stributed Ray Tracing
— rﬁfﬁﬁngfz Oztirkli: |

Direct lllumination

How do we use the rendering equation in practice? One way is local or direct illumination.

In this model, light can only come from light sources, i.e. we ignore light reflected from a surface and landing on
another surface.

This is useful for fast renderings and is what rasterizers such as the ones in OpenGL typically assume.

 All light comes directly from emitters, i.e. light sources

Lo(x,0,) = Le(%x,0,) +

fr (X, (Bia (I))O)LZ' (X, cUZ) COS 92 d(ﬁz
2

///Um/ hafIO
&l
~
~
/N
ke
l
N——"

indirect il

Direct Illumination
We typically cannot compute this integral exactly. We need to approximate it.
This is the main problem of rendering.

 The reflected radiance due to incident

Hlumination from all directions
dL.,(x, 0y

LT.(X, wr) = fr (X, Qz-, CUT)Lz (X, (DZ) COS 91 du_}'@
H2

Problem: estimating this integral

3 UNIVERSITY OF

g

4% CAMBRIDGE 5

Quadrature: estimating integrals

Such estimations can be performed by sampling the function to be integrated and summing up the values.

This is called quadrature. There is a resulting estimator for the actual value of the integral.

The samples are typically taken from an underlying probability distribution function. In order to make sure we get
the right integral value on average (i.e. we get an unbiased estimator), we need to normalize the sampled values.

* Importance sampling
function to integrate

N /
)= ¥ 25

=
estimator #samples density of samples

Quadrature: estimating integrals
Applying this idea to the integral we have, we get the following form.
The samples are direction samples, i.e. we sample the hemisphere over which we are integrating.

* Importance sampling

LT(X, JJ}) — fr (X, u_}i, QT)LZ (X, Qz) COS 92 d(ﬁz
H2

(L (x,5,)N) = 1 i fr(XaQi,kaﬁr)Li(XL(«vi,k) cos 0; x, dw;
Nk:l pa (Wi k)

RN |

estimator #samples density of samples

Quadrature: estimating integrals
The idea behind importance sampling is simple: place more samples where the function value is high.
This is in contrast with uniform sampling, where all samples are uniformly distributed over the domain.

* Importance sampling

7 —
+—0—0—0—0—000— 0—0—000—
uniform sampling importance sampling

Sampling Terms

Our function to be integrated consists of multiple terms. Ideally, we want to sample their product.

But this is typically not possible. Note that knowing a function does not mean we can efficiently sample from it.
The idea is then to choose what to sample. A candidate is the cosine term.

* What to importance sample?

LT (X, c:i,) = fr (X, cﬁi, QT)LZ (X, (Dz) COS 91 d(ﬁz
H2

Sampling the Cosine lerm
A case where sampling the cosine term is a good idea is when the BRDF fand lighting function L, are constants.

This is true when we have diffuse objects (constant BRDF) illuminated by the sky (constant Z,).
In this case, we are left with an integral of multiplication of the cosine term and the visibility function.

We will see what visibility function is in the next pages.

« Example: diffuse objects illuminated by an
ambient white sky (ambient occlusion)

L.(x,0,) = fir(x, Wi, @) L (x, W) cos 0; did;
H2
|

L,.(x) = §/H2V(X, J;) cos 0; di;

\ J
I

visibility function

58 UNIVERSITY OF
» CAMBRIDGE

Sampling the Cosine Term
This is also called ambient occlusion and an important way to render objects.

 Ambient occlusion examples

58 UNIVERSITY OF
4P CAMBRIDGE

Sampling the Cosine Term

So how do we sample to approximate this integral?

Imagine we are looking at a point in the scene for which we want to compute the approximation.
Recall that the reflected light is constant with respect to the outgoing light direction in this case.

° Amb|ent OCC|USi0n L.(x) = B/ V(x,d;) cos 6; did;
H2

v

L@

10

Sampling the Cosine Term

Only some of the light from the scene will reach the point as some is blocked by the object (red region).

This is captured by the visibility term. The visibility function V'is a binary function (either 1 or 0) indicating
light can reach the point or not.

