
Discrete Mathematics
Exercises 9 – Solutions with Commentary
Marcelo Fiore Ohad Kammar Dima Szamozvancev

14. On inductive definitions
1. Let L be the subset of { a, b }∗ inductively defined by the axiom

ϵ
and rule

u
aub

for u ∈ { a, b }∗.

a) Use rule induction to prove that every string in L is of the form an bn for some n ∈ N.

We prove that for every string s in the set L inductively defined by the axiom and rule,
there exists a natural number n such that s = an bn.

Axiom
ϵ

The string s must be the empty string ϵ, and for n = 0 we have that ϵ = a0 b0.

Rule u
aub

Let s = aub for some string u and assume the IH⃝: there exists a natural

number k such that u = ak bk. Then, s = aub
IH
= aak bk b = ak+1 bk+1 so the witness

n= k+ 1 satisfies the required property.

b) Use mathematical induction to prove that for all n ∈ N, an bn ∈ L.

Base case: n= 0. The string a0 b0 is the empty string ϵ, which is an element of L by
the defining axiom.

Inductive step n = k+ 1. Assume the IH⃝: ak bk ∈ L. We prove that the string ak+1 bk+1

is in L as well. By definition of string repetition, ak+1 bk+1 = aak bk b. The IH⃝ states
that ak bk ∈ L, and the rule can be applied to deduce that aak bk b ∈ L as well.

c) Conclude that L = { an bn | n ∈ N }.

In the previous two parts we have shown that every string of L is of a particular form
an bn for n ∈ N, and that every string of this form is in L. Thus, we have the subset
inclusions L ⊆ { an bn | n ∈ N } and { an bn | n ∈ N } ⊆ L, proving that the sets are
equal.

d) Suppose we add the string a to L to get L′ = L ∪ { a }. Is L′ closed under the axiom and
rule? If not, characterise the strings that would be in the smallest set containing L′ that is
closed under the axiom and rule.

The resulting language L′ would not be closed: we can use the rule to generate the
strings aab, aaabb, an+1 bn, which are not of the required form and therefore are
not already part of the language. The closure of L′ under the rule and axiom would
therefore be { an bn | n ∈ N } ∪ { an+1 bn | n ∈ N }.

2. Suppose R: X → X is a binary relation on a set X . Let R† : X → X be inductively defined by
the following axioms and rules:

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

(x , x) ∈ R†
(x ∈ X)

(x , y) ∈ R†

(x , z) ∈ R†
(x ∈ X and y Rz)

a) Show that R† is reflexive and that R ⊆ R†.

We show that R† is reflexive by giving a derivation of (x , x) ∈ R† for all x ∈ X . This is
simply the first axiom defining the relation.

Next, we show that for all (x , y) ∈ R, (x , y) ∈ R† by providing a derivation:

(x , x) ∈ R†

(x , y) ∈ R†
(x ∈ X and x R y)

b) Use rule induction to show that R† is a subset of

S ≜
�

(y, z) ∈ X × X
�

� ∀x ∈ X . (x , y) ∈ R† =⇒ (x , z) ∈ R†
	

Deduce that R† is transitive.

We show that for all (y, z) ∈ R†, we have that for all x ∈ X such that (x , y) ∈ R†,
(x , z) ∈ R† by rule induction.

Axiom
(y, y) ∈ R†

We clearly have (x , y) ∈ R† implying (x , y) ∈ R†, as required.

Rule (x , y) ∈ R†

(x , z) ∈ R†
with 1⃝ y R z. Assume the IH⃝: (x , y) ∈ S. To show (x , z) ∈ S, let w ∈ X

be an element and suppose that 2⃝ (w, x) ∈ R†; we prove (w, z) ∈ R† by giving a
derivation:

IH⃝

(w, y) ∈ R†

(w, z) ∈ R†
(w ∈ X and 1⃝ y Rz)

where the IH⃝ (x , y) ∈ S is applied to the assumption 2⃝ (w, x) ∈ R† to deduce
(w, y) ∈ R†, as required.

