

Introduction to Graphics

Computer Science Tripos Part 1A Michaelmas Term 2023/2024

Department of Computer Science and Technology The Computer Laboratory

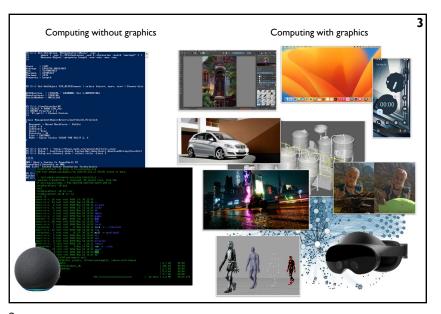
> William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD

> > www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures. These notes do not constitute a complete transcript of all the lectures, and they are not a substitute for textbooks. They are intended to give a reasonable synopsis of the subjects discussed, but they give neither complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the recommended textbook for this course: *Fundamentals of Computer Graphics* by Marschner & Shirley, CRC Press 2015 (4th or 5th edition). The references are in the format [FCG A.B/C.D], where A.B is the section number in the 4th edition and C.D is the section number in the 5th edition.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafał Mantiuk, 1996-2023, except where otherwise noted.


All other copyright material is made available under the University's licence. All rights reserved.

Introduction to Computer Graphics Rafał Mantiuk

www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks
Part IA CST
Two supervisions suggested
Two exam questions on Paper 3

1

What are Computer Graphics & Image Processing?

Computer graphics Image analysis & computer vision

Digital image capture display

Image processing

2

Why bother with CG?

- → All visual computer output depends on CG
 - printed output (laser/ink jet/phototypesetter)
 - monitor (CRT/LCD/OLED/DMD)
 - all visual computer output consists of real images generated by the computer from some internal digital image
- → Much other visual imagery depends on CG
 - ◆ TV & movie special effects & post-production
 - most books, magazines, catalogues...
 - VR/AR

3

Δ

6

Course Structure

+ Background

 What is an image? Resolution and quantisation. Storage of images in memory. [I lecture]

→ Rendering

 Perspective. Reflection of light from surfaces and shading. Geometric models. Ray tracing. [2 lectures]

→ Graphics pipeline

 Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]

+ Graphics hardware and OpenGL

 GPU APIs. Vertex processing. Fragment processing. Working with meshes and textures. [I lectures]

+ Human vision, colour and tone mapping

• Colour perception. Colour spaces. Tone mapping [2 lectures]

Course books

→ Fundamentals of Computer Graphics

- Shirley & Marschner CRC Press 2015 (4th or 5th edition)
- [FCG 8.1/9.1] reference to section 3.1 in the 4th edition, 9.1 in the 5th edition
- **→** Computer Graphics: Principles & Practice
 - Hughes, van Dam, McGuire, Sklar et al. Addison-Wesley 2013 (3rd edition)
- ◆ OpenGL Programming Guide: The Official Guide to Learning OpenGL Version 4.5 with SPIR-V
 - Kessenich, Sellers & Shreiner
 Addison Wesley 2016 (7th edition and later)

OpenGL
Programming Guide
Progr

5

7

Introduction to Computer Graphics

→ Background

- What is an image?
- Resolution and quantisation
- Storage of images in memory
- **+**Rendering
- +Graphics pipeline
- **→** Rasterization
- **→**Graphics hardware and OpenGL
- → Human vision and colour & tone mapping

What is a (digital) image?

- ★A digital photograph? ("JPEG")
- ★A snapshot of real-world lighting?

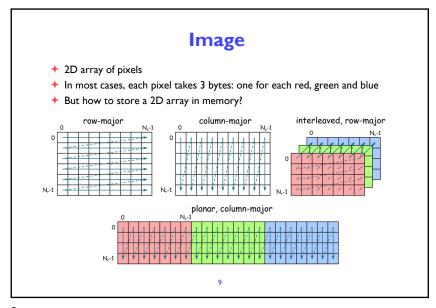

From computing perspective (discrete)

Image From mathematical perspective (continuous)

2D array of pixels

2D function

- •To represent images in memory
- •To create image processing software
- •To express image processing as a mathematical problem
- •To develop (and understand) algorithms

Stride

- → Calculating the pixel component index in memory
 - For row-major order (grayscale)

$$i(x,y) = x + y \cdot n_{cols}$$

◆ For column-major order (grayscale)

$$i(x,y) = x \cdot n_{rows} + y$$

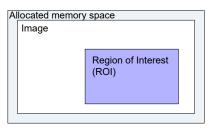
For interleaved row-major (colour)

$$i(x, y, c) = x \cdot 3 + y \cdot 3 \cdot n_{cols} + c$$

General case

$$i(x, y, c) = x \cdot s_x + y \cdot s_y + c \cdot s_c$$

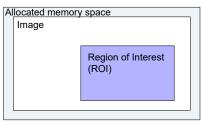
where $s_{\mathbf{x}},\,s_{\mathbf{y}}$ and s_{c} are the strides for the x, y and colour dimensions


10

9

10

Padded images and stride


- → Sometimes it is desirable to "pad" image with extra pixels
 - for example when using operators that need to access pixels outside the image border
- + Or to define a region of interest (ROI)

→ How to address pixels for such an image and the ROI?

ш

Padded images and stride

$$i(x, y, c) = i_{first} + x \cdot s_x + y \cdot s_y + c \cdot s_c$$

- + For row-major, interleaved, colour
 - $i_{first} =$
 - $s_x =$
 - $s_v =$
 - \bullet $s_c =$

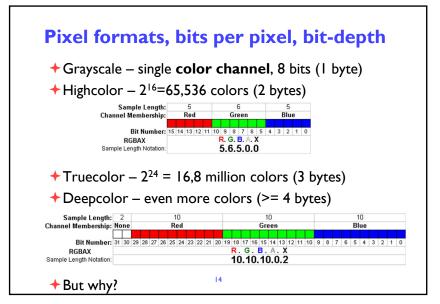
12

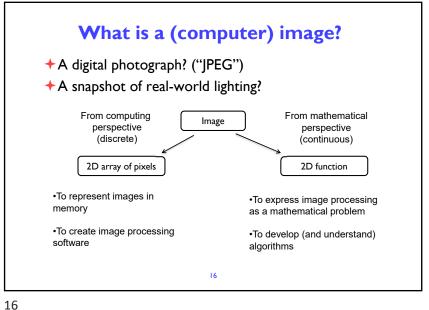
11

Pixel (PIcture ELement)

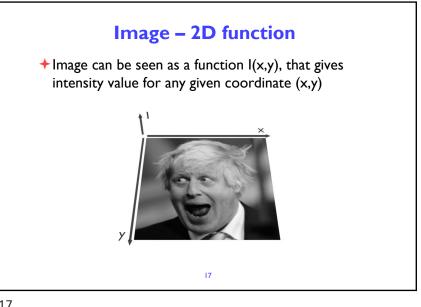
→ Each pixel (usually) consist of three values describing the color

(red, green, blue)

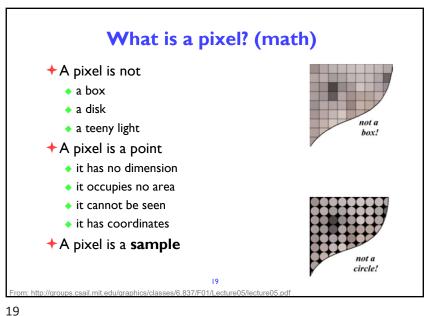

- → For example
 - (255, 255, 255) for white
 - (0, 0, 0) for black
 - (255, 0, 0) for red
- ♦ Why are the values in the 0-255 range?
- + How many bytes are needed to store 5MPixel image? (uncompressed)


13

13


15

Color banding → If there are not. enough bits to represent color **↑** Looks worse because of the 8-bit gradient 8-bit gradient, 24-bit gradient Mach band or dithered **Chevreul** illusion bands → Dithering (added) noise) can reduce banding Printers but also Intensity profile some LCD displays



20

Sampling an image → The image can be sampled on a rectangular sampling grid to yield a set of samples. These samples are pixels. 18

17

Sampling and quantization + Physical world is described in terms of continuous quantities → But computers work only with discrete numbers → Sampling – process of mapping continuous function to a discrete one → Quantization – process of mapping continuous variable to a discrete one

22

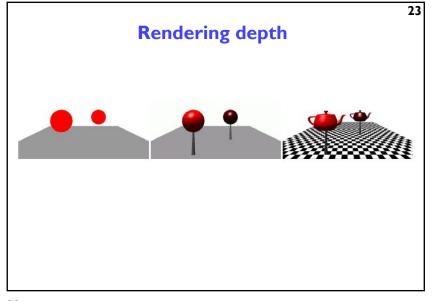
Computer Graphics & Image Processing + Background + Rendering - Perspective - Reflection of light from surfaces and shading - Geometric models - Ray tracing + Graphics pipeline + Graphics hardware and modern OpenGL + Human vision and colour & tone mapping

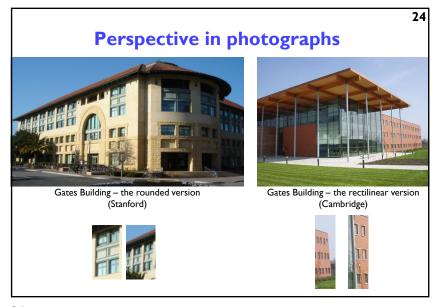
Depth cues

Occlusion
Shading
Familiar Size

Relative Size
Colour
Texture Gradient

Shadow and Foreshortening

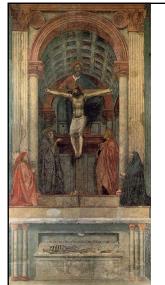

Atmosphere
Focus


Focus

Focus

Focus

21

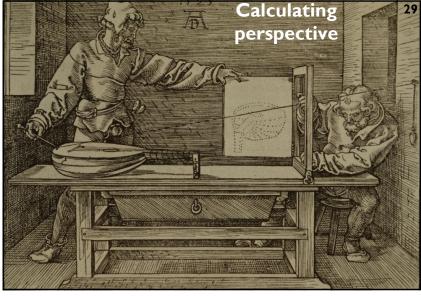

Early perspective

- Presentation at the Temple
- →Ambrogio Lorenzetti 1342
- → Uffizi Gallery Florence

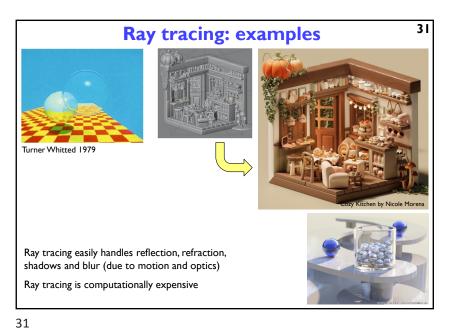
Wrong perspective

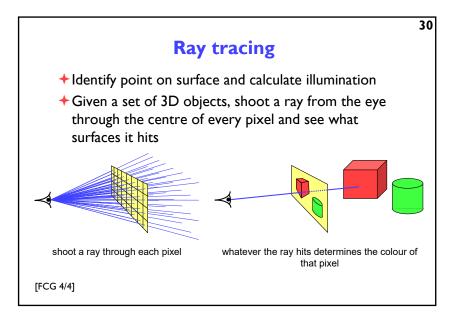
Adoring saints
Lorenzo Monaco
1407-09
National Gallery
London

