faced with the irregular, noisy, and subjective application 
domains of human-centric systems, this assumption unfortunately produces 
numerous challenges which can result in both a poor user experience as well as 
poorer resultant models.

These challenges can be effectively addressed by addressing the interaction design of 
the end-user activity of labelling. This is because not only is labelling the primary 
mechanism for non-expert interaction with machine learning, but also because it is 
where the end-user most clearly encounters the tension between the statistical ideals 
of supervised learning and human-centricity.

Interactive machine learning (IML) systems enable users to train, customise, and 
apply machine learning models in a variety of domains. The end-users of these 
systems are typically non-experts with no knowledge of machine learning or 
programming. In contrast, the professional practice of machine learning, engineering 
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or ‘data science’ typically requires expertise in both those areas. The key design 
strategy for reducing the expertise requirements of applied IML systems is to abstract 
away using automation nearly all technical aspects of training and applying models, 
except the provision of training data.
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Crayons

Fails, J. A., & Olsen, D. R. (2003). 

Interactive machine learning. Proceedings 

of the 8th International Conference on 

Intelligent User Interfaces - IUI’03, 39. 

https://doi.org/10.1145/604050.604056

In theCrayonsapplication (Fails&Olsen, 2003), userscan train a model to segment 
images into different parts. Crayons enables end-usersto build image segmentation 
classifiers, that is, pixel-level binary classifiers whichsegment portions of an image as 
falling into one of two classes. For example, a ‘hand detector’ classifier would take a 
2D image of sizew×has input, and as output, producew·hbinary labels, one for each 
pixel, corresponding to whether or not the pixel is partof a hand in the image. To 
build such a classifier in Crayons, users paint labels onan image as they would using a 
brush tool in a graphics application such as MicrosoftPaint or Adobe Photoshop, 
being able to toggle between two ‘brushes’ for the twoclasses. As the user paints, a 
model is trained, and the output of the model is renderedonto the same image, 
through a translucent overlay. This allows the user to focus further annotation on 
misclassified areas.
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Elucidebug
Kulesza, T., Burnett, M., Wong, W.,&Stumpf, S. (2015). Principles of Explanatory Debugging to 

Personalize Interactive Machine Learning. InProceedings of the 20th International Conference 

on Intelligent User Interfaces - IUI’15(pp. 126–137). 

https://doi.org/10.1145/2678025.2701399

Another example of an end-user controlled IML system is EluciDebug
(Kulesza,Burnett, Wong,&Stumpf, 2015). EluciDebug allows end-users to build multi-
class classifiers for organising short to medium-length pieces of text, such as email. 
The user performs manual annotation by moving emails to folders, where each folder 
represents a class. As the user organises their email, a model is trained, and the 
output of the model is presented as suggestions for classification within the email 
client itself, whichthe user may accept or overrule. The key thing to note is that both 
systems involve a training loop, where the user provides annotations either in the 
form of trainingexamples or potentially by manually adjusting model parameters (as 
can be done inEluciDebug). Next, a model is trained and the model output is 
somehow presented backto the user for further action in such a way as to directly 
suggest which furtherannotation or adjustment actions would be useful.
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Labelling could be viewed as 
programming or model construction…

■ Model construction:

– Fitting models to data

– Uncovering ‘natural law’ (Breiman, L. (2001). Statistical Modeling: The Two 

Cultures.Statistical Science, 16(3), 199–215.)

– A ‘techno-pragmatist’ view

These examples of interacting with a system in order to control its future behaviour 
can be considered either as programing, or as model construction. The programming 
perspective suggests that the user wants the system to behave in a certain way, and is 
training it to do so. The model construction perspective suggests that the system is 
trying to discover what the user wants, and is building a model of the user’s 
intentions based on observations of the user’s behaviour. These two perspectives 
carry very different philosophical assumptions.

