Foundations of Computer Science
Lecture #4: More on Lists

Anil Madhavapeddy
2023-24

‘ Warm-Up I

Question 1a: What is the cost of evaluating xs @ ys?

O(List.length xs)

Question 1b: What is the cost of evaluating x :: xs?

O(1)

Question 2: What is the type of this function?

let rec flatten = function

| [-> []
| 1 :: 1s -=> 1 @ flatten ls

Out: val flatten : 'a list list -> 'a list = <fun>

Question 3a: What does this return?

In [1]: let a = [2];;

Out[1] val a : 1int list = [2]

In [2° let b = [3; 4; 5];;

Out[2] val b : int list = [3; 4; 5]
In [3] a::b;;

Error: This expression has type int list
but an expression was expected of type int list list
Type int is not compatible with int list

Question 3b: How to concatenate a and b?

In [4]: a @ b;;
Out[4]: - : int list = [2; 3; 4; 5]

Question 3c: Redefine b sothat a::b works.

In [3]: let b = [b];

Out[3] val b : int list list = [[3; 4; 5]]
In [4]: a::b;;

Out[4]: - : int list list = [[2]; [3, 4, 5]]

A Note on Notation

In : let rec appendl = function

| (L1, ys) -> ys

| (x::xs, ys) -> x :: appendl (Xs, ys)
Out: val append : 'a list * 'a list -> 'a list = <fun>
In : let rec append2 pair =

match pair with

| ([]I YS) -> ¥sS

| (x::xs, ys) -> x :: append2 (Xs, ys)

out: val append2 : 'a list * 'a list -> 'a list = <fun>

In

Out:

In

Out:

A Note on Notation

let rec append3 Xxs ys
match (xs, ys) with

| ([1, ys) -> ys

| (x::xXs, ys) -> x :: append3 Xs ys

val append3 : 'a list -> 'a list ->

let rec append4 xs ys
match xs with

| x::xs -> X :: append4 xs ys

val append : 'a list -> 'a list ->

'a list

'a list

<fun>

<fun>

‘ List Utilities: take and drop I

XS = [X(), '°°9xi—19xi9 '°°9xn—1]
N —— e — ——

take(xs,i) drop(xs,i)

‘ List Utilities: take and drop I
wildecard pa&&e_rm
let rec ke = function
| (11, -> []

| (x::xs, 1) ->
if 1 > 0 then
X :: take (xs, 1 - 1)
else

[]

let rec drop = function
| (1,) -> 11
| (x::xs, 1) ->
if 1 > 0 then
drop (xs, 1 - 1)
else
X: XS

Out:
Out:

In
In

In:

Out:

Out:

val take
val drop

‘ List Utilities: take and drop I

let a = [1; 2;
take (a, 3);;

int list =

drop (a, 3);;

int list =

3;

[1;

4;

2;

5;

'a list * int
'a list * int

5;

3]

6]

->
->

6]1;;

'a list
'a list

<fun>
<fun>

‘Linear SearchI

find x in list [x1, ..., X,] by comparing with each element
obviously O (n) TIME
simple & general
ordered searching needs only O (logn)

indexed lookup needs only O(1)

more aboubk search in Leckure 10...

‘ Equality Tests I

2 (_x:v) then brue, else ...

let rec member;x = function
| [1 -> false
| vyl —>

X =y || member x 1

Equality testing is OK for integers but NOT for functions.

‘ Equality Tests (cont.) I

let rec inter xs ys
match xs, ys with
| [1, ys -> []
| x::xs, ys ->
1f member x ys then
X :: 1lnter Xs ys
else
inter xs ys

‘Building a List of PairsI

[x1, ..., Xn]

} > [('xla yl)a A (xna)’n)]
[y1s -5 Yal

let rec zip xXs ys =
match xs, ys with
| (x::xs, y::ys) => (X, y) :: zip xs ys

N

‘Building a List of PairsI

let rec zip xXs ys =
match xs, ys with
| (x::xs, y::ys) => (X, y) :: zip xs ys

| => [

wildecard The wildcard pattern (_) matches anything.

THE PATTERNS ARE TESTED IN ORDER.