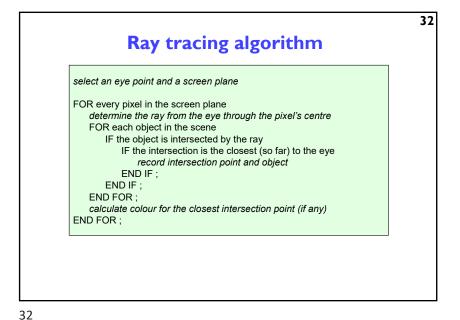
25


Renaissance perspective

- → Geometrical perspective Filippo Brunelleschi 1413
- ✦Holy Trinity fresco
- Masaccio (Tommaso di Ser Giovanni di Simone) 1425
- → Santa Maria Novella Florence
- → De pictura (On painting) textbook by Leon Battista Alberti 1435


False perspective


27


28

29

34

36

Intersection of a ray with an object I

• plane

ray: P = O + sD, $s \ge 0$ plane: $P \cdot N + d = 0$

$$s = -\frac{d + N \cdot O}{N \cdot D}$$

- polygon or disc
 - intersection the ray with the plane of the polygon
 - as above
 - then check to see whether the intersection point lies inside the polygon
 - a 2D geometry problem (which is simple for a disc)

33

Ray tracing: shading

once you have the intersection of a ray with the nearest object you can also:

calculate the normal to the object at that intersection point

shoot rays from that point to all of the light sources, and calculate the diffuse and specular reflections off the object at that point

this (plus ambient illumination) gives the colour of the object (at that point)

Intersection of a ray with an object 2

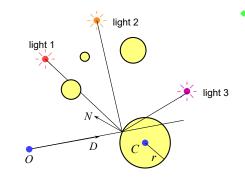
• sphere Oray: P = O + sD, $s \ge 0$ sphere $(P - C) \cdot (P - C) - r^2 = 0$

 $a = D \cdot D$ $b = 2D \cdot (O - C)$ $c = (O - C) \cdot (O - C) - r^{2}$ $d = \sqrt{b^{2} - 4ac}$

d real d imaginary

 $s_1 = \frac{-b+d}{2a}$

cylinder, cone, torus

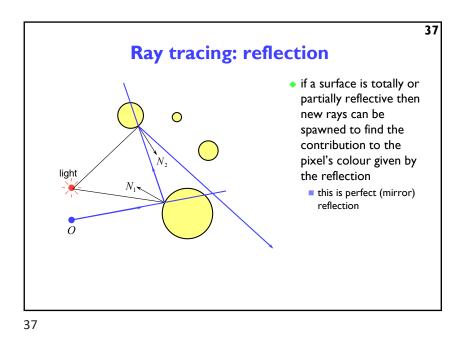

- all similar to sphere
- try them as an exercise

 $s_2 = \frac{-b - d}{2a}$

34

33

Ray tracing: shadows



- because you are tracing rays from the intersection point to the light, you can check whether another object is between the intersection and the light and is hence casting a shadow
 - also need to watch for selfshadowing

35

38

39

38 Ray tracing: transparency & refraction • objects can be totally or partially transparent \bigcirc this allows objects behind the current one to be seen through transparent objects can have light refractive indices bending the rays as they pass through the objects transparency + reflection means that a ray can split into two parts Example of a refraction

→ Dürer's method allows us to calculate what part of the scene is visible in any pixel

Illumination and shading

- → But what colour should it be?
- → Depends on:
 - lighting
 - shadows
 - properties of surface material

[FCG 4.5-4.8/5]

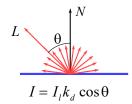
39

40 How do surfaces reflect light? perfect specular imperfect specular diffuse reflection reflection reflection (Lambertian reflection) (mirror) the surface of a specular reflector is facetted, each facet reflects perfectly but in a slightly different direction to the other facets Johann Lambert, 18th century German mathematician 40

Comments on reflection

- the surface can absorb some wavelengths of light
 - e.g. shiny gold or shiny copper
- specular reflection has "interesting" properties at glancing angles owing to occlusion of micro-facets by one another

- plastics are good examples of surfaces with:
 - specular reflection in the light's colour
 - diffuse reflection in the plastic's colour



43

41

43

Diffuse shading calculation

 $=I_{I}k_{d}(N\cdot L)$

 ${\it L}$ is a normalised vector pointing in the direction of the light source

N is the normal to the surface

 I_{i} is the intensity of the light source

 k_d is the proportion of light which is diffusely reflected by the surface

I is the intensity of the light reflected by the surface

use this equation to calculate the colour of a pixel

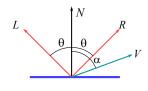
5-1---1-4

- Calculating the shading of a surface
- gross assumptions:
 - there is only diffuse (Lambertian) reflection
 - all light falling on a surface comes directly from a light source
 - there is no interaction between objects
 - no object casts shadows on any other
 - o so can treat each surface as if it were the only object in the scene
 - light sources are considered to be infinitely distant from the object
 - the vector to the light is the same across the whole surface
- observation:
 - the colour of a flat surface will be uniform across it, dependent only on the colour & position of the object and the colour & position of the light sources

42

Diffuse shading: comments

- ullet can have different I_l and different k_d for different wavelengths (colours)
- watch out for $\cos \theta < 0$
 - implies that the light is behind the polygon and so it cannot illuminate this side of the polygon
- do you use one-sided or two-sided surfaces?
 - one sided: only the side in the direction of the normal vector can be illuminated
 - if $\cos \theta < 0$ then both sides are black
 - \blacksquare two sided: the sign of $\cos\theta$ determines which side of the polygon is illuminated
 - need to invert the sign of the intensity for the back side
- this is essentially a simple one-parameter (θ) BRDF
 - Bidirectional Reflectance Distribution Function


45

47

Imperfect specular reflection

+ Phong developed an easy-tocalculate approximation to imperfect specular reflection

$$I = I_l k_s \cos^n \alpha$$
$$= I_l k_s (R \cdot V)^n$$

L is a normalised vector pointing in the direction of the light source

R is the vector of perfect reflection

N is the normal to the surface

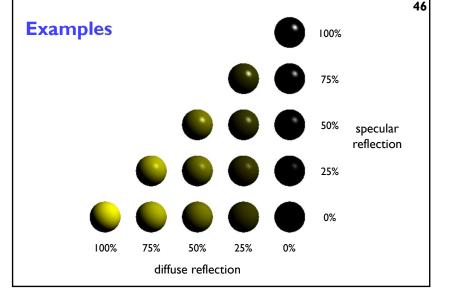
V is a normalised vector pointing at the

 I_l is the intensity of the light source

 $k_{\rm s}$ is the proportion of light which is specularly reflected by the surface

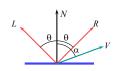
n is Phong's ad hoc "roughness" coefficient

I is the intensity of the specularly reflected



47

Phong Bui-Tuong, "Illumination for computer generated pictures", CACM, 18(6), 1975, 311-7


46

48

Shading: overall equation

• The overall shading equation can thus be considered to be the ambient illumination plus the diffuse and specular reflections from each light source

$$I = I_a k_a + \sum_i I_i k_d (L_i \cdot N) + \sum_i I_i k_s (R_i \cdot V)^n$$

- The equation above is computed for each colour channel
- The more lights there are in the scene, the longer this calculation will take

The gross assumptions revisited

- diffuse reflection
- approximate specular reflection
- no shadows
 - need to do ray tracing or shadow mapping to get shadows
- lights at infinity
 - can add local lights at the expense of more calculation
 - need to interpolate the L vector
- no interaction between surfaces
 - cheat!
 - assume that all light reflected off all other surfaces onto a given surface can be amalgamated into a single constant term: "ambient illumination", add this onto the diffuse and specular illumination

5 I

Sampling • we have assumed so far that each ray passes through the centre of a pixel • i.e. the value for each pixel is the colour of the object which happens to lie exactly under the centre of the pixel • this leads to: • stair step (jagged) edges to objects • small objects being missed completely • thin objects being missed completely or split into small pieces

Anti-aliasing

- these artefacts (and others) are jointly known as aliasing
- methods of ameliorating the effects of aliasing are known as anti-aliasing
 - in signal processing aliasing is a precisely defined technical term for a particular kind of artefact
 - in computer graphics its meaning has expanded to include most undesirable effects that can occur in the image
 - this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also ameliorate most of the other artefacts

49 50

Sampling in ray tracing

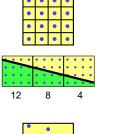
• single point

• shoot a single ray through the pixel's centre

• super-sampling for anti-aliasing

• shoot multiple rays through the pixel and average the result

• regular grid, random, jittered, Poisson disc


• adaptive super-sampling

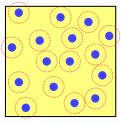
• shoot a few rays through the pixel, check the variance of the resulting values, if similar enough stop, otherwise shoot some more rays

Types of super-sampling

• regular grid

- divide the pixel into a number of sub-pixels and shoot a ray through the centre of each
- problem: can still lead to noticable aliasing unless a very high resolution sub-pixel grid is used
- random
 - shoot N rays at random points in the pixel
 - replaces aliasing artefacts with noise artefacts
 - the eye is far less sensitive to noise than to aliasing

50


52

53

Types of super-sampling 2

- Poisson disc
 - shoot N rays at random points in the pixel with the proviso that no two rays shall pass through the pixel closer than ε to one another
 - for N rays this produces a better looking image than pure random sampling
 - very hard to implement properly

pure random

53

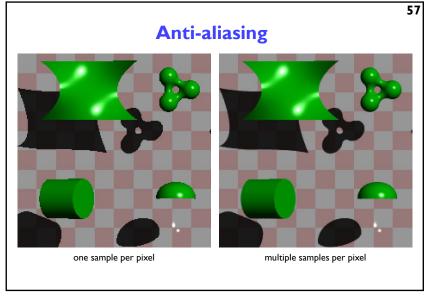
More reasons for wanting to take multiple samples per pixel

- super-sampling is only one reason why we might want to take multiple samples per pixel
- many effects can be achieved by distributing the multiple samples over some range
 - called distributed ray tracing
 - N.B. distributed means distributed over a range of values
- can work in two ways
 - each of the multiple rays shot through a pixel is allocated a random value from the relevant distribution(s)
 - all effects can be achieved this way with sufficient rays per pixel
 - 2 each ray spawns multiple rays when it hits an object
 - this alternative can be used, for example, for area lights

Types of super-sampling 3

- jittered
 - divide pixel into N sub-pixels and shoot one ray at a random point in each sub-pixel
 - an approximation to Poisson disc sampling
 - \blacksquare for N rays it is better than pure random sampling
 - easy to implement

54


Examples of distributed ray tracing

- distribute the samples for a pixel over the pixel area
 - get random (or jittered) super-sampling
 - used for anti-aliasing
- distribute the rays going to a light source over some area
 - allows area light sources in addition to point and directional light sources
 - produces soft shadows with penumbrae
- distribute the camera position over some area
 - allows simulation of a camera with a finite aperture lens
 - produces depth of field effects
- distribute the samples in time
 - produces motion blur effects on any moving objects

56

54

55

57

Finite aperture

left, a pinhole camera
below, a finite aperture camera
below left, 12 samples per pixel
below right, 120 samples per pixel
note the depth of field blur: only objects
at the correct distance are in focus

Introduction to Computer Graphics

- + Background
- **→** Rendering

58

- **+**Graphics pipeline
 - Polygonal mesh models
 - \bullet Transformations using matrices in 2D and 3D
 - Homogeneous coordinates
 - Projection: orthographic and perspective
- + Rasterization
- +Graphics hardware and modern OpenGL
- +Human vision, colour and tone mapping

6 I

Unfortunately...