Let’s start with the model construction view:

The practice of fitting models to data has its roots in the statistical philosophy that 
there exists some natural law underlying observed data (Breiman, 2001). Due to 
imperfections in the data collection process, the observed data is subject to noise. 
The objective of data modelling, then, is to uncover the parameters of the underlying 
law. This philosophy has influenced the design of supervised learning algorithms, and 
in turn, the assumptions of supervised learning have, by default, driven the design of 
IML systems. This design influence may be termed ‘techno-pragmatism’, where the 
interaction is designed around satisfying the technical needs of statistical models. The 
purpose of the user, within the overall system design, is to satisfy the requirement for 
an ‘objective’ function, encoding the underlying ‘law’, in which the labels provided by 
the user define the ‘ground truth’ of that law. The techno-pragmatist statistical view 
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of IML is therefore fundamentally concerned with notions of truth, law and 
objectivity.
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The model construction approach is 
limiting

■ IML is often inherently subjective

■ Consider machine translation, music reharmonsiation, artistic style transfer

In contrast to the techno-pragmatist view, in which the user is regarded as a source of objective 
ground truth for a statistical inference algorithm, we argue that the function of an intelligent machine 
learning system is to be subjective, or more precisely, to replay versions of subjective behaviour that 
has previously been captured from humans. This type of “intelligence” can be distinguished from mere 
objective automation, of the kind exhibited by a heating thermostat or adaptive suspension, where 
behaviour is determined by direct measurement and physical laws. Those objective systems do not 
require labelling (or at least, the labels are implicit in the design of the sensing channels). Examples of 
subjective judgements include giving names to things, composing texts, making valuations, or 
expressing desires – all related to human needs and interpretations. None would be meaningful in the 
absence of any human to interpret the result, meaning that they are inherently subjective.

In many cases, a machine learning system is therefore expected to emulate subjective human 
judgments, and it does this by replicating judgments that humans have been seen to make. Here are 
some extreme examples: machine translation systems are trained using texts that have been written 
by humans; music harmonisation systems are trained using music that has been written by humans; 
and artistic style generators are trained using pictures painted by humans. In a sense, these 
“intelligent” algorithms offer a kind of mechanised plagiarism, in which the statistical algorithm simply 
mashes up and disguises the original works until it is impossible to sort out who the rightful authors 
were.

These kinds of creative “intelligence” offer an extreme case of machine behaviour that is derived from 
subjective human decisions, but almost all supervised learning systems demonstrate similar 
dependencies. Data is acquired by observing humans (whether researchers, volunteers, anonymous 
Mechanical Turkers or Google searchers) making decisions and expressing themselves. The actions of 
those humans are then replayed by the system as appropriate, based on statistical likelihood that a 
human would dothe same thing in that situation.
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Labelling is an act of programming

■ A label is an instruction to the system

■ Label providers are engaging in intentional creative acts, which are statistically 

encoded

This human-centred perspective on machine learning systems focuses on the ways in 
which system behaviour depends on human actions rather than following physical 
laws. When a machine appears to behaviour autonomously, we ask whether this 
behaviour has been derived by observing humans. The observation may either be 
covert, in which case the intelligence of the system has been achieved by 
appropriating the subjectively authored intentions of others, or else it is done with 
their awareness and permission. In the latter (overt) case those users become 
programmers, determining future system behaviour by authoring examples of what 
that behaviour should look like.

Labelling is thus a kind of programming, albeit one that is often highly collaborative. A 
label is an instruction to the system, instructing it by example to behave in a certain 
way in a certain kind of situation. The system users who provide category labels for 
supervised learning systems are engaging in (minor) intentional creative acts. Of 
course, these intentional acts are statistically encoded and aggregated in ways that 
make it difficult or impossible to acknowledge who the original author was – but the 
original authors are undeniably humans.
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Some human judgement types

■ Perceptual judgements

■ Judgements that reflect domain expertise

■ Judgements of patterns in human experience

■ Judgement of patterns in individual intent

So, the purpose of the statistical model in an IML system is not to capture a natural 
law. Rather, an IML system aims to reproduce human judgment ability. In order to 
analyse the implications for design, we categorise human judgments into four (non-
exhaustive) types.

