Foundations of Computer Science
Lecture #11: Procedural Programming

Anil Madhavapeddy
30th October 2023

‘Intro'

let rec addLen n = function
| [] -> n
| x :: xs -> addLen (n+l) xs

Example:
addLen 0 [1,2,3]

Calling addLen with same arguments will always produce
the same result. We can infer result through function
expansion and reduction of expressions. This allows us to:

— Prove algorithm correctness
— Understand and predict algorithm outcome

‘Procedural Programming'

o) update variable / array
" b) sending / receiving data

Procedural programs can change the machine state.

They can interact with its environment.

They use control structures like branching, iteration and procedures.
They use data abstractions of the computer's memory:

e references to memory cells
e arrays: blocks of memory cells

® linked structures, especially linked lists

concepl: memory cells that are mubable

‘What are References?'

In functional programming:
The store is an invisible device inside the computer

In procedural / imperative programming:
The store is visible

‘What are References?'

In functional programming:
The store is an invisible device inside the computer

In procedural / imperative programming:
The store is visible

* References are storage locations box
* They can be: f‘

(a) created
(b) inspected
(c) updated

value

The box has an address

‘ML Primitives for References'

T ref type of references to type T
ref E create a reference
initial contents = the value of £
' P return the current contents of reference P ‘dereferencing’

P :=FE update the contents of P to the value of £

‘ML Primitives for References'

T ref type of references to type T

ref E create a reference

? for F’C"M&e’r initial contents = the value of E

\J return the current contents of reference P ‘dareﬂf@.ramais»\g’

/v P :=FE update the contents of P to the value of E

pointer to a ‘box’ tents of that ‘box’

‘ML Primitives for References'

T ref type of references to type T

ref E create a reference

? for ‘poim&m’ initial contents = the value of E

\JP return the current contents of reference P ‘dare{@.remcur\g’

/v P :=FE update the contents of P to the value of E
pointer to a ‘box’ t contents of that ‘box’

Three new ML functions / operators:

ref : 'a -> 'a ref (a) creabte box

! : 'a ref -> 'a (b inspect box content
= : 'a ref -> 'a -> unit () update box content

‘Trying Out References'

let p = ref 5 (* create a reference *)
val p : int ref = {contents = 5}

#p :=lp + 1 (* p now holds value 6 *)
— : unit = ()

let ps = [ref 77; p]
val ps : int ref list = [{contents = 77}; {contents = 6}]

List.hd ps := 3
— : unit = ()

ps
— 2 int ref list = [{contents = 3}; {contents = 6}]

‘Trying Out References'

let p = ref 5 (* create a reference ¥*)
val p : int ref = {contents = 5}

let z = p

val z : int ref = {contents = 5}

#p :=1lp +1 (* p now holds value 6 *)
— : unit = ()

P

- : int ref = {contents = 6}

z

- : int ref = {contents = 6}

Aliasing: two values refer to the same mutable cell

‘Commands: Expressions with EffectsI

Basic commands update references, write to files, etc.

C1;...;C,, causes a series of expressions to be evaluated and

returns the value of C,,.

A typical command returns the empty tuple: ()

if B then (i1 else (» behaves like the traditional

control structure if C1 and C» have effects.

Other ML constructs behave naturally with commands, including

match expressions and recursive functions.

‘Commands: Expressions with EffectsI

e Basic commands update references, write to files, etc.

e (;...;C, causes a series of expressions to be evaluated and

returns the value of C,,.

e A typical command returns the empty tuple: ()

e if B then (1 else (5, behaves like the traditional

control structure if C1 and C» have effects.

e Other ML constructs behave naturally with commands, including

match expressions and recursive functions.

Examgi&: » > 1 + (print endline "abc"; 3; 101);

abc
- ¢ 1nt = 102

‘Example: length without MutabilityI

let rec addLen n = function

| [1 ->n

| x :: xs -> addLen (n+l) xs
addLen 0 [1,2,3]
addLen 1 [2,3]
addLen 2 [3]
addLen 3 []

==> returns 3

Iteration: the while Commandl

let tlopt = function

| [1 -> None
| ::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

let length xs =
let 1lp = ref xs in (* list of uncounted elements *)
let np = ref 0 1in (* accumulated count *)
let fin = ref false in
while not !fin do
match tlopt !1p with

| None -> fin := true
| Some xs ->
lp := xs;
np := 1 + !np
done;