° Amb|ent OCC|USi0n L.(x) = B/ V(x,d;) cos 6; did;
H2

v

W

11

Sampling the Cosine Term
For each sample direction, we get a term in the sum. The task is to define what the distribution p is.

This is the distribution of the direction samples indexed by £ in the sum.

° Amb|ent OCC|USi0n L.(x) = %/ V(x,d;) cos 6; did;
H2

Li‘/xwzk) cos 0; i

p— LT(X) ~ N k:1 w@ k;)

N

12

Sampling the Cosine lerm

Uniform sampling means there is no extra weighting by p and we randomly distribute the directions.

This is not good as we are wasting samples for which the cosine term is close to zero.

A better approach is importance sampling with the cosine term. This ensures the samples that contribute more

are drawn more.

* Ambient occlusion . (x) ~LN§: X“’@k) €05 O

k=1 wz k)

= uniform sampling = importance sampling

<¥ CAMBRIDGE 13

Sampling the Cosine Term
It is very important to perform importance sampling for less noisy renderings.
Importance sampling is standard in all rendering frameworks. The idea extends well beyond rendering.

« Ambient occlusion

uniform sampling importance sampling

1 samples per piXeI

§ UNIVERSITY OF
CAMBRIDGE

Sampling the Cosine Term
We start to see the significance of importance sampling as the renderings become more reasonable with more
samples.

« Ambient occlusion

4 samples per pixel

5.8 UNIVERSITY OF
“E“ CAMBRIDGE

15

Sampling the Cosine Term

« Ambient occlusion

uniform sampling importance sampling

16 samples per pixel

8 UNIVERSITY OF
CAMBRIDGE

&

Sampling the Cosine Term
For high enough sample counts, we can get a similar rendering with any unbiased sampling scheme, e.g. uniform
sampling.

« Ambient occlusion

1024 samples per pixel

5.8 UNIVERSITY OF
mgm CAMBRIDGE 17

Sampling BRDF's

In general, BRDF functions will not be constant and sometimes it is better to importance sample with them.

This is typically true for highly peaky functions where BRDF is mostly zero or low except at a few samples.
With uniform or cosine based sampling, it is highly probable that we will miss the high values of BRDFs.

* What to importance sample?

® ®

BRDF BRDF
Cosine-weighted BRDF Importance sampling
Importance sampling p(d}z) X f(X, (;},&-,er)

18

Sampling BRDF's
You can clearly see the effects of this in renderings.

uniform
hemispherical
sampling

AR

58 UNIVERSITY OF
P CAMBRIDGE

BRDF
Importance
sampling

19

Sampling Lights
A further idea is importance sampling with the lighting function.
This can also be performed by sampling the light sources in the scene. The advantage of this is that we don’t have

to sample again for each different point in the scene.

* What to importance sample?

LT. (X, 037) = fr (X, (Iji, (DT)LZ (X, (Dz) COS 91 d(ﬁz
H2

sample emissive
surfaces only

[light source

[1

20

Global Illumination
So far we considered a local illumination model: light only comes from light sources.

In general, light reflects off the surfaces and reaches another point in the scene.
We can thus write the incoming light at a point x equivalently as the outgoing light at some other point r.

« The rendering equation

L, (X, J}O) =L, (X7 630) -+ fr (X, W; QO)Li (X, (IJ}) cos 0; dw;
H2

* No participating media — radiance is constant along rays

« We can relate incoming radiance to outgoing radiance
L;(x,0) = Lo(r(x,d), —&)

58 UNIVERSITY OF
P CAMBRIDGE

Global Illumination
This form of the rendering equation makes the recursive nature of rendering clear. Note that L appears on both
sides of the expression.