For example, _ will match: ([]1, (y::¥s))

In : zip [1;2;3;4] [‘a';'b';'c']:;
Out: - : (int * char) list = [(1,'a'); (2,'b'); (3,'c')]

‘Building a List of PairsI

Two functions: zip and unzip

zip : 'a list -> 'b list -> ('a * 'b) list
unzip : ('a * 'b) list -> ('a list * 'b list)

‘Some SyntaxI

Expressions
let D in E

* Embeds declaration D within expression E

e Useful within a function

e Can perform intermediate computations with
function arguments

‘Building a Pair of Results'

Version 1: With a local declaration.

let rec unzip = function

| 1 -> ([1, [1)

| (x, y)::pairs ->
deelarakion let Xs, ys = unzip pailrs 1n
axpressaom (X::XS, y::yYS)

The let construct binds xs and ys to the results of the recursive call.
Example:

In : unzip [(1,'a');(2,'b')]1;:;
Out: - : 1int list * char list = ([1; 2], ['a'; 'b'])

‘Building a Pair of Results'

Version 2. Replacing local declaration by a function.

let conspair ((X, V), (Xs, ys)) = (X::XS, y::yYS)

val conspailr :
('a * 'b) * ('a list * 'b list) ->
'a list * 'b list = <fun>

let rec unzip = function

| 1 -> ([1, [1)

| xy :: pairs -> conspair (Xy, unzip pairs)

[0 ‘r

1 pair (of pairs) pair of Lists

‘Building a Pair of Results'

_ | accumulators
Version 3: lterative.

let rec revy = function

| ([1, xs7"ys) -> (xs, ys)
| ((X, y)::pairs, XS, ys) ->
revUnzlip (palrs, X::XS, y::yYS)

Question: How to call revUnzip?

revUnzip (pairs, []1, [1);

Question: What’s the result of the following?

let pairs — [(nan, 1); (llbll, 2)];;
revUnzip (pairs, []1, []1):;

Out: - : string list * int list = (["b"; "a"], [2; 1])

‘An Application: Making Change'

Yall
HElol

e Till has unlimited supply of coins, for certain coin values
e List of coins till is given in descending order
e Larger coins preferred (tried first)

‘An Application: Making Change'

List of possibi«a coin values

let rec change till amt =
1f amt = 0 then
[]
else
match till with
| [] -> raise (Failure "no more coins!")
| c::till >
1f amt < ¢ then
change till amt
else
c :: change (c::till) (amt - c)

® The recursion terminates when amt = 0.

e T[ries the largest coin first to use large coins.

® The algorithm ,‘- and it CAN FAIL!

‘An Application: Making Change'

let till = [50; 20; 10; 5; 2; 11;;
change till 43;;

ﬁé 20 (amb=23) 20 (amt=3) ,’ké / 2 (amt=1) 1 {amk=0)

- ¢ 1int list = [20; 20; 2; 1]

let till = [5; 2];;
change till 16;;

5 (amb=11) 5 (amt=6) & (amb=1) / ? ambxo, bill=]]

Exception: Failure "no more coins!”

‘An Application: Making Change'

let rec change till amt =
1f amt = 0 then

[]

else
match till with
| [] -> raise (Failure "no more coins!")
| c::till ->

1f amt < ¢ then
change till amt
else
c :: change (c::till) (amt - c)

? ambxo, kill=[]

‘ALL Ways of Making ChangeI

Disclaimer: This is kind of hard.

let rec change till amt =

if amt = 0 then success {zero)
[[] 1«)

else
match till with
| [1 => [] & “‘gﬁiturﬁ

| c::till —>
1f amt < ¢ then
change till amt
else
- let rec allc = function

1 -> [

-+
- | ¢s :: css -> (c::cs) :: allc css
generates all in
FOSSibL& solukions allc (change (c::ti1ill) (amt - c)) d

change till amt

Out: val change : int list -> int -> int list list = <fun>

‘ALL Ways of Making ChangeI

declarakion Tei[:]re: z[:ﬁlc = functi‘:n// " LLsE/ ‘nb Lisk Lisk
| cs :: css -> (c::cs) :: allc css
in
@;x[pr@.ssiom allc (change (c::till) (amt - c)) @
change till amt

@

use Coun ¢ dont use coln ¢

c:l...], ex[...], .. r...], [...], ...

cons ¢ to solutions for amb-c solutions for amt

In
In

Out:

In
In

Out:

‘ALL Ways of Making Change'

let ti1ll = [5; 3;
change till 6;;

- ¢ 1nt list 1list

21

= [[3;

let till = [5; 2];;

change till 16;;

— : 1nt list 1list
[[2; 2; 2; 5; 5];

[2;

2;

31;

2

we

[2;

2;

2]]

‘ALL Ways of Making Change — Faster!I

accumulators

let rec change till amt chg chgs =
1f amt = 0 then
chg: :chgs
else
match till with
| [1 -> chgs
| c::till —>
1f amt < 0 then
chgs
else
change (c::till) (amt - c) (c::chg)
(change till amt chg chgs)

wse coin

solubkions that dont use coin

We’'ve added another accumulating parameter!

Repeatedly improving simple code is called stepwise refinement.

‘ALL Ways of Making Change — Faster!I

In : change [5;3;2] 6 [] [1;;

Out: - : int list list = [[3; 3]1; [2; 2; 2]]