perceptual judgements,
judgements that reflect domain expertise,
judgement of patterns in human experience, and
judgement of patterns in individual intent.
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Perceptual judgements

Perceptual judgments are those that rely principally on the human perceptual system 
for assignment of a stimulus to a perceptual category. An example is labelling digits in 
the MNIST database (LeCun Yann, Cortes Corinna,&Burges Christopher, 1998).These 
are often presented as ‘objective’ judgments, although the assumption of objectivity 
is only possible because the training examples themselves have been selected to 
reflect a consensus judgment that the labeller is assumed to share. The MNIST 
database does not include invalid ‘digits’, non-digits, ambiguous shapes, or artistic 
subversions of the concept of a digit. Think about the following question: are labels 
representative of objective ‘facts’ about the neuroscience of human vision, or the 
subjective assumptions shared by the labellers and data set designers?
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Domain expertise
■ E.g., clinicians annotating patient data, social scientists annotating interview data

■ Concepts may have unclear definitions

■ Access to adequate experts poses logistical challenges, e.g., quorum for averaging

Sarkar, A., Morrison, C., Dorn, J. F., Bedi, R., Steinheimer, S., Boisvert, J.,…Lindley, S. (2016). Setwise Comparison: Consistent, 

Scalable, Continuum Labels for Computer Vision. InProceedings of the 2016 CHI Conference on Human Factors in Computing 

Systems - CHI’16(pp. 261–271). New York, New York, USA: ACM Press. https://doi.org/10.1145/2858036.2858199

Chen, N. (2016). Challenges of Applying Machine Learning to Qualitative Coding.ACM SIGCHI Workshop on Human-Centered

Machine Learning. Retrieved from http://hcml2016.goldsmithsdigital.com/program/

Domain expertise judgments rely on labellers’ recognised expertise in a particular 
area. Two example are multiple sclerosis assessment through the analysis of patient 
videos (Sarkar et al., 2016), and assigning qualitative codes to social science research 
data (Chen, 2016). Despite these judgments being provided by experts, the concepts 
being labelled may have unclear definitions, impairing label quality. Moreover, many 
sources may contribute to inter-rater variability, such as variations in previous 
experience, training, methods and heuristics used for labelling. Finally, for domain 
expertise judgments, access to experts is clearly a prerequisite, which may pose 
logistical challenges if such expertise is rare.
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Human experience judgements

• Universalism

• Variations across age, gender, culture, not encoded, but a primary challenge for affective computing 

(Picard, 2003)

Human experience judgments are those that aim to capture some universal aspect of 
the human experience. This might be regarded as a special case of the domain 
expertise judgment where the domain is being human, as opposed to say, a dog or a 
monkey. An example is capturing labels for affect recognition (Picard, 1997). Here, 
there is a tenuous assumption that any given person is acting as a representative 
judge on behalf of all humanity, in relation to universal human experience. In 
practice, people differ.Typical approaches to mitigate this variation include 
crowdsourcing and averagingacross labellers. Nonetheless, affect labelling is subject 
to variations across age, gender,culture, and other factors which are yet to be 
modelled. While such variation isrecognised as a primary challenge for affective 
computing (Picard, 2003), it is notexplicitly modelled or acknowledged in the labelling 
interface (for example, by askingthe labeller to assess the extent of their own 
individuality).
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Individual intent

• Poor user motivation to provide information, and 

poor ability to self-report (Afzal & Robinson, 2014)