To prove that R† is transitive, we need to show that (x , y), (y, z) ∈ R† implies (x , z) ∈
R†. Since R† ⊆ S, we also have (y, z) ∈ S, which, by definition of S and the assumption
(x , y) ∈ R† implies (x , z) ∈ R†.

c) Suppose that T : X → X is a reflexive and transitive binary relation and that R ⊆ T . Use
rule induction to show that R† ⊆ T .

We show that for all (x , y) ∈ R†, (x , y) ∈ T by rule induction.

Axiom
(y, y) ∈ R†

Since T is reflexive, we have that (y, y) ∈ T .

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

Rule (x , y) ∈ R†

(x , z) ∈ R†
with 1⃝ y R z. Assume the IH⃝: (x , y) ∈ T . Since R ⊆ T , we also have

(y, z) ∈ T from 1⃝; then, since T is transitive, we deduce (x , z) ∈ T using the IH⃝,
which is what we were meant to prove.

d) Deduce from above that R† is equal to R∗, the reflexive-transitive closure of R.

In parts (a) and (b) we showed that R† is reflexive and transitive; in part (a) we
also proved that R ⊆ R†. Finally, part (c) established that R† is smaller than any
other reflexive-transitive superset of R, which is the universal characterisation of the
reflexive-transitive closure of R.

3. Let L be a subset of { a, b }∗ inductively defined by the axiom and rules (for u ∈ { a, b }∗):

ab

au

au2

ab3u

au

a) Is ab5 in L? Give a derivation, or show that there isn’t one.

The string ab5 is indeed in L, as witnessed by the following derivation:

ab

ab2

ab4

ab8

ab5

b) Use rule induction to show that every u ∈ L is of the form abn with n= 2k − 3m≥ 0 for
some k, m ∈ N.

Axiom
ab

We have that ab= ab1 and 1= 2k − 3m for k = m= 0.

Rule au
au2

If by the IH we have that u= b2l−3n, then u2 = b2l+1−3·(2n), so au2 is of the
required form with k = l + 1 and m= 2n.

Rule ab3u
au

If by the IH we have that b3u= b2l−3n, then by removing the first 3 bs we

have that u= b2l−3(n+1); thus, au is of the required form with k = l and m= n+ 1.

c) Is ab3 in L? Give a derivation, or show that there isn’t one.

If ab3 were in L, by part (b) it must be of the form ab2k−3m for some k, m ∈ N. This is
not possible however, since 2k−3m = 3 ⇐⇒ 2k = 3(m+1) would require 3(m+1)
to be a power of 2; but the only prime factor of 2k is 2 so it can’t a multiple of 3.

d) Find an explicit characterisation of the elements of the language as a set comprehension,
and prove (along the lines of §14.1) that it coincides with the inductively defined set L.

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

We claim that L =
¦

ab2k−3m
�

�

� 2k − 3m≥ 0
©

. We’ve already shown the ⊆ direction,
proving that every string in L is of the appropriate form. We now show that every
string of the appropriate form has a derivation; namely, that for all k ∈ N,

∀m ∈ N. 2k − 3m≥ 0=⇒ ab2k−3m ∈ L

which we prove by mathematical induction on k.

Base case: k = 0. The only m for which the hypothesis 20 − 3m ≥ 0 is satisfied is
m= 0, and for this we have a derivation of ab20−3·0 = ab ∈ L by the axiom.

Inductive step: k = l + 1. Assume the IH⃝:

∀m ∈ N. 2l − 3m≥ 0=⇒ ab2l−3m ∈ L

and prove ∀m ∈ N. 2l+1 − 3m≥ 0=⇒ ab2l+1−3m ∈ L by nested mathematical induc-
tion on m.

Inner base case: m = 0. By the IH⃝ we have that ab2l
∈ L, and by applying the rule au

au2

we can derive ab2l+1
∈ L.