- → Ray tracing is computationally expensive
 - used for super-high visual quality
- → Video games and user interfaces need something faster
- → Most real-time applications rely on rasterization
 - Model surfaces as polyhedra meshes of polygons
 - Use composition to build scenes
 - Apply perspective transformation and project into plane of screen
 - Work out which surface was closest
 - Fill pixels with colour of nearest visible polygon
- → Graphics cards have hardware to support this
- + Ray tracing starts to appear in real-time rendering
 - The new generations of GPUs offer accelerated ray-tracing
 - But it still not as efficient as rasterization

Three-dimensional objects

Polyhedral surfaces are made up from meshes of multiple connected polygons

Polygonal meshes
open or closed

Curved surfaces
must be converted to polygons to be drawn

61

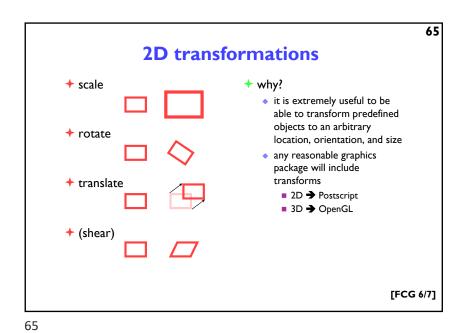
Surfaces in 3D: polygons

Easier to consider planar polygons

3 vertices (triangle) must be planar

> 3 vertices, not necessarily planar

a non-planar "polygon"


A polygon about the vertical axis should the result be this or this?

this vertex is in front of the other three, which are all in the same plane

62

Splitting polygons into triangles Most Graphics Processing Units (GPUs) are optimised to draw triangles Split polygons with more than three vertices into triangles which is preferable?

63

66 **Basic 2D transformations** scale x' = mxabout origin y' = my■ by factor *m* rotate $x' = x \cos \theta - y \sin \theta$ about origin $y' = x \sin \theta + y \cos \theta$ by angle θ translate $x' = x + x_0$ along vector (x_a, y_a) $y' = y + y_o$ shear x' = x + ayparallel to x axis y' = yby factor a

Matrix representation of transformations

→ scale

lacktriangle about origin, factor m

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

→ do nothing

• identity

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

+ rotate

• about origin, angle θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

+ shear

ullet parallel to x axis, factor a

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogeneous 2D co-ordinates

 translations cannot be represented using simple 2D matrix multiplication on 2D vectors, so we switch to homogeneous co-ordinates

$$(x, y, w) \equiv \left(\frac{x}{w}, \frac{y}{w}\right)$$

- an infinite number of homogeneous co-ordinates map to every 2D point
- → w=0 represents a point at infinity
- usually take the inverse transform to be:

$$(x,y) \equiv (x,y,1)$$

The symbol ≡ means equivalent

[FCG 6.3/7.3]

68

67

68

70

72

Matrices in homogeneous co-ordinates

+ scale

• about origin, factor *m*

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

+ do nothing

identity

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

+ rotate

about origin, angle θ

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

+ shear

• parallel to x axis, factor a

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

69

Concatenating transformations

- often necessary to perform more than one transformation on the same object
- can concatenate transformations by multiplying their matrices e.g. a shear followed by a scaling:

$$\begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$
 scale shear both
$$\begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} m & ma & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

71

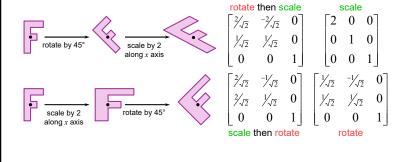
Translation by matrix algebra

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

In homogeneous coordinates

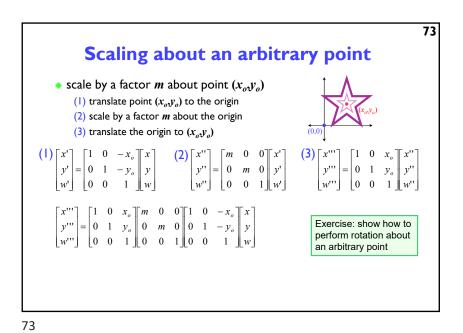
$$x' = x + wx$$

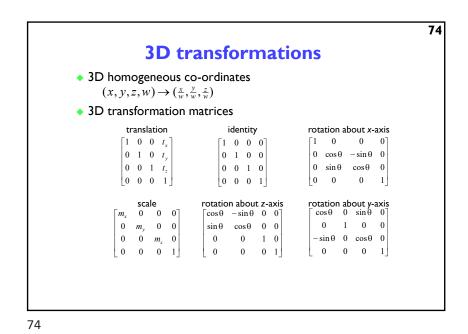
$$y' = y + wy_0 \qquad w' = w$$


In conventional coordinates

$$\frac{x'}{w'} = \frac{x}{w} + x_0 \qquad \frac{y'}{w'} = \frac{y}{w} + y_0$$

70


Transformation are not commutative


be careful of the order in which you concatenate transformations

71

76

Model transformation

• the graphics package Open Inventor defines a cylinder to be:

• centre at the origin, (0,0,0)

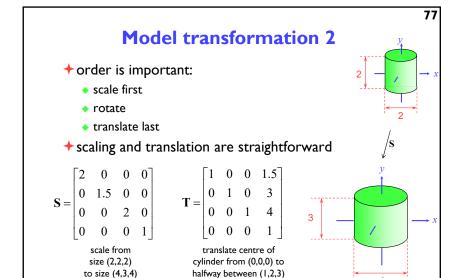
• radius I unit

• height 2 units, aligned along the y-axis

• this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

• we want to draw a cylinder of:

• radius 2 units


• the centres of its two ends
located at (1,2,3) and (2,4,5)

• its length is thus 3 units

• what transforms are required?
and in what order should they be applied?

78

80

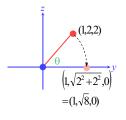
Model transformation 3

- → rotation is a multi-step process
 - break the rotation into steps, each of which is rotation about a principal axis

Model transformation 5

• then zero the *x*-coordinate by rotating about the *z*-axis

- work these out by taking the desired orientation back to the original axis-aligned position
 - the centres of its two ends located at (1,2,3) and (2,4,5)
- desired axis: (2,4,5)-(1,2,3)=(1,2,2)
- original axis: y-axis = (0,1,0)


77

Model transformation 4

and (2,4,5)

- desired axis: (2,4,5)-(1,2,3) = (1,2,2)
- original axis: y-axis = (0,3,0)
- zero the z-coordinate by rotating about the x-axis

$$\mathbf{R}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\theta = -\arcsin\frac{2}{\sqrt{2^{2} + 2^{2}}}$$

79

• we now have the object's axis pointing along the y-axis $-\sin\varphi = 0$

79

80

Model transformation 6

the overall transformation is:

- first scale
- then take the inverse of the rotation we just calculated
- finally translate to the correct position

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \mathbf{T} \times \mathbf{R}_1^{-1} \times \mathbf{R}_2^{-1} \times \mathbf{S} \times \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

81

3D ⇒ 2D projection

to make a picture

3D world is projected to a 2D image
like a camera taking a photograph
the three dimensional world is projected onto a plane

The 3D world is described as a set of (mathematical) objects
e.g. sphere radius (3.4)
centre (0,2,9)
e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27°, 156°)

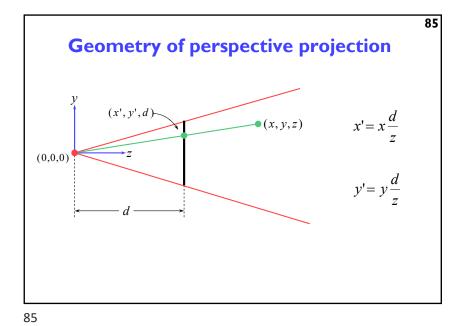
Application: display multiple instances

 transformations allow you to define an object at one location and then place multiple instances in your scene

82

81

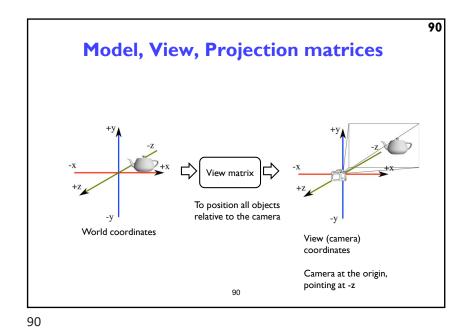
- e.g. $(x, y, z) \rightarrow (x, y)$
- ◆ useful in CAD, architecture, etc
- looks unrealistic
- → perspective
 - e.g. $(x, y, z) \rightarrow (\frac{x}{z}, \frac{y}{z})$
 - things get smaller as they get farther away
 - looks realistic
 - this is how cameras work

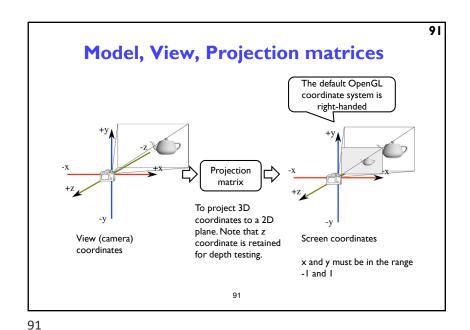


83

Projection as a matrix operation This is useful in the z-buffer algorithm where we need to interpolate 1/z values rather than z values. 86

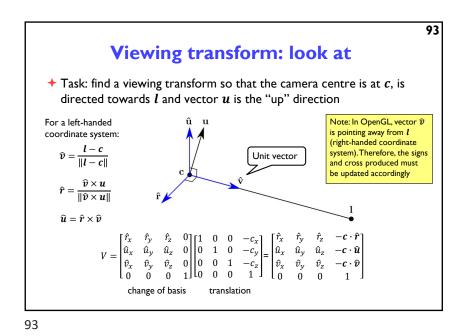
Perspective projection with an arbitrary camera

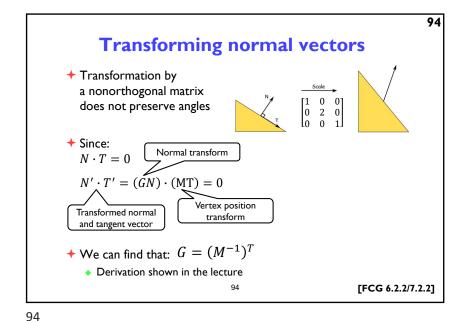

- we have assumed that:
 - screen centre at (0,0,d)
 - screen parallel to xy-plane
 - z-axis into screen
 - y-axis up and x-axis to the right
 - \blacksquare eye (camera) at origin (0,0,0)
- for an arbitrary camera we can either:
 - work out equations for projecting objects about an arbitrary point onto an arbitrary plane
 - transform all objects into our standard co-ordinate system (viewing co-ordinates) and use the above assumptions


88 A variety of transformations object in object in object in world object viewing 2D screen co-ordinates modelling co-ordinates viewing co-ordinates co-ordinates transform the modelling transform and viewing transform can be multiplied together to produce a single matrix taking an object directly from object co-ordinates into viewing co-ordinates either or both of the modelling transform and viewing transform matrices can be the identity matrix e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates this is a useful set of transforms, not a hard and fast model of how things should be done

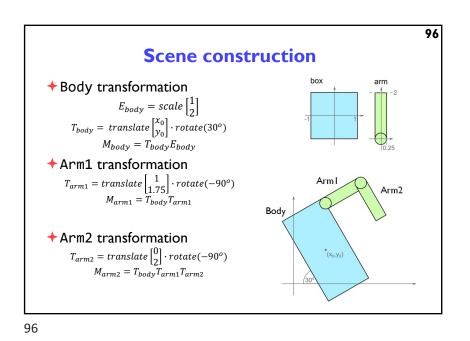
87

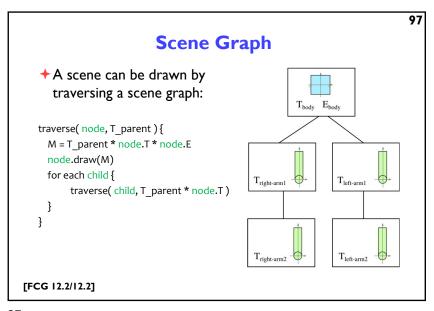
88





92 **All together** 3D world Screen vertex coordinates coordinates x,/w, and y,/w, must be between -I and I Projection, view and model matrices 92 92