Inp (* the final count 1is returned *)
val length : 'a list -> int = <fun>

Iteration: the while Commandl

let tlopt = function

| [1 -> None
| ::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

let length xs =
let 1lp = ref xs in (* list of uncounted elements *)
let np = ref 0 1in (* accumulated count *)
let fin = ref false in
while not !fin do
match tlopt !1p with

| None -> fin := true
| Some xs ->
lp := xs;
np := 1 + !np
done;

Inp (* the final count 1is returned *)
val length : 'a list -> int = <fun>

Iteration: the while Commandl

let tlopt = function

| [1 -> None
| ::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

let length xs =
let 1lp = ref xs in (* list of uncounted elements *)
let np = ref 0 1in (* accumulated count *)
let £fin = ref false in
while not !fin do
match tlopt !1p with
| None -> fin := true
| Some xs ->
lp := xs;
np := 1 + !np
done;
Inp (* the final count 1is returned *)
val length : 'a list -> int = <fun>

Iteration: the while Commandl

let tlopt = function

| [1 -> None
| ::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

let length xs =
let 1lp = ref xs in (* list of uncounted elements *)
let np = ref 0 1in (* accumulated count *)
let £fin = ref false in
while not !fin do
match tlopt !1p with
| None -> fin := true
| Some xs ->
lp := xs;
np := 1 + !np
done;
Inp (* the final count 1is returned *)
val length : 'a list -> int = <fun>

Iteration: the while Commandl

let tlopt = function

| [1 -> None
| ::xs -> Some xs
val tlopt : 'a list -> 'a list option = <fun>

let length xs =
let 1lp = ref xs in (* list of uncounted elements *)
let np = ref 0 1in (* accumulated count *)
let fin = ref false in
while not !fin do
match tlopt !1p with

| None -> fin := true
| Some xs ->
lp := xs;
np := 1 + !np
done;

Inp (* the final count 1is returned *)
val length : 'a list -> int = <fun>

‘Example: length with MutabilityI

evaluation steps:

length([1;2;3])
==> Ilp = ref [1,2,3]

tlopt [1;2;3] != None ==> true
lp ¢:= [2,3]; np := 1+40;

tlopt [2;3] != None ==> true
lp := [3]; np := 1+1

tlopt [3] != None ==> true
lp := []; np := 1+2

tlopt [] != None ==> false
fin := true

==> return !np
==> returns 3

let tlopt = function
| [] -> None
| ::xs -> Some xs

let length xs =
let 1p = ref xs 1in
let np = ref 0 1in
let fin = ref false 1in
while not !fin do
match tlopt !1p with

| None -> fin := true
| Some xs ->
lp := Xxs;
np := 1 + !np
done;

Inp
val length : 'a 1list -> int = <fun>

let rec addLen n =
function

| T[]

| x

-> n
Xs =->
addLen (n+l) xs

‘Private, Persistent References'

exception TooMuch of int
exception TooMuch of int
let makeAccount initBalance =
let balance = ref initBalance in
let withdraw amt =
if amt > !balance then

raise (TooMuch (amt - !balance))
else begin
balance := !balance - amt;
!balance
end
in
withdraw

val makeAccount : int -> int -> int = <fun>

‘Private, Persistent References'

exception TooMuch of int
exception TooMuch of int
let makeAccount initBalance =
let balance = ref initBalance in
let withdraw amt =
if amt > !balance then

raise (TooMuch (amt - !balance))
else begin
balance := !balance - amt;
!balance
end
in
withdraw
val makeAccount : int -> int -> int = <fun>

returins a function thak
returins conbenks of
‘balance’, not the cell ikself

‘Private, Persistent References'

exception TooMuch of int |p,lance never escapes the

exception TooMuch ?f . 1nt definition of makeAccount
let makeAccount initBalance =

let balance = ref initBalance in
let withdraw amt =
if amt > !balance then
raise (TooMuch (amt - !balance))
else begin
balance := !balance - amt;
!balance
end
in
withdraw

val makeAccount : int -> int -> int = <fun>

returins a function thak
returins conbenks of
‘balance’, not the cell itself

‘Private, Persistent References'

let my account = makeAccount 30;

my account : int -> int = <fun>

let my new balance = my account 10;

my new balance : int = 20

let my new balance = my_ account ~10;

my new balance : int = 30

‘Two Bank Accounts'

let student = makeAccount 500
val student : int -> int = <fun>

let director = makeAccount 4000000

val director : int -> int = <fun>
student 5 (* coach fare *)
— : int = 495

director 150000 (* Tesla *)
- : 1nt = 3850000

student 500 (* oh oh *)
Exception: TooMuch 5.