« The rendering equation

L(x,0) = Le(x,0) + | fr(x,&d", &) L(r(x,d"), —d") cos §'d’
H?2

T

same function as on the left

« Only outgoing radiance functions, we drop o subscript
* Fredholm equation of the second kind (recursive)

8 UNIVERSITY OF
CAMBRIDGE

&

g UNIVERSITY OF

I8

¥ CAMBRIDGE

Global lllumination

local illumination global illumination

23

Global lllumination

* Subsurface scattering

BH UNIVERSITY OF
@¥ CAMBRIDGE 24

Global lllumination

e Caustics

&)
.('
v

»
)\.
N

N

ke '\\ W
X
i %)

\

33 UNIVERSITY OF
CAMBRIDGE 25

UNIVERSITY OF
CAMBRIDGE

Indirect
light

Global Hlumination
« And more

Scattering 4

§
<

Glossy %

reflections "‘” :
¥
4<.;

Caustics

26

Solving the rendering equation
Ray/ path/ light tracing is an unbiased method to solve this equation as compared to others that we will not talk
about.

L(x,0) = Lo(x,0) + | fr(x,&", &) L(r(x,d"), —d") cos 0 da’
H?2

Monte Carlo methods

* Unbiased methods - Biased methods
* Recursive ray tracing « Many-light algorithms
« Path tracing and light tracing « Density estimation
« Bidirectional path tracing « Photon mapping

* Irradiance caching

3 UNIVERSITY OF

P CAMBRIDGE

Solving the rendering equation

In a typical rendering framework, BRDF (f) and the cosine term are provided.

They are plotted as functions over the hemisphere here.

The problem is the lighting function Z, which depends on light coming from other parts of the scene.

How do we get this?

57 UNIVERSITY OF
P CAMBRIDGE

28

Recursive Ray Tracing
The solution to this equation is also recursive. At each recursion step, a number of direction samples are taken.

&=

B

&
I

Lo(x,&)+ [fr(x,d,&)L(r(x,d"), —d") cos 0 dd’
H?2

W) L(r(x,w"), —d") cos 6’
p(d')

1 o £ (R, &
L(x,@) ~ Lo(x, @) + = 3
1=1

Sample the hemisphere -- recursively

¥ CAMBRIDGE 29

Recursive Ray Tracing

Let’s see how this works when we start from the sensor. Each point on the sensor can be imagined as an “eye”.
We first send out a ray from the eye and intersect that with the geometry in the scene.

This gives us the point and direction in which we want to evaluate how much light is leaving to reach the eye.

N
. . 1 fr(X, ', &) L(r(x,d"), —d') cos 0’
L(x,d) ~ L.(x,0) + ~ ; (@)

(o]

% CAMBRIDGE 30

Recursive Ray Tracing
The expression below tells us to take a set of direction samples.

Some of these samples will end up on a light source, for which we already now the lighting function.

But others will land on other surfaces. For those, we don’t know the lighting function.

N
. . 1 fr(X, ', &) L(r(x,d"), —d') cos 0’
L(x,d) ~ L.(x,0) + ~ ; (@)

31

Recursive Ray Tracing
At those points, to evaluate how much light is leaving the surfaces, we need to shoot new rays.

N
. . 1 fr(X, ", &) L(r(x,d"), —d') cos 0’
L(x,d) ~ L.(x,0) + ~ ; (@)

-
95

‘B UNIVERSITY OF
4¥ CAMBRIDGE 52

Recursive Ray lracing

Similar to the previous case, some of these will end up on light sources and some on surfaces.

We thus need to continue recursively until we reach a certain recursion level. In this example, it is two.

Some of the rays are connected to the light source. Those contribute to light at the intermediate points, which in
turn contribute to the light at the original point we are interested in.

N
1 Z (X, 0", 0)L(r(x,d"), —d") cos &
=1

p(&')

-
95

‘B UNIVERSITY OF
4¥ CAMBRIDGE 3

Recursive Ray Tracing
This algorithm can be made more efficient using the co-called shadow rays.

W) L(r(x,d"), —&") cos @’

1 f (R, &
L(Xa(ﬁ) ~ Le(xac‘_j) + N Z — p(u—)’/)
=1

(o]

with shadow rays

34

Recursive Ray Tracing
A shadow ray is a ray that connects a point in the scene to a light source.