Inner inductive step: m= n+ 1. If, by the nested IH we have that ab2l+1−3n ∈ L, then
by applying the rule ab3u

au
we can derive ab2l+1−3n−3 = ab2l+1−3(n+1) ∈ L.

15. On regular expressions
1. Find regular expressions over {0, 1 } that determine the following languages:

a) {u | u contains an even number of 1’s }

We should only be able to add 1s in pairs, so we take the regex (0|10∗1)∗.

b) {u | u contains an odd number of 0’s }

After requiring one 0, we ask for an even number of 0s: 1∗0(1|01∗0)∗.

2. Show that b∗a(b∗a)∗ and (a|b)∗a are equivalent regular expressions, that is, a string matches
one iff it matches the other. Your reasoning should be rigorous but can be informal.

First note that any string u matching b∗a(b∗a)∗ is a concatenation u= u1u2 · · ·un of one
or more (i.e. n ≥ 1) strings in { a, b }∗ matching b∗a. Each ui ends with an a and hence
(because n≥ 1), so does u. Therefore u matches (a|b)∗a.

Conversely, if u matches (a|b)∗a it is a string in { a, b }∗ ending with an a: looking at the
occurrences of a in u, we can express u as u = bn1 abn2 a · · · bnk a for some k ≥ 1 and some
n1, . . . nk ≥ 0; and hence u matches b∗a(b∗a)∗.

� Equivalence of regular expressions is more difficult to establish in general – reasoning
by “observation” or pattern analysis like above does not scale to more complicated regexes.

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

The question will be revisited, however, in the second half of the course, using some
additional developments that will allow us to check equivalence of regular expressions in
finite time.

3. Extend the concrete syntax, abstract syntax, parsing relation of regular expressions, and the
matching relation between strings and regular expressions with the following constructs:

a) r?: matches the regex r zero or one times. For example, ab?c is matched by ac and abc,
but not abbc.

b) r+: matches the regex r one or more times. For example, ab+c is matched by abc and
abbbbc, but not ac.

We extend the alphabet Σ′ with the symbols ? and + and the concrete syntax with the
following rules:

r

r?

r

r+

The abstract syntax is extended with the unary constructors Opt and Plus, and parsing is
modified as follows:

r ∼ R

r?∼ Opt(R)

r ∼ R

r+ ∼ Plus(R)

Finally, we add the following axioms and rules to the matching relation:

(ϵ, r?)

(u, r)

(u, r+)

(u, r)

(u, r?)

(u, r) (v, r+)

(uv, r+)

Show that (r+)? is equivalent to r∗. Is that the case for (r?)+ as well?

The regex (r+)? matches either the empty string ϵ, or one or more repetitions of a string
matched by r . Combined, it matches zero or more repetitions of a string matched by r ,
which is precisely the meaning of r∗.

The regex (r?)+ matches one or more repetitions of either the empty string, or a string
matched by r . In particular, it matches the empty string (if all the repetitions are empty),
and any nonzero number of occurrences of r . Again, this is the same as the meaning of r∗.

� This question involved adding two new constructs to our regex syntax, and as the last
part showed, the system is now “non-orthogonal” in that certain regexes are interderivable.
This is not necessarily a problem – many formal systems exhibit this form of redundancy –
but it does make the inductively defined syntax larger which may complicate reasoning
about the system (for example, every recursive definition or inductive proof on regexes now
has two extra cases that would be covered by existing ones). Thus we may also reasonably
choose to define r? and s+ as “syntactic sugar” (extra notation added for convenience)

https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=27
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=30
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=32
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=36

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

abbreviating r|ε and ss∗, respectively. These, and other derived operators and patterns
form the basis of practical regex engines used widely in text processing applications.

16. On finite automata
1. For each of the two languages mentioned in §15.1 (string containing an even number of 1’s or

an odd number of 0’s), find a DFA that accepts exactly that set of strings.