95


Scene construction

We will build a robot from basic parts
Body transformation $M_{body} =$ Arm1 transformation $M_{arm1} =$ Arm2 transformation $M_{arm2} =$ World coordinates

©1996–2023 Neil A. Dodgson, Peter Robinson & Rafał Mantiuk

Introduction to Graphics

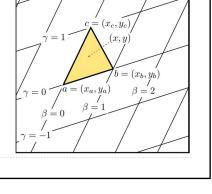
Introduction to Computer Graphics + Background **+** Rendering **→** Graphics pipeline **★ Rasterization +** Graphics hardware and OpenGL +Human vision and colour & tone mapping > 98

98


```
Rasterization algorithm(*)
Set model, view and projection (MVP) transformations
FOR every triangle in the scene
                                                    fragment - a candidate
   transform its vertices using MVP matrices
                                                     pixel in the triangle
   IF the triangle is within a view frustum
       clip the triangle to the screen border
       FOR each fragment in the triangle
          interpolate fragment position and attributes between vertices
          compute fragment colour
          IF the fragment is closer to the camera than any pixel drawn so far
              update the screen pixel with the fragment colour
          END IF;
       END FOR;
   END IF;
END FOR;
 (*) simplified
```

99

```
Rasterization
▶ Efficiently draw (thousands of) triangles
   Interpolate vertex attributes inside the triangle
▶ Homogenous
   barycentric
                                        \alpha = 0; \beta = 0; \gamma = 1
   coordinates are
                                        RGB=[1 0 0]
   used to
                                                 ,RGB=[???]
                         \alpha + \beta + \gamma = 1
   interpolate
   colours, normals,
                                                     RGB=[1 0.5 0]
   texture
                                                     \alpha = 0; \beta = 1; \gamma = 0
   coordinates and
                                   RGB=[1 1 0]
   other attributes
                                   \alpha = 1; \beta = 0; \gamma = 0
   inside the triangle
101
                                                              [FCG 2.7/2.9]
```

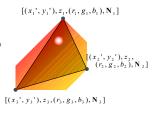

Homogenous barycentric coordinates

- Find barycentric coordinates of the point (x,y)
- Given the coordinates of the vertices
- Derivation in the lecture

$$\alpha = \frac{f_{cb}(x,y)}{f_{cb}(x_a,y_a)} \quad \beta = \frac{f_{ac}(x,y)}{f_{ac}(x_b,y_b)}$$

 $f_{ab}(x,y)$ is the implicit line equation:

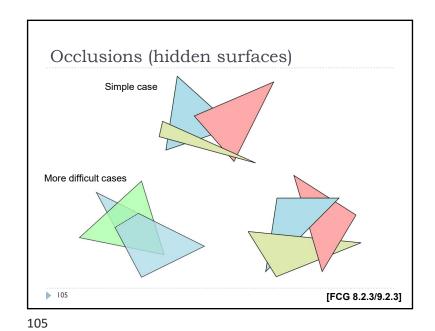
 $f_{ab}(x,y) = (y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a$

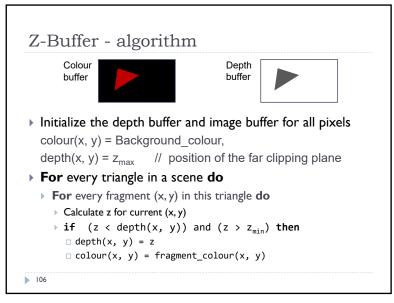


102

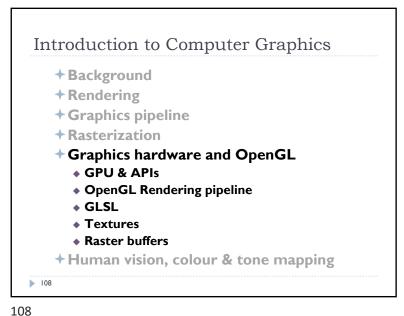
102

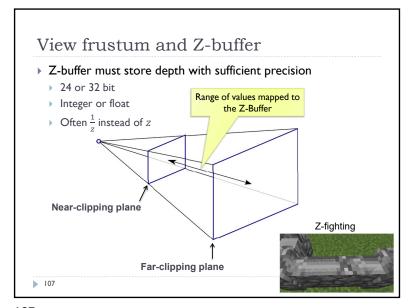
Surface normal vector interpolation

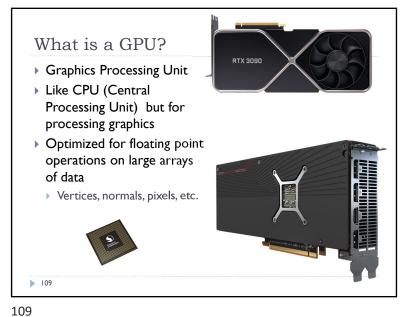

- for a polygonal model, interpolate normal vector between the vertices
 - Calculate colour (Phong reflection model) for each pixel
 - Diffuse component can be either interpolated or computed for each pixel
- N.B. Phong's approximation to specular reflection ignores (amongst other things) the effects of glancing incidence (the Fresnel term)



▶ 104


104


Triangle rasterization for $y=y_{min}$ to y_{max} do for $x=x_{min}$ to x_{max} do $\alpha = f_{cb}(x,y)/f_{cb}(x_a,y_a)$ $\beta = f_{ac}(x,y)/f_{ac}(x_b,y_b)$ $\gamma = 1 - \alpha - \beta$ if $(\alpha > 0 \text{ and } \beta > 0 \text{ and } \gamma > 0 \text{) then}$ $c = \alpha c_a + \beta c_b + \gamma c_c$ draw pixels (x,y) with colour c Optimization: the barycentric coordinates will change by the same amount when moving one pixel right (or one pixel down) regardless of the position Precompute increments $\Delta \alpha, \Delta \beta, \Delta \gamma$ and use them instead of computing barycentric coordinates when drawing pixels sequentially



106

What does a GPU do

- ▶ Performs all low-level tasks & a lot of high-level tasks
- ▶ Clipping, rasterisation, hidden surface removal, ...
 - Essentially draws millions of triangles very efficiently
- ▶ Procedural shading, texturing, animation, simulation, ...
- Ray tracing (ray traversal, acceleration data structures)
- Video rendering, de- and encoding, ...
- Physics engines
- ▶ Full programmability at several pipeline stages
 - fully programmable
 - but optimized for massively parallel operations

II0

110

112

GPU APIs (Application Programming Interfaces)

OpenGL

DirectX*

- ▶ Multi-platform
- Open standard API
- ▶ Focus on general 3D applications
- Den GL driver manages the resources
- No ray tracing extensions

DirectX

- Microsoft Windows / Xbox
- Proprietary API
- Focus on games
- Application manages resources

112

What makes GPU so fast?

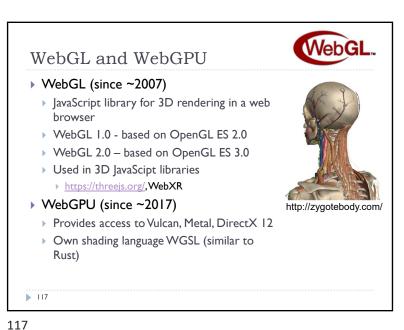
- ▶ 3D rendering can be very efficiently parallelized
 - Millions of pixels
 - Millions of triangles
 - Many operations executed independently at the same time
- ▶ This is why modern GPUs
 - Contain between hundreds and thousands of SIMD processors
 - ▶ Single Instruction Multiple Data operate on large arrays of data
 - >>1000 GB/s memory access
 - This is much higher bandwidth than CPU
 - ▶ But peak performance can be expected for very specific operations

■ 111

111

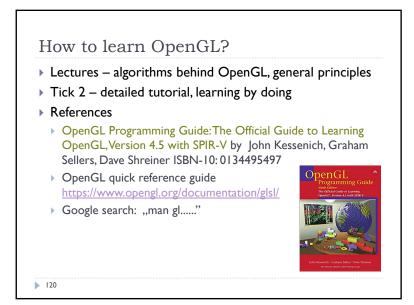
One more API

- ▶ Vulkan cross platform, open standard
- ▶ Low-overhead API for high performance 3D graphics
- ▶ Compared to OpenGL / DirectX
- Reduces CPU load
- ▶ Better support of multi-CPU-core architectures
- ▶ Finer control of GPU
- ▶ But
 - The code for drawing a few primitives can take 1000s line of
 - Intended for game engines and code that must be very well optimized

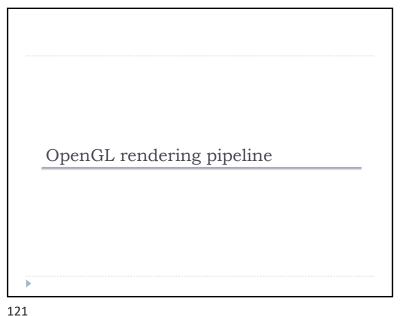

113

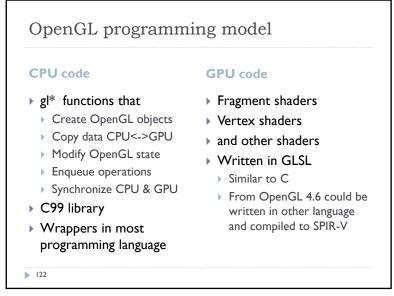
And one more ▶ Metal (Apple iOS8) ▶ low-level, low-overhead 3D GFX and compute shaders API Support for Apple chips, Intel HD and Iris, AMD, Nvidia ▶ Similar design as modern APIs, such as Vulcan ▶ Swift or Objective-C API Used mostly on iOS 114

114

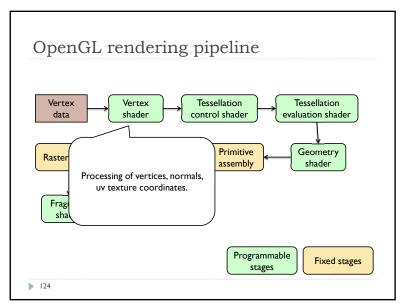


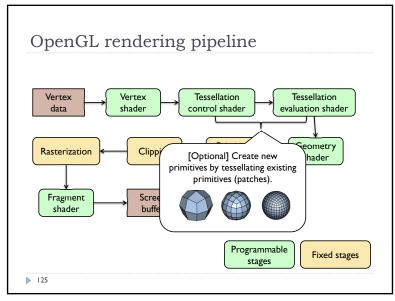
GPGPU - general purpose computing ▶ OpenGL and DirectX are not meant to be used for general purpose computing Example: physical simulation, machine learning ▶ CUDA – Nvidia's architecture for parallel computing ▶ C-like programming language **NVIDIA** CUDA ▶ With special API for parallel instructions ▶ Requires Nvidia GPU ▶ OpenCL – Similar to CUDA, but open standard Can run on both GPU and some CPUs ▶ Supported by AMD, Intel and NVidia, Qualcomm, Apple, ... 115

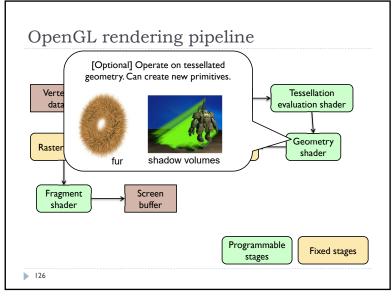

OpenGL in Java Standard Java API does not include OpenGL interface But several wrapper libraries exist Java OpenGL – JOGL Lightweight Java Game Library - LWJGL We will use LWJGL 3 Seems to be better maintained Access to other APIs (OpenCL, OpenAL, ...) We also need a linear algebra library JOML – Java OpenGL Math Library Operations on 2, 3, 4-dimensional vectors and matrices