• ‘Implicit’ signals can work well, but not perfect

Individual intent judgments reflect personal feelings, desires, and attributes. Unlike 
the previous three categories, which appeal to different standards of objectivity 
(perceptual reality, objective expertise, and universality) these judgements are 
acknowledged to be inherently subjective because they model an individual. For 
example, applications built with the EmotionSense platform (Lathia et al., 2013) aim 
to use emotional inference from mobile phone sensors to induce behavioural change, 
as a sort of personal therapist. However, the system relies at least partially on self-
reporting affective states, which suffers from two issues: users may not be motivated 
to provide this information repeatedly and consistently, and more importantly, 
theymay not be capable of consistently self-reporting their emotional state 
(Afzal&Robinson, 2014). Recommender systems such as Amazon’s product 
recommendationscircumvent this issue by measuring judgments from concrete 
actions supposedlyreflecting revealed intent rather than expressed intent: products 
which were viewedor not viewed, bought or not bought. Such actions are 
unambiguous signals of intent(because the user interface paradigm enforces this), 
but are still not immune tomisdirection, for example when a user clicks on multiple 
irrelevant links in order todisguise their search history.
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Problems of labelling

■ Ethical challenges of data collection, e.g. consent

■ ‘Data-hungriness’ of models. Solutions: One-shot learning, TrueSkill, etc.?

■ Distinction between unclear labels and unclear label boundaries

■ Outliers and ‘unrateables’

■ Incorrect framing of regression as classification

■ Concept evolution: user process of defining/refining concepts

■ Concept drift: labels change over time (related but different)

Even before it has been labelled, training data reflects human judgements and priorities. Modern supervised 
learning techniques require large training sets to build stable models, but the scale of data acquisition can raise 
ethical challenges, including consent to use data for new purposes, protected categories of data such as clinical 
patient data, and privacy and anonymity concerns which make it difficult to aggregate data.

While labeling data is a seemingly simple task, it is actuallyfraught with problems (e.g., [9, 19, 26]). Labels reflect a labeler’s mapping between the data and their 
underlying concept(i.e., their abstract notion of the target class). Thus, label quality is affected by factors such as the labeler’s expertise or familiarity with the concept or 
data, theirj udgment ability and attentiveness during labeling, and the ambiguity and changing distribution of the data itself.

Moreover, some applications require fast convergence. For instance, the TrueSkill system (Herbrich, 
Minka,&Graepel, 2006) was developed for matching players inonline games. A gross mismatch in skill results in a 
less enjoyable experience for allplayers: the weaker player outclassed, and the stronger player unchallenged. A 
fastestimate of the player’s skill, requiring only a few games, is also desirable, as repeatedmismatches may cause 
players to stop playing the game. Another example of atechnical approach dealing with fast convergence is one-
shot learning (Fei-Fei, Fergus,&Perona, 2006).

Data itself carries epistemological assumptions that have been embedded in the way it was collected. From the 
machine learning perspective, there may not be a formal distinction between examples which cannot be placed 
exactly in the space of labels, and label boundaries which are not precise. However, they are very different from 
the perspective of a human labeller. Imprecise label boundaries may undermine labeller confidence throughout 
the entire labelling activity. Training examples may also pose problems because they are outliers, or simply 
unrateable. As noted by Chen (Chen,2016), outliers are typically discarded in quantitative analyses, but become 
the focus of attention in qualitative analyses. Examples that are unratable (perhaps because of data corruption or 
because they contain no meaningful information) may impair the labelling process if the labelling tool has no 
provision to mark examples as unrateable, or the labeller is not equipped to identify such a situation should it 
arise.

In some cases, a regression problem is incorrectly framed as a classification problem for the purpose of labelling –
it is easier to ask labellers to provide one of a discrete set of labels than a real number on a continuous scale. 
However, this can result in the unnecessary conceptualisation of examples as belonging to a set of discrete 
categories, which causes issues for examples on the boundaries of different categories. This is the problem faced 
by the Assess MS problem, detailed in the next section. Unclear concepts cause problems generally in precision, 
but less so for accuracy.
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Label quality depends a lot on the 
labeller

■ Inter-rater variability (previous experience, training, methods and heuristics used for 

labelling, attentiveness)

■ Inter and intra-rater reliability measurements

– E.g., Cohen’s Kappa, Krippendorff’s Alpha

■ Error with respect to ‘ground truth’