‘ML Primitives for ArraysI

[||| "b"' n |||]
(* allocate a fresh string array *)
- : string array = [["a"; "b"; "c"|]

Array.make 3 'a
(* array of size 3 with cell containing 'a’

I I

- : char array = [['a'; 'a'; 'a'|]

let aa = Array.init 5 (fun i -> i * 10)
(* array of size 5 1initialised to (fun 1) *)
val aa : int array = [[0; 10; 20; 30; 40]]

Array.get aa 3
(* retrieve the 4th cell in the array *)
- : int = 30

Array.set aa 3 42
(* set the 4th cell's value to 42 *)

- : unit = ()

*)

‘Array Examples'

Array.make

I

- : int -> 'a -> 'a array = <fun>

Array.init
- : int -> (int -> 'a) -> 'a array = <fun>

Array.get
- : 'a array -> int -> 'a = <fun>

Array.set
- ¢ 'a array -> int -> 'a -> unit = <fun>

‘References: ML Versus Conventional Languages'

* \We must write !p to get the contents of p
e We write just p for the address of p

* We can store private reference cells in functions;
simulating object oriented programming

e OCaml's assignment syntax is
V.=FEinsteadof V=F

e OCaml has similar control structures: while/done,
for/done and match/with

e OCaml has short syntax for updating arrays x. (1)
and the access is safe against buffer overflows

‘What More Is There to ML?I

With references, we can now make mutable linked lists

type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

i~ — -

‘References to References'

Two ways to visualize references to references:

(1) Using pointers:

IS e B S o S

(2) Using nested boxes:

o

Nil

‘Linked (Mutable) ListsI

type 'a mlist =
| Nil
| Cons of 'a * 'a mlist ref
type 'a mlist = Nil | Cons of 'a * 'a mlist ref

— The tail can be redirected!

creates a hew pointer to rest of mlist

let rec mlistOf = function 4{fﬁﬂ
| [1 -> Nil

| x :: 1 -> Cons (x, ref (mlistOf 1))
: 'a list -> 'a mlist = <fun>

‘Extending a List to the RearI

oinking to a ‘box’
4 9

~

let extend mlp x =
let last = ref Nil in
mlp := Cons (x, last);
last

> val extend fn : ‘a mlist ref * ‘a -> ‘a mlist ref

Example of Extending a ListI

let mlp = ref (Nil: string mlist);;
val mlp : string mlist ref = {contents = Nil}

extend mlp "a";;
-~ string mlist ref = {contents = Nil}
let mlp = ref (Nil : string mlist);;
val mlp : string mlist ref = {contents = Nil}

let it = extend mlp "a" ;;

: string mlist ref {contents = Nil}

val 1t

extend it "b" ;;
string mlist ref = {contents = Nil}

mlp ;;
— Sstring mlist ref

{contents = Cons ("a",
{contents = Cons ("b", {contents = Nil})})}

it

it

ref (Cons (x, ref (Cons (v, ref Nil))))

‘ Destructive Concatenation I

pointing to a ‘box’ contents of a ‘box’

R

let rec joining mlp ml2 =
match !mlp with
| Nil -> mlp := ml2
| Cons (_, mlpl) -> joining mlpl ml2
val joining : 'a mlist ref * 'a mlist -> unit = <fun>

let join mll ml2 =
let mlp = ref mll in
joining mlp ml2;
Imlp
val join : 'a mlist -> 'a mlist -> 'a mlist = <fun>

‘Side-EffectsI

let mll = mlistOf ["a"];;

val mll : string mlist = Cons ("a", {contents = Nil})
let ml2 = mlistOf ["b";"c"];;
val ml2 : string mlist =

Cons ("b", {contents = Cons ("c", {contents = Nil})})

join mll ml2 ;;

What does this return?

-~ : string mlist =
Cons ("a",
{contents = Cons ("b",
{contents = Cons ("c", {contents = Nil})})})