118

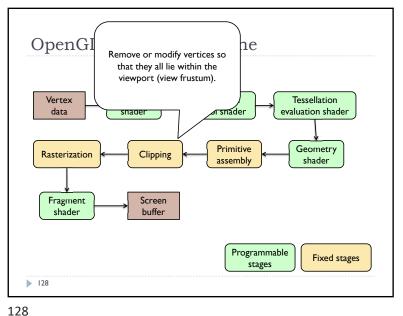
OpenGL History Proprietary library IRIS GL by SGI Geometry shaders OpenGL 1.0 (1992) OpenGL 4.0 (2010) OpenGL 1.2 (1998) ▶ Catching up with Direct3D II OpenGL 2.0 (2004) ▶ OpenGL 4.5 (2014) ▶ GLSL OpenGL 4.6 (2017) Non-power-of-two (NPOT) SPIR-V shaders textures OpenGL 3.0 (2008) Major overhaul of the API Many features from previous versions depreciated ▶ OpenGL 3.2 (2009) Core and Compatibility profiles 119

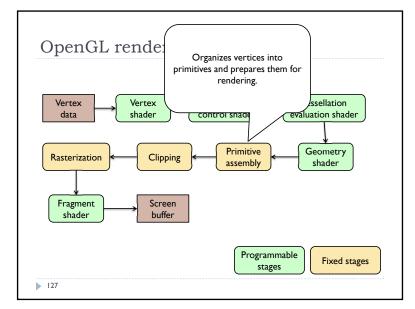

119

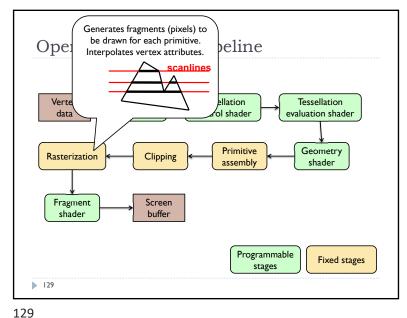


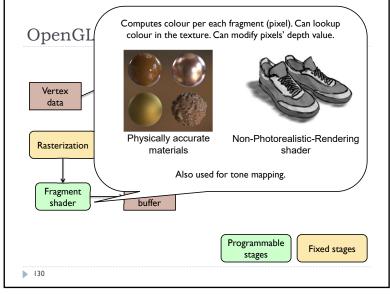


OpenGL rendering pipeline Tessellation Vertex Tessellation Vertex data shader control shader evaluation shader Geometry Primitive Rasterization Clipping shader assembly Screen Fragment shader buffer Programmable Fixed stages stages 123 123

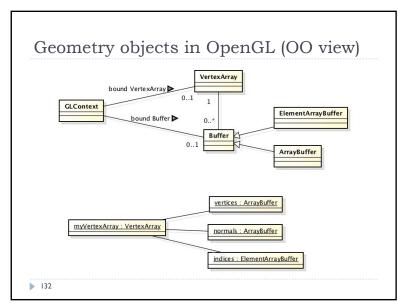

122







126



130

131

Shaders Shaders are small programs executed on a GPU Executed for each vertex, each pixel (fragment), etc. They are written in GLSL (OpenGL Shading Language) Similar to C and Java Primitive (int, float) and aggregate data types (ivec3, vec3) Structures and arrays Arithmetic operations on scalars, vectors and matrices Flow control: if, switch, for, while Functions

134

136

```
    Data types
    ▶ Basic types
    ▶ float, double, int, uint, bool
    ▶ Aggregate types
    ▶ float: vec2, vec3, vec4; mat2, mat3, mat4
    ▶ double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4
    ▶ int: ivec2, ivec3, ivec4
    ▶ uint: uvec2, uvec3, uvec4
    ▶ bool: bvec2, bvec3, bvec4
    vec3 V = vec3(1.0, 2.0, 3.0); mat3 M = mat3(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0);
    ▶ 136
```

```
Example of a vertex shader
 #version 330
in vec3 position;
                               // vertex position in local space
in vec3 normal:
                               // vertex normal in local space
                               // fragment normal in world space
out vec3 frag_normal;
                               // model-view-projection matrix
uniform mat4 mvp matrix;
 void main()
   // Typicaly normal is transformed by the model matrix
   // Since the model matrix is identity in our case, we do not modify normals
   frag_normal = normal;
   // The position is projected to the screen coordinates using mvp_matrix
   gl Position = mvp matrix * vec4(position, 1.0);
                               Why is this piece
                               of code needed?
135
```

135

```
You can select the elements of the aggregate type:

vec4 rgba_color( 1.0, 1.0, 0.0, 1.0 );

vec3 rgb_color = rgba_color.rgb;

vec3 bgr_color = rgba_color.bgr;

vec3 luma = rgba_color.ggg;
```

138

140

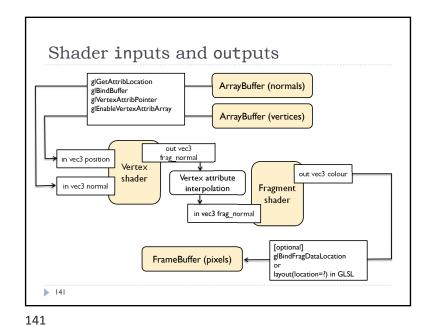
```
Storage qualifiers

const – read-only, fixed at compile time
in – input to the shader

out – output from the shader

uniform – parameter passed from the application (Java), constant for the drawn geometry

buffer – GPU memory buffer (allocated by the application), both read and write access


shared – shared with a local work group (compute shaders only)

Example: const float pi=3.14;
```

```
Arrays

> Similar to C
float lut[5] = float[5]( 1.0, 1.42, 1.73, 2.0, 2.23 );

> Size can be checked with "length()"
for( int i = 0; i < lut.length(); i++ ) {
    lut[i] *= 2;
}</pre>
```



```
GLSL Operators

Arithmetic: + - ++ --

Multiplication:

vec3 * vec3 - element-wise

mat4 * vec4 - matrix multiplication (with a column vector)

Bitwise (integer): <<, >>, &, |, ^

Logical (bool): &&, ||, ^^

Assignment:

float a=0;

a += 2.0; // Equivalent to a = a + 2.0

See the quick reference guide at:

https://www.opengl.org/documentation/gls/

142
```

142

144

```
GLSL flow control
if( bool ) {
                                  for( int i = 0; i<10; i++ ) {
  // true
} else {
  // false
}
                                  while( n < 10 ) {
switch( int_value ) {
  case n:
    // statements
                                  do {
    break;
                                  } while ( n < 10 )
  case m:
    // statements
    break;
  default:
}
144
```

```
GLSL Math

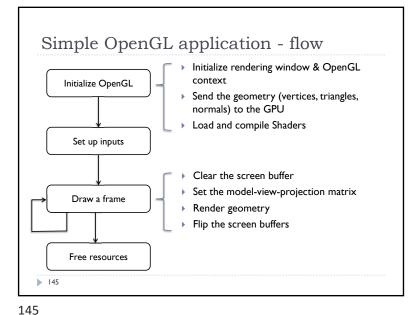
Trigonometric:

radians( deg ), degrees( rad ), sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh

Exponential:

pow, exp, log, exp2, log2, sqrt, inversesqrt

Common functions:

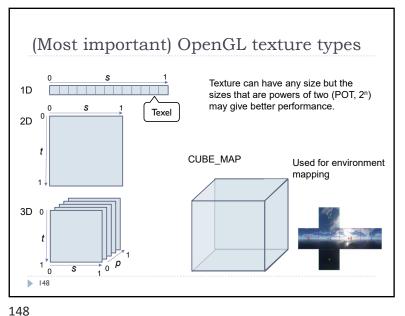

abs, round, floor, ceil, min, max, clamp, ...

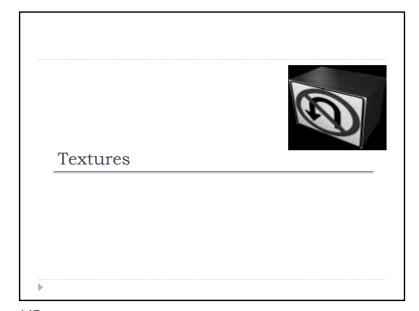
Graphics

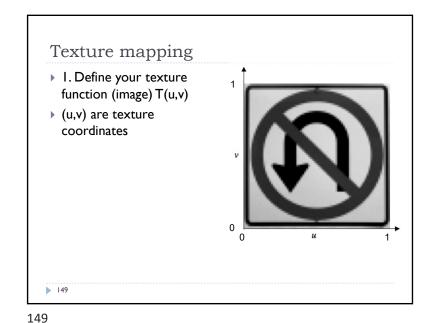
reflect, refract, inversesqrt

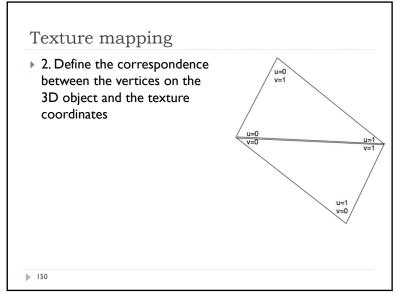
And many more

See the quick reference guide at:
<a href="https://www.opengl.org/documentation/glsl/">https://www.opengl.org/documentation/glsl/</a>
```

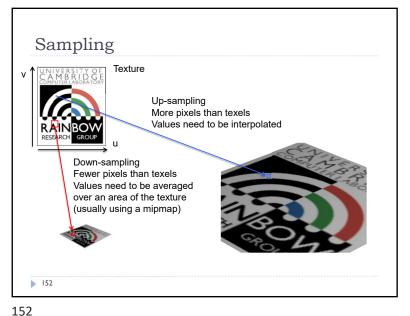


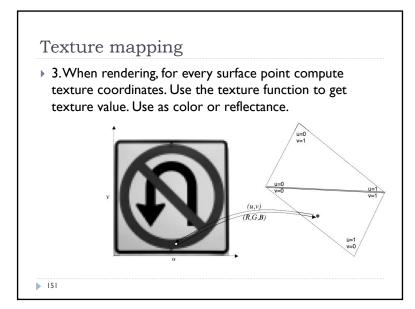

Rendering geometry

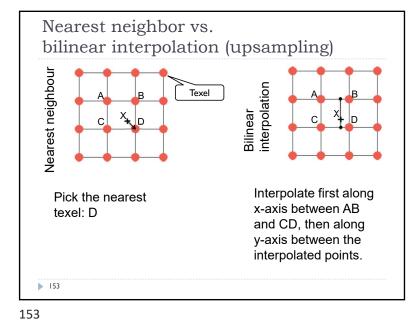

- To render a single object with OpenGL
- I.gluseProgram() to activate vertex & fragment shaders
- 2.glVertexAttribPointer() to indicate which Buffers with vertices and normals should be input to the vertex shader
- 3. glUniform*() to set uniforms (parameters of the fragment/vertex shader)
- 4. glBindTexture() to bind the texture
- 5.glBindVertexArray() to bind the vertex array
- 6. glDrawElements() to queue drawing the geometry
- 7. Unbind all objects
- → OpenGL API is designed around the idea of a state-machine set the state & queue drawing command