In response to this problem, qualitative social science researchers monitor 
thereliability of classification judgments. They want to know whether a judge 
consistentlymakes the same judgment in equivalent cases, and also whether two 
judges make thesame decision as each other. The second is more often discussed, 
because it happensso consistently. It is described as inter-rater reliability (IRR), and is 
often summarisedby a statistical measure such as Cohen’s kappa (for the case of two 
raters), whichcompares the level of agreement to what might be expected from 
chance. IRR testingis intuitively appealing to computer scientists such as HCI 
researchers, because thefirst rating can be considered as a design decision, and the 
second rating as a test ofthat decision. Inter-rater reliability is never 100%, but 
pragmatic allowance for thelimits of human performance means that certain 
thresholds are considered acceptablewithin the range of observation error.

The question of whether a single person agrees with themselves (when repeating 
thesame judgment) is less often asked in computer science, but of more concern 
inmedicine, where it is quite likely that a clinician might assess the same patient 
morethan once, with a considerable interval between the assessments. Clinical 
researchsuggests that this test-retest reliability is also imperfect, with clinicians 
applyingdifferent criteria at different times, perhaps because of explicit training and 
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correction,or perhaps because of changing tacit or contextual factors that the 
clinician may notbe consciously aware of. We discuss this issue further next.
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Accommodating flexibility

Revolt (Chee Chang et al., CHI 2017)
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Human fallibility, consistency and 
stamina

Humans are fallible. If there are large amounts of data to be labelled, the quality of 
judgements can be impaired as the labeller becomes tired. In the Assess MS 
projectdescribed in the next section, neurologists would spend an entire workday, 
sometimes two, continuously labelling short video clips (Sarkar et al., 2016). 
Appropriate tools,such as the setwise comparison tool developed for Assess MS, can 
mitigate this problem. Explicit strategies to maintain interest and prevent boredom 
have been applied inexperiments such as the Galaxy Zoo (Lintott et al., 2008) which 
show compellingevidence for the benefit of ludic and engaging labelling tools.

Even in optimum conditions, people still make mistakes, misinterpret instructions 
ordisagree with each other. This is well understood in scientific studies where data 
mustbe categorised by an observer, such as coding of free-text questionnaire 
responses.Where one researcher might interpret an observed response in one way, 
another seesit differently. This difference might come from not stating or 
communicating criteriathat have been applied by one rater, or from terminological 
imprecision, for example,stemming from a different understanding of the criteria that 
two raters might have,or simply their wishful thinking in relation to a hypothesis.
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Embracing error to improve speed

Krishna et al., 2016 (Embracing Error to Enable Rapid Crowdsourcing. CHI 2016) 
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SORTABLE
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Assess MS

• Aim: a more consistent way of quantifying 

progression of motor illness in multiple 

sclerosis

• Input: Kinect RGB + depth videos of standard 

clinical movements

• Output: a standardised clinical disability score

• 0 (normal), 1, 2, 3, 4 (severely impaired)

25
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| Jonas Dorn | ASSESS-MS | Business Use Only

Inter-rater consistency is limited
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Problem: consistent labels

• Numeric scoring has poor labeller agreement
• concept boundaries unclear even after iteration

• Crowdsource?
➡ can’t, need highly expert labellers

• Average across labellers?
➡ can’t, patient confidentiality

• Model individual labeller noise/bias?
➡ can’t, learning effects
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Partial solution
• Preference judgements

• ‘this is better / worse / equal to that’ as opposed 

to ‘this is a 3, that is a 4’.

• Not scalable :(
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A better solution

• Setwise comparison + TrueSkill inference

• Order sets of videos with overlap

• but don’t need all pairwise comparisons

• Infer remaining relationships
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Prior

After Natalia wins
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SorTable
an interface for setwise comparison

32
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Sorting strategies
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So, does it work?
• Already known: pairwise comparison achieves higher 

consistency than assigning numerical scores, but 

very slow

• Question: Does setwise comparison achieve a better 

efficiency-consistency tradeoff?