L(x,d) ~)+ — Z fr(X, &', &) L(r(x, ;3) —") cos &’

p(d

(o)

with shadow rays

35

Recursive Ray lracing

A shadow ray is a ray that connects a point in the scene to a light source.

The contribution of light coming from light sources is thus taken care of by shadow rays.

We terminate the rays that end up on light sources during the recursion to avoid counting the contributions from
light sources twice.

- N
1 T—»—)/,—»L 7—)/7_—’/ 9/ L)
L(x,8) ~ Lu(x,&) + — - fr(%, &, &) Lir(x, '), =') cos 0" with shadow rays
=1

¥ CAMBRIDGE 36

Recursive Ray Tracing
Shadow rays are sent at each recursion step.

L(x,&) ~ L Z Jr(X, &, &) Lir(x, ;3) —&) o5 with shadow rays

p(
/C

|
X

/'

4% CAMBRIDGE 37

B UNIVERSITY OF

Recursive Ray Tracing
Recursion proceeds as normal apart from sending these additional rays.

L(x,&) ~)+ — Zfr L)L ((X ;3) —&) o5 \with shadow rays

|
X

3 UNIVERSITY OF

i

¢¥» CAMBRIDGE 38

Recursive Ray Tracing
Recursion proceeds as normal apart from sending these additional rays.
Again, we cancel the contributions coming from non-shadow rays that intersect light sources.

N 2 =/ =/ /
L(x,&) = Lo(x,&) + % 3 fr (%, & ’”)L(r(x’;"), ~) s \ith shadow rays
1=1

Q

-
95

‘B UNIVERSITY OF
4% CAMBRIDGE 39

Path lracing

Recursive ray tracing is typically not used in practice.

Instead, path tracing, which is conceptually equivalent but computationally more efficient, is utilised.

In path tracing, we again start from the eye, but continue on a single path until we reach a light source.
In this first case, the path has only two segments.

N
. . 1 fr(X, &' &) L(r(x,d"), —d") cos @,
~ — with shadow rays
L(x,d) ~ L.(x,d) + N 2 (@) Y

O

&% CAMBRIDGE 40

Path Tracing
This second path is a bit more complicated with three segments.
Note that the last segment is always what we called a shadow ray before.

N
. . 1 fr(X, &' &) L(r(x,d"), —d") cos @,
~ — with shadow rays
L(x,d) ~ L.(x,d) + N 2 (@) Y

—

2.5 UNIVERSITY OF

4% CAMBRIDGE 41

Path Tracing

We can define how many bounces of light, i.e. segments, we want and terminate the path accordingly.

L(x,&) =~ Le(

3 UNIVERSITY OF

g

% B 5 CAMBRIDGE

Z fo(®

) L(r(x,

p(

"), —d") cos b’
')

!

\

with shadow rays

42

Path lracing

The contributions coming from all of these n paths are summed up.

Note that in the recursive ray tracing case, we were first estimating the outgoing light at the intermediate points,
and then summing up those, recursively. In this case, we only have a single summation.

It can be shown that both path tracing and recursive ray tracing simulate light without bias.

N
. . 1 fr(X, &' &) L(r(x,d"), —d") cos &,
~ — with shadow rays
L(x,d) ~ L.(x,d) + N 2 (@) Y

\

!

-
95

‘B UNIVERSITY OF
4¥ CAMBRIDGE 43

Path Tracing

* Full solution to the rendering equation
« Simple to implement
« Slow convergence
* requires 4x more samples to half the error
* Robustness issues
« does not handle some light paths well, e.g. caustics
* NO reuse or caching of computation
* General sampling issue
* makes only locally optimal decisions

8 UNIVERSITY OF
4P CAMBRIDGE

44

Nature ~ 2 . 1033 / second

Path Tracing

A - i aNG amel? S o G P
if we'd rendered [Gravity] on a single processor
instead of having a room full of computers, we would

have had to start rendering in 5000 BC to finish in time
to deliver the film. At the dawn of Egyptian civilisation”

Zod L '

/

[Gravity, Framestore]

Fastest GPU ray tracer ~ 2 . 108 / second

45