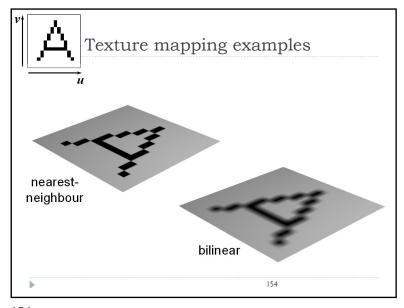

146

146

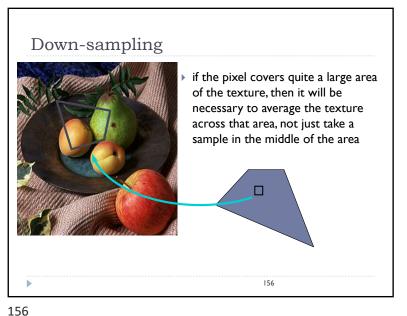


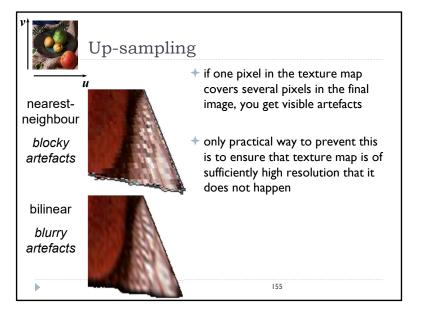


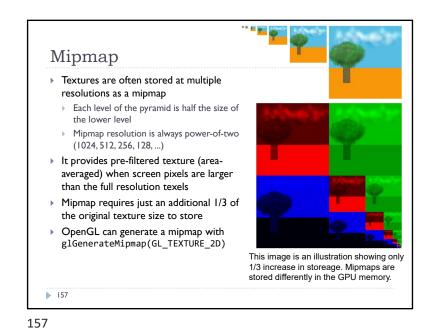


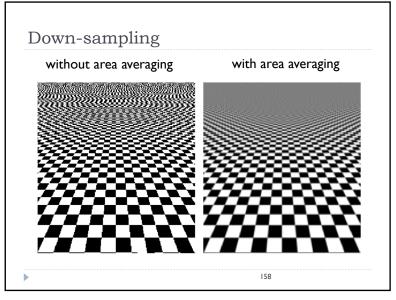


150

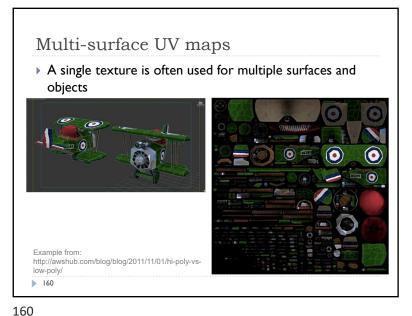


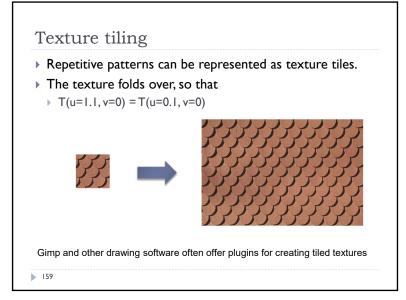


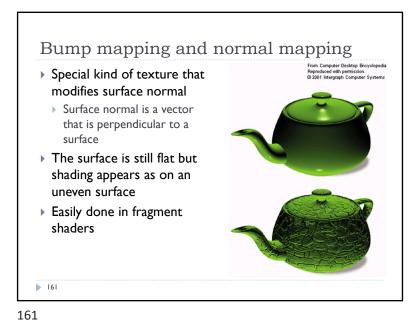


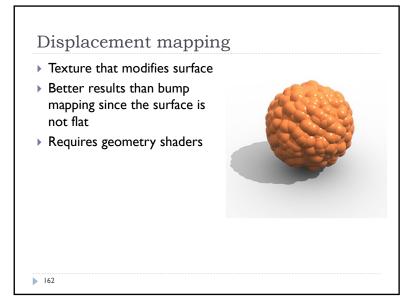


154

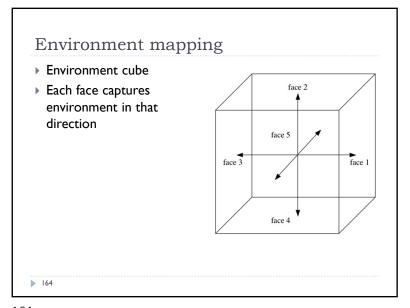


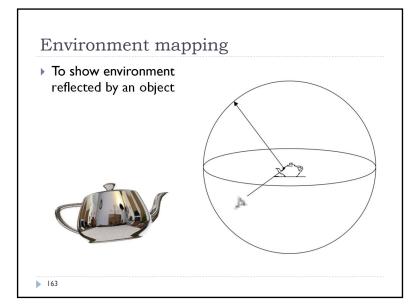


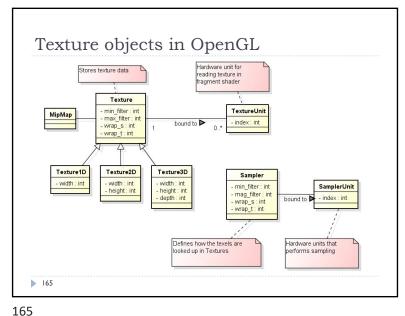


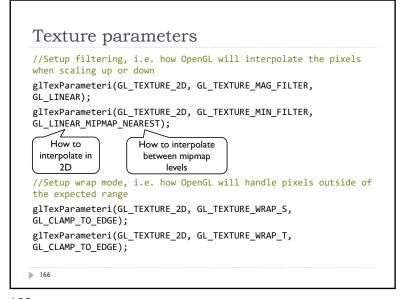


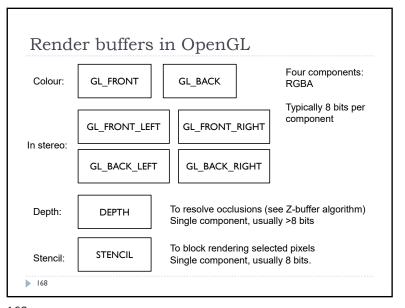
158

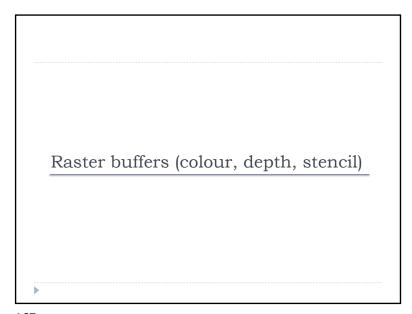


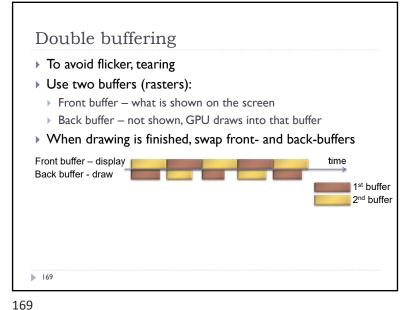


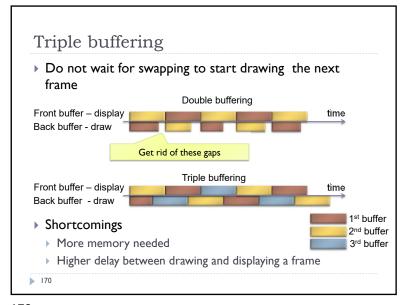


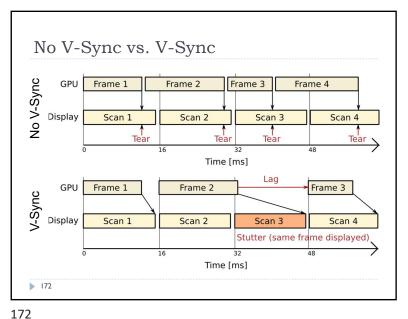

162



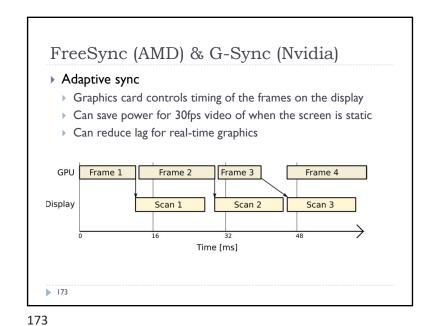

163




166

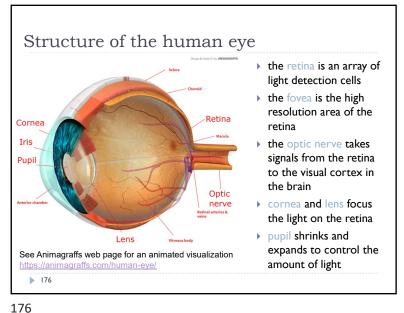


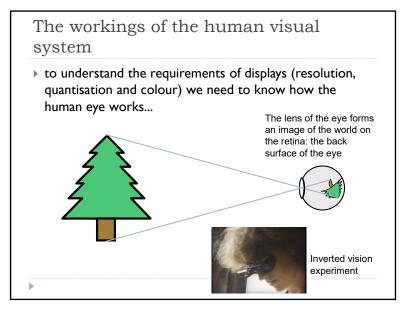
167

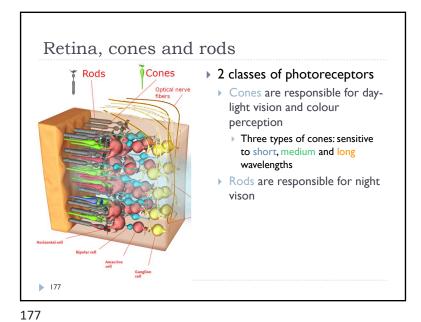


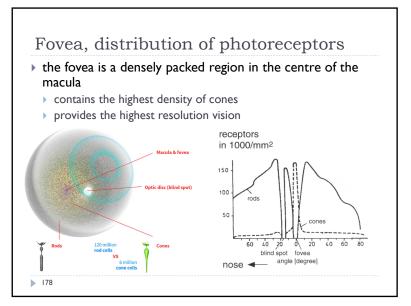


170

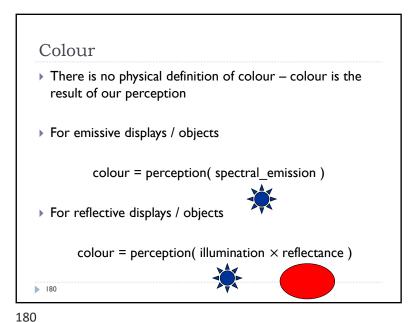


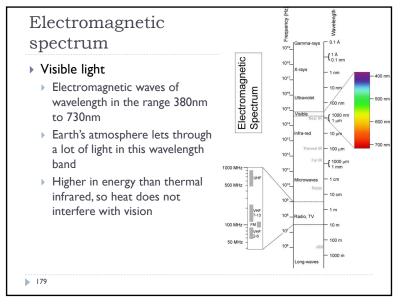

Vertical Synchronization: V-Sync ▶ Pixels are copied from colour buffer to monitor row-by-row ▶ If front & back buffer are swapped during this process: Upper part of the screen contains previous frame Lower part of the screen contains current frame Result: tearing artefact ▶ Solution: When V-Sync is enabled pglwfSwapInterval(1); glSwapBuffers() waits until the last row of pixels is copied to the display. 171