• Compared pairwise and setwise using 8 neurologists 

rating a set of 40 videos
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Result 1: 

Setwise comparison is more efficient

• Setwise task time 

was

54 minutes less

on average
(p = 4·10-5)
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Result 2: 

Setwise comparison is more consistent!
Agreement between labellers

37
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Why is it more consistent???
• Inferring missing 

comparisons was better 
than measuring all 
comparisons.

• Cognitive load assessment 
was inconclusive.

• Potential explanations:
• Fatigue
• TrueSkill’s implicit noise 

modelling
• Increased reference points
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Sortable: conclusions

■ Labels need not be solicited directly, but can be inferred

■ Interaction design eased the burden of labelling

■ The most informative labels are not necessarily the best

We reframed the problem so that users were not providing labels directly, but 
providing information from which labels could be reconstructed. In this way, we could 
build upon strong human capability in relative judgement and still provide the 
classification labels required by the Assess MS system. This overcame noisy 
labels,improving the accuracy of the algorithm by 10%.

A key insight was to by enabling setwise rather than pairwise comparison, achieving 
three benefits for the users. First, the presentation of videos in sets builds upon 
human short-term memory to make multiple comparisons at once. Second, the 
ability to create stacks to indicate that videos are the same can substantially reduce 
the number of comparisons the labeller needs to make when sorting. Third, SorTable
facilitates mixed-strategy sorting, including the automatic display of the left and right 
neighbours of the currently selected video, and the ability to compare any two videos 
with a two-finger gesture. All interactions are touch based.

We found that choosing videos to label to maximise TrueSkill’s information gain and 
ultimately decrease the number of required labels was not a good strategy for human 
labellers. It is less cognitively taxing for people to differentiate between very different 
videos rather than similar ones. Put differently, labels that satisfy a classifier’s 
information needs perfectly may also be the hardest for humans to give 
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(Lang&Baum,1992), and increase stress and fatigue.
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INFERRING UNITS IN 
SPREADSHEETS
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Top search results for spreadsheet. 

10 contain numbers that have some form of unit.

456/867 unit annotated workbooks from EUSES referred to some unit.

By units we mean physical units like 

grams, seconds, or currencies.
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Units?

By units we mean physical units like grams, seconds, or currencies.

Calculations with units satisfy a set of laws.

10m * 15kg = 150m*kg

10s / 2s = 5 (unitless)

10s + 5m = error
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Units are core to many spreadsheet domains.

Unit information is valuable for:

Catching errors.

Presenting information.

Localisation.

Comprehension.

But most spreadsheet systems do not directly support units

and even if they did, users may not provide new unit information. 
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Our challenge is unit inference: given a numeric cell, tell me its unit.
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The Task

Given a spreadsheet, only a subset of the cells must have a unit annotation in order to fully infer 

the units in the sheet.

These are the critical cells. They could be: { A1, A3 }, { A2, A3 }, or { A3, A4 }.

Our task: synthesise a unit annotation for critical cells using text in the sheet.

Orchard et al. Evolving Fortran types with inferred units-of-measure. ICCS 15.
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Our Solution (Part One)

We know that inference is worthwhile, and we have a mechanism to evaluate it. We just 
need to implement it!

1. Run a logical inference algorithm. Output critical cells.

2. Annotate critical cells using nearby text cells that match unit templates such as: 

“Area (acres)” or “dollars per month”.

Problem.

Many text cells are like “Credit card charges” rather than “Area (acres)”. 

Our templates are precise, but have low recall.
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Our Solution (Part Two)

Use a machine learning model to extract dimensions from text cells if we fail to match a 

template.

We start with a word embedding that maps words into a vector 

space. ‘Similar’ words are ‘close’ in the vector space.

For a given text cell, we assign a score to each dimension (rather than 

unit).

In words:

• The score for a dimension d with respect to a text cell t is the max score 

of a unit u in d with respect to t.

• The score for a unit u with respect to t is the average ‘distance’ 

between the embedding for u and the embedding of each word in t.

Cosine similarity.
Subject to a weak 

transitivity constraint.

at the end of this… so we’re done, right?