We can construct both with only two states each, corresponding to whether we have seen
an even or odd number of 1’s or 0’s and making the appropriate state accepting.

e1s o1s

0

1

0

1

e0s o0s

1

0

1

0

2. Given an NFAϵ M = (Q,Σ,∆, s, F, T), we write q
u
=⇒ q′ to mean that there is a path

in M from state q to state q′ whose non-ϵ labels form the string u ∈ Σ∗. Show that
L =
n

(q, u, q′)
�

�

� q
u
=⇒ q′
o

is equal to the subset of Q × Σ∗ × Q inductively defined by the
axioms and rules:

(q,ϵ, q)

(q, u, q′)

(q, u, q′′)
if q′

ϵ
−→ q′′ in M

(q, u, q′)

(q, ua, q′′)
if q′

a
−→ q′′ in M

Hint: recall the method from §14.1. for showing that a language defined via set comprehension
is equal to an inductively defined set: first show that L is closed under the rules and axioms,
then show that every string in L has a derivation.

(⊆)We show that every element (q, u, q′) of the inductively defined set L satisfies q
u
=⇒ q′

by rule induction.

Axiom
(q,ϵ, q)

We can always transition from a state to itself without consuming any

symbols, so q
ϵ
=⇒ q holds vacuously.

Rule (q, u, q′)
(q, u, q′′)

where q′
ϵ
−→ q′′ in M . The IH states that q

u
=⇒ q′. If there is an ϵ-transition

from q′ to q′′, we can make one further step without consuming a symbol, so the overall
string formed by the non-ϵ labels will still be u – hence, q

u
=⇒ q′′, as required.

Rule (q, u, q′)
(q, ua, q′′)

where q′
a
−→ q′′ in M . The IH states that q

u
=⇒ q′. If there is a transition from

q′ to q′′ labelled with a, we can make a further step that extends the recognised string
with the symbol a – hence, q

ua
=⇒ q′′, as required.

(⊇)We show that we can derive (q, u, q′) ∈ L whenever q
u
=⇒ q′ in M by mathematical

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 9 – S O LU T I O N S W I T H CO M M E N TA RY

induction on the length |u| ∈ N of the string u.

Base case: |u| = 0, so u = ϵ. If the number of non-ϵ symbols in the path is 0, all of the
steps must have been ϵ-transitions. Such paths can be captured by the axiom, and any
number of applications of the first rule to transition between states without consuming an
input.

Indutive step: |u| = k + 1, so u = va for a ∈ Σ and |v| = k. Assume the IH⃝: we have a
path q

v
=⇒ q′ and therefore (q, v, q′) ∈ L. If we have a path labelled va, there must be a

transition from q′ to q′′ labelled by a; then, the second rule can be applied to (q, v, q′) ∈ L
and q′

a
−→ q′′ to deduce (q, va, q′) ∈ L, as required.

� Even though strings are no different from finite lists of symbols of the alphabet, they are
formally elements of Σ∗, not a set inductively defined with an axiom for the empty string,
and a rule for “consing” a symbol to the string. Performing induction on the length of the
string simulates the kind of (structural) induction one would perform on an OCaml-style
list.

3. The example of the subset construction given on Slide 58 constructs a DFA with eight states
whose language of accepted strings happens to be L(a∗b∗). Give an “optimised” DFA with the
same language of accepted strings, but fewer states. Give an NFA with even fewer states that
does the same job.

The simplified NFA and DFA are as follows:

q1 q2 q3

a

b

b

a

a, b

q1 q2

a

b

b

The main difference is that the DFA needs to handle the symbol a occurring in state q2,
which would mean seeing an occurrence of a after a b which disqualifies the string from
being in L(a∗b∗). The usual way of marking this as an invalid input in a DFA is to transition
into a state from which it is impossible to reach an accepting state; upon any further input
just stays stuck in q3.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=58

	On inductive definitions
	On regular expressions
	On finite automata