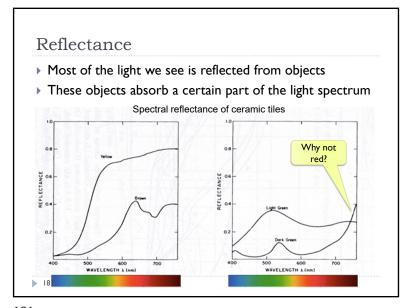


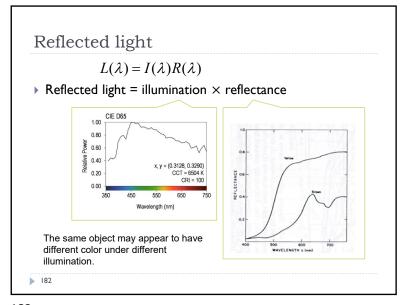


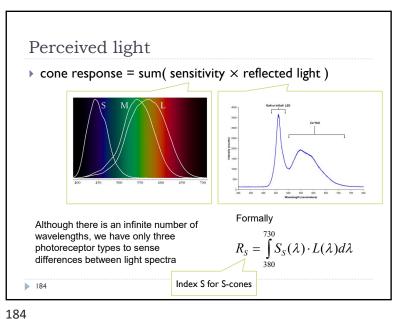
174

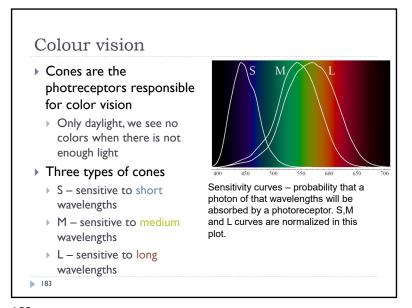


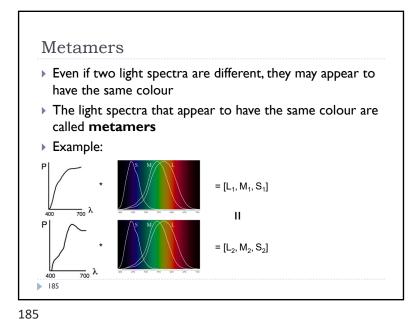





178



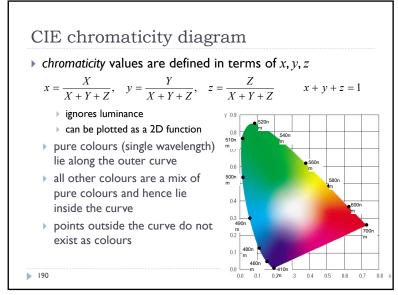

179



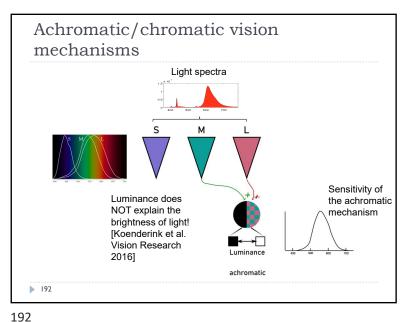


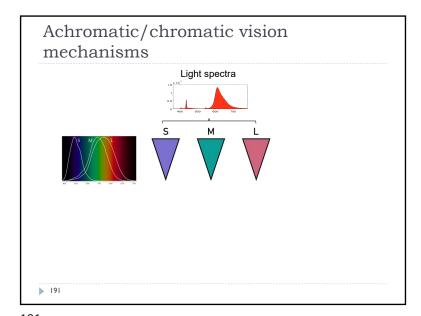
182

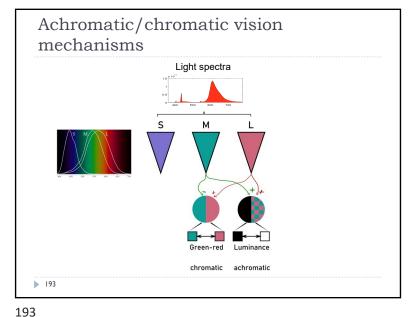
186

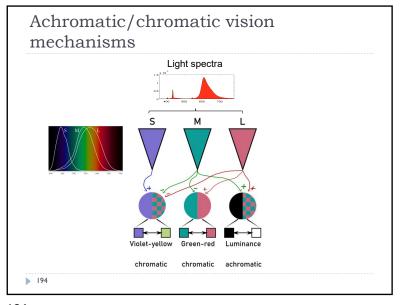

188

Standard Colour Space CIE-XYZ CIE Experiments [Guild and Wright, 1931] Colour matching experiments Group ~12 people with normal colour vision degree visual field (fovea only) Basis for CIE XYZ 1931 colour matching functions CIE 2006 XYZ Derived from LMS color matching functions by Stockman & Sharpe S-cone response differs the most from CIE 1931 CIE-XYZ Colour Space Goals Abstract from concrete primaries used in experiment All matching functions are positive Primary "Y" is roughly proportionally to light intensity (luminance)

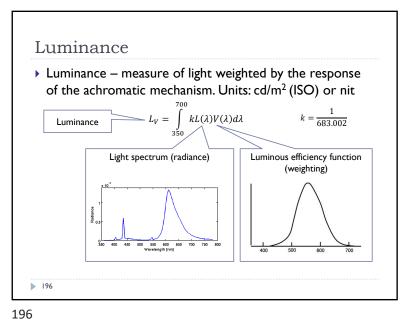

Tristimulus Colour Representation Observation Any colour can be matched O 645 nm using three linear independent reference colours May require "negative" Observer contribution to test colour Matching curves describe the value for matching monochromatic spectral colours of equal intensity ▶ With respect to a certain set of primary colours **I**87

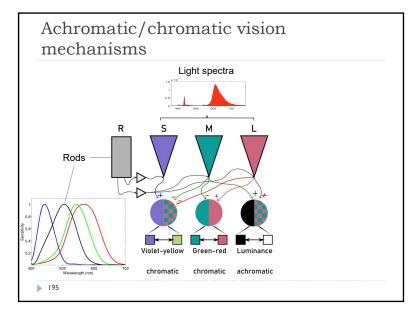

187

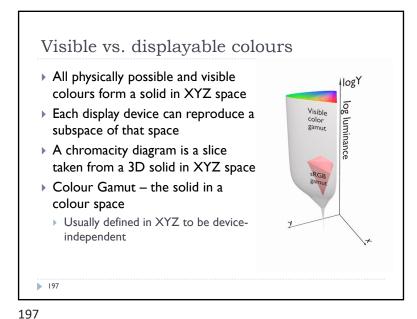

Standard Colour Space CIE-XYZ Standardized imaginary primaries CIE XYZ (1931) Could match all physically realizable colour stimuli Y is roughly equivalent to luminance Shape similar to luminous efficiency curve Monochromatic spectral colours form a curve in 3D XYZ-space Cone sensitivity curves can be obtained by a linear transformation of CIE XYZ

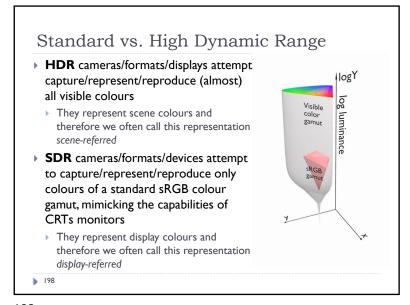


190

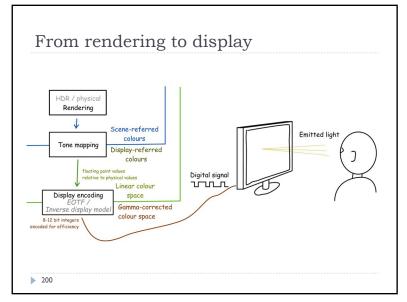


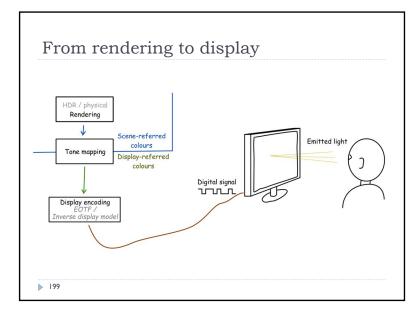


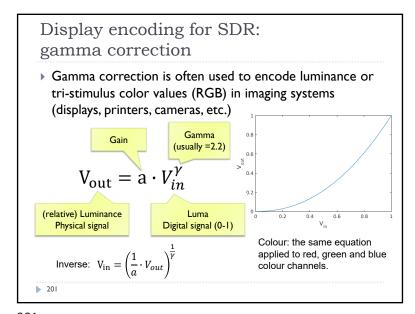


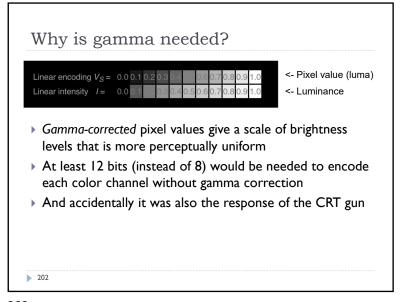


194



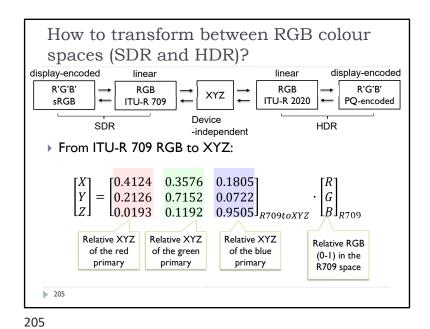





198



199



202

Luma – gray-scale pixel value ▶ **Luma** - pixel brightness in gamma corrected units L' = 0.2126R' + 0.7152G' + 0.0722B' \triangleright R', G' and B' are gamma-corrected colour values Prime symbol denotes gamma corrected Used in image/video coding Note that relative **luminance** if often approximated with L = 0.2126R + 0.7152G + 0.0722B $= 0.2126(R')^{\gamma} + 0.7152(G')^{\gamma} + 0.0722(B')^{\gamma}$ \triangleright R, G, and B are linear colour values Luma and luminace are different quantities despite similar formulas 203

How to transform between RGB colour spaces?

From ITU-R 709 RGB to ITU-R 2020 RGB:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R2020} = M_{XYZtoR2020} \cdot M_{R709toXYZ} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R709}$$

From ITU-R 2020 RGB to ITU-R 709 RGB:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R709} = M_{XYZtoR709} \cdot M_{R2020toXYZ} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R202}$$

Where:

$$M_{R709toXYZ} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \text{ and } M_{XYZtoR709} = M_{R709toXYZ}^{-1}$$

$$M_{R2020toXYZ} = \begin{bmatrix} 0.6370 & 0.1446 & 0.1689 \\ 0.2627 & 0.6780 & 0.0593 \\ 0.0000 & 0.0281 & 1.0610 \end{bmatrix} \text{ and } M_{XYZtoR2020} = M_{R2020toXYZ}^{-1}$$

206

Representing colour

- ▶ We need a mechanism which allows us to represent colour in the computer by some set of numbers
- A) preferably a small set of numbers which can be quantised to a fairly **small number of bits** each
 - Display-encoded RGB, sRGB
- ▶ B) a set of numbers that are **easy to interpret**
 - Munsell's artists' scheme
 - ▶ HSV, HLS
- C) a set of numbers in a 3D space so that the (Euclidean) distance in that space corresponds to approximately perceptually uniform colour differences
 - CIE Lab, CIE Luv

208

208

Exercise: Map colour to a display

- We have:
 - ▶ Spectrum of the colour we want to reproduce: *L* (Nx1 vector)
- \rightarrow XYZ sensitivities: S_{XYZ} (Nx3 matrix)
- \rightarrow Spectra of the RGB primaries: P_{RGB} (Nx3 matrix)
- Display gamma: $\gamma = 2.2$
- ▶ We need to find display-encoded R'G'B' colour values
 - Step I: Find XYZ of the colour

$$[X \quad Y \quad Z]^T = S_{XYZ}^T L$$

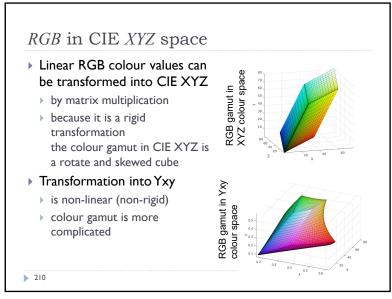
▶ Step 2: Find a linear combination of RGB primaries

$$S_{XYZ}^T P_{RGB} = M_{RGB \to XYZ}$$

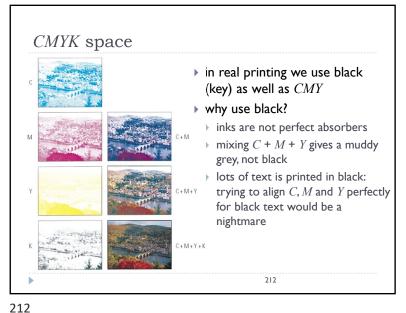
▶ Step 3: Convert and display-encode linear colour values

$$\begin{bmatrix} R & G & B \end{bmatrix}^{T} = M_{RGB \to XYZ}^{-1} \begin{bmatrix} X & Y & Z \end{bmatrix}^{T}$$