We take the inference approach of Chambers and Erwig,although we aim to infer concrete physical units (insteadof dimensions). Through a fully-
automated process based onformulas, formatting and nearby textual labels (described inSection V), we infer the units of each critical variable 
withoutany upfront user attention requirements. By reducing the(apparent) cost to the user to zero, we can greatly reduce thebarrier to 
adoption.Of course, there is no free lunch. 
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Evaluation

69.30%

87.80%

61.20%62.60%
68.70%

60.90%

Precision (Macro) Precision (Weighted) Recall

Human Baseline vs ML Dimension 

Inference (760 Text Samples from 

Spreadsheets)

Optimal Human Baseline ML Dimension Scoring

91.10%

9.90%

49.70%

14.50%

Precision Recall

Full Algorithm (Unit Inference)

Template Template + ML Dims

93.50%

10.20%

65.20%

19.00%

Precision Recall

Full Algorithm (Dimension Inference)

Template Template + ML Dims

Task: Take snippets like “Salary ($)”, remove 

the unit, and predict the dimension from 

“Salary”.

Task: Infer the critical cells in a workbook and find a (unit/dimension) annotation for each 

using text and (templates/templates + ml dimension scoring).

Dataset: 330 annotated workbooks from EUSES.

The catch is that inferenceis not perfect, and when inferred units are incorrect, the userwill need to invest attention to rectify the inference (a 
tradeoffthat has not been previously acknowledged in such work).The question is under what circumstances does this result in asituation
beneficial to the user, i.e., under what conditions doesthe unit inference system result in a lower overall attentioninvestment cost?
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Attention Investment

■ The decision to start programming is 

based on an implicit cost-benefit 

analysis:

– cost of getting the work done 

manually

– investment cost of automation

– pay-off: the overall cost reduction 

as a result of automation

– risk: probability no payoff will 

result, or additional costs incurred

■ Blackwell, Alan F. "First steps in programming: A rationale for 

attention investment models." Proceedings IEEE 2002 Symposia 

on Human Centric Computing Languages and Environments. 

IEEE, 2002.

This question is precisely the one answered by the decisioncalculus of Horvitz’s principles for mixed-initiative systems[17], but applied to the 
user’s attention. Our key observation,which allows us to combine the theories of attention invest-ment and mixed-initiative systems, is that the 
utility functionsin Horvitz’s calculus can be expressed in terms of Blackwell’sattention units.
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Simplified model of error production

■ Over the course of interacting with a spreadsheet (authoring, editing, reading, etc.), 

a unit error occurs with some probability Pu.

■ If a unit error occurs, the user incurs an attentional cost Ru of recovering from the 

unit error. 

■ However, if we have a working inference system, the cost of recovering from a unit 

error is zero. 

■ If there is an inference error (which occurs with probability Pi), the user must recover 

from it (with cost Ri).
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Without inference, the expected cost is

The cost with inference is:

So the system lowers the overall attentional costs of using spreadsheets if:

Finally if we design the system such that:                               then we obtain the bound:

Similarly, we derive an expression for the expected cost with inference, with terms corresponding to the four cases where unit errors do and do 
not occur, and inference errors do and do not occur. Recall our assumption that when inference works, the cost of fixing a unit error is zero. 
Therefore, in the case where there is both a unit error and an inference error, we assume that resolving a unit inference error must also resolve 
any unit errors and therefore costs at mos tRi, not Ri + Ru.

If we now furtherassume our system is designed such thatRi¤Ru, that is, thecost of recovering from a unit inference error is not higherthan the 
cost of recovering from a unit error (a reasonabledesign objective), we obtain the boundPiPu.