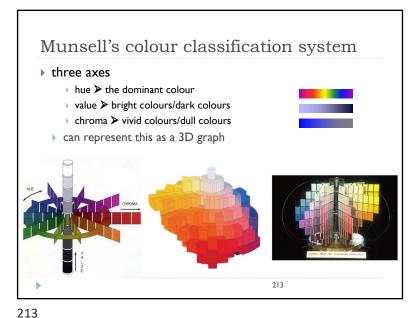
$$\begin{bmatrix} R' & G' & B' \end{bmatrix} = \begin{bmatrix} R^{1/\gamma} & G^{1/\gamma} & B^{1/\gamma} \end{bmatrix}$$

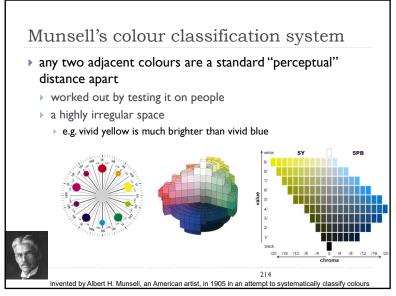

207

207

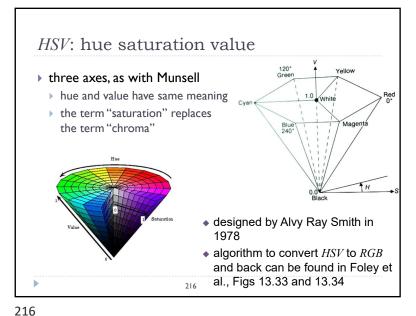

RGB spaces

- Most display devices that output light mix red, green and blue lights to make colour
- televisions, CRT monitors, LCD screens
- ▶ RGB colour space
 - Can be linear (RGB) or display-encoded (R'G'B')
 - Can be scene-referred (HDR) or display-referred (SDR)
- ▶ There are multiple RGB colour spaces
 - ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3
 - ▶ Each using different primary colours
 - And different OETFs (gamma, PQ, etc.)
- ▶ Nominally, *RGB* space is a cube

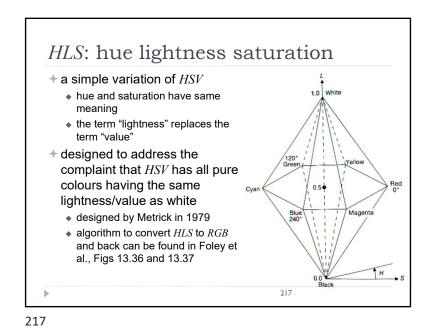

209



210

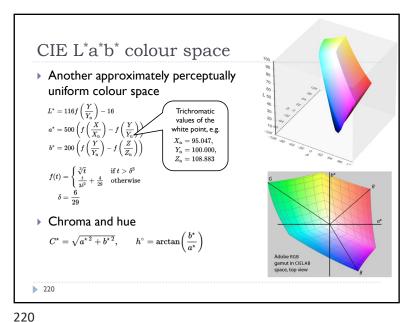


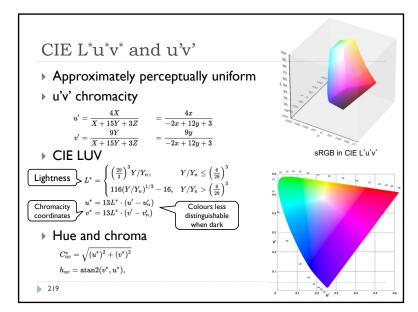
CMY space printers make colour by mixing coloured inks ▶ the important difference between inks (CMY) and lights (RGB) is that, while lights emit light, inks absorb light > cyan absorbs red, reflects blue and green magenta absorbs green, reflects red and blue > yellow absorbs blue, reflects green and red ▶ *CMY* is, at its simplest, the inverse of *RGB* ▶ CMY space is nominally a cube 211

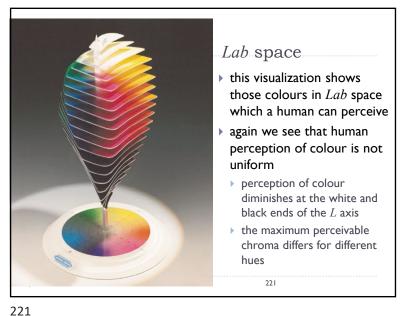




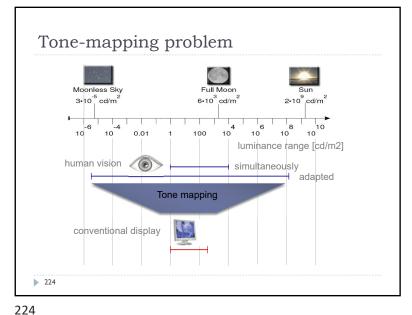
214




Colour spaces for user-interfaces ▶ RGB and CMY are based on the physical devices which produce the coloured output ▶ *RGB* and *CMY* are difficult for humans to use for selecting colours ▶ Munsell's colour system is much more intuitive: hue — what is the principal colour? value — how light or dark is it? chroma — how vivid or dull is it? ▶ computer interface designers have developed basic transformations of RGB which resemble Munsell's humanfriendly system



218



Recap: Linear and display-encoded colour

- Linear colour spaces
- ▶ Examples: CIE XYZ, LMS cone responses, linear RGB
- Typically floating point numbers
- Directly related to the measurements of light (radiance and luminance)
- Perceptually non-uniform
- Transformation between linear colour spaces can be expressed as a matrix multiplication
- Display-encoded and non-linear colour spaces
 - Examples: display-encoded (gamma-corrected, gamma-encoded) RGB, HVS, HLS, PQ-encoded RGB
 - ▶ Typically integers, 8-12 bits per colour channel
 - Intended for efficient encoding, easier interpretation of colour, perceptual uniformity

> 222

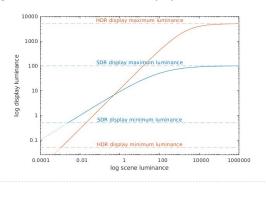
222

Colour - references

- ▶ Chapters "Light" and "Colour" in
- Shirley, P. & Marschner, S., Fundamentals of Computer Graphics
- ▶ Textbook on colour appearance
 - Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.

223

223


Why do we need tone mapping?

- ▶ To reduce dynamic range
- ▶ To customize the look (colour grading)
- ▶ To simulate human vision (for example night vision)
- ▶ To **simulate a camera** (for example motion blur)
- To adapt displayed images to a display and viewing conditions
- ▶ To make rendered images look more realistic
- ▶ To map from scene- to display-referred colours
- ▶ Different tone mapping operators achieve different combination of these goals

225

▶ The primary purpose of tone mapping is to transform an image from scene-referred to display-referred colours

226

226

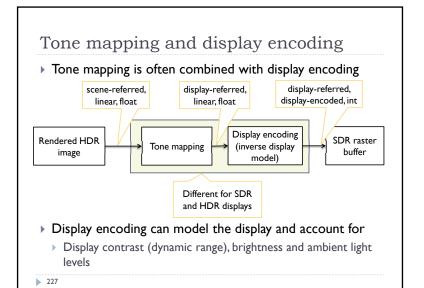
Basic tone-mapping and display coding

The simplest form of tone-mapping is the exposure/brightness adjustment:

Display-referred relative red value [0;1]

 $R_d = \frac{R_s}{L_{white}}$

Scene-referred
Scene-referred
luminance of white

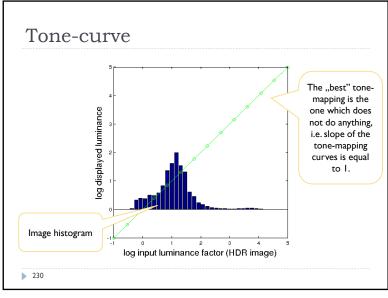

- R for red, the same for green and blue
 No contrast compression, only for a moderate dynamic range
- ▶ The simplest form of display coding is the "gamma"

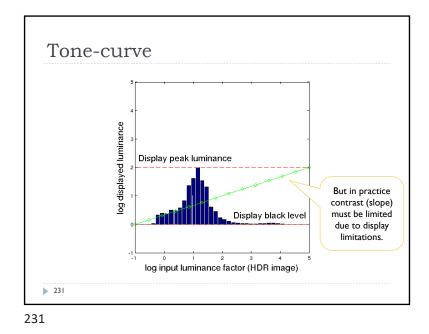
Prime (') denotes a gamma-corrected value $R' = (R_d)^{\frac{1}{\gamma}}$ Typically γ =2.2

For SDR displays only

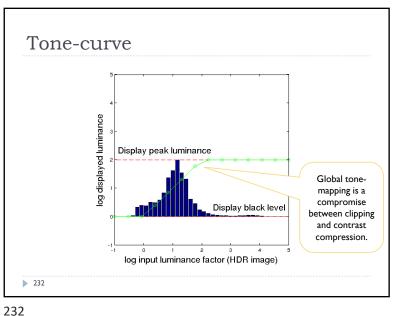
228

228


227


sRGB textures and display coding

- OpenGL offers sRGB textures to automate RGB to/from sRGB conversion
 - > sRGB textures store data in gamma-corrected space
 - sRGB colour values are converted to (linear) RGB colour values on texture look-up (and filtering)
 - Inverse display coding
 - ▶ RGB to sRGB conversion when writing to sRGB texture
 - with glEnable(GL FRAMEBUFFER SRGB)
 - > Forward display coding

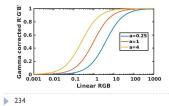

229

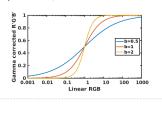
Michaelmas Term 2023/2024 Introduction to Graphics

230

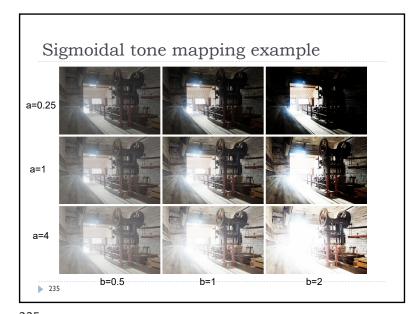
Sigmoidal tone-curves Very common in D_{max} 2.0 Shoulder digital cameras ▶ Mimic the response Density 1.0 Straight-line of analog film ▶ Analog film has been engineered over many years to produce -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 good tone-reproduction log exposure (lux-seconds) ▶ Fast to compute 233

Sigmoidal tone mapping


▶ Simple formula for a sigmoidal tone-curve:


$$R'(x,y) = \frac{R(x,y)^b}{\left(\frac{L_m}{a}\right)^b + R(x,y)^b}$$

where \mathcal{L}_m is the geometric mean (or mean of logarithms):


$$L_m = exp\left(\frac{1}{N}\sum_{(x,y)}\ln(L(x,y))\right)$$

and L(x, y) is the luminance of the pixel (x, y).

234