Thus, we arrive at a simple, calculable criterion by whichwe can contextualise the performance of an imperfect error-prevention system: in order 
for an inference system to lowerthe expected attentional cost to the user, the rate of inferenceerror must be less than the natural rate of the 
error that thesystem is designed to prevent. Previous work estimates thatdimension errors occur in 42.5% of spreadsheets [2], thus theerror rate 
of our system must also not exceed 42.5%.
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Simplifying assumptions

■ Risk-neutrality

■ No external costs

■ Single error

■ Guaranteed error discovery and recovery

■ Zero-sum inference

■ Inference has cheaper recovery

■ Fixed error probabilities and costs

■ Short-term/long-term conflation

Risk-neutrality: we assume the user is risk-neutral; that is,it is sufficient for the expected attentional cost of a system withinference to be merely 
lower than the expected attentional costwithout inference. However, behavioural economics shows thatpeople can be risk-averse or risk-loving, 
with most peoplebeing slightly risk-averse [18]. For example: given the choiceof a 50% chance of winning $100, or a guaranteed win of$50, which 
would you choose? A risk-neutral person viewsboth options as equivalent due to their equal expected payoff. risk-averse person prefers the 
uncertain win only if theexpected payoff is higher than that of the certain win; the difference between those two quantities is known as 
theperson’srisk premium. It is almost certainly the case that usersof inference systems are slightly risk-averse, and thereforeour inference system 
must not merely match the attentionrequirements of the status quo, but improve upon it by a riskpremium (that might be possible to empirically 
determine, buthas not yet been done).

No external costs: we only modelattentionalcosts andutility. The full cost of an error in a spreadsheet variesaccording to its context; a unit error 
might result in incorrectreal-world decisions, financial and reputational loss, and manyother negative externalities. It is unclear how to model 
oraccount for these in a principled way.

Single error: we do not model multiple errors and episodesof error recovery.

Guaranteed error discovery and recovery: we do notmodel the likelihood of the usernotdetecting unit andinference errors, and ofnotfixing them. 
We assume that ifa unit or inference error exists, the user always discovers it,chooses to fix it, and does so successfully. In the case whereboth a 
unit and an inference error occurs, the user discoversand fixes the inference error (which automatically fixes theunit error, see next point).

Zero-sum inference: we assume that if unit inferenceworks, then the cost of recovering from a unit error is zero.This would be trivially the case if 
unit inference preventedunit errors from occurring in the first place. In this casePucan be interpreted as the probability that a unit 
errorwouldhaveoccurred without the interface. This assumption and theprevious one subsume another assumption we make (whichHorvitz’s
model is particularly concerned about), namelyperfect inference of user goals. That is, we assume that theway in which our inference system 
ultimately fixes or preventsunit errors is always perfectly aligned with the user’s goals.

Inference has cheaper recovery: the cost of recoveringfrom a unit inference error is less than or equal to the cost ofrecovering from a unit error 
(note a corollary design principle:incorrect inference should not be error-genic; if the inferencesystem introduces the very error it is designed to 
prevent, thecost of recovering from an inference error cannot be less thanthe cost of recovering from a unit error).

Fixed error probabilities and costs: we model the proba-bility of unit and inference errors to be fixed for all users andspreadsheets (e.g., 
interpreted as an empirical probability).
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Short-term/long-term conflation: we do not distinguishbetween Blackwell’s long-term focus (on the inference systemas a whole) and Horvitz’s 
short-term focus (on each individualopportunity for inference and user interruption). In the futurewe might treat these differently, using long-
term empiricalprobabilities for the former analysis, and sheet-specific prob-abilities generated by our inference model for the latter
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Attention investment & mixed-initiative 
systems, two sides of the same coin?

Since our system sits at the intersection of concerns treatedby both Blackwell’s account of attention investment and Horvitz’s account of mixed-
initiative systems, we have con-ducted an analysis that draws on concepts from both. In doingso, we have been able to identify a number of 
similaritiesand differences between them. In Table II, we present ourcomparison of the two theories.These theories approach two different 
problems from twovery different perspectives, but ultimately produce a mathe-matically identical solution (namely, to compute the 
expectedpayoff to the user of implementing a technical intervention,versus not implementing it). Therefore, when applying thesetheories in new 
contexts, it is important to consider theirdifference in perspective, because though the equations arethe same, our interpretation of the 
quantities encoded varies.
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