
Discrete Mathematics
Exercises 10 – Solutions with Commentary

Marcelo Fiore Ohad Kammar Dima Szamozvancev

17. On regular languages
1. Why can’t the automaton Star(M) used in step (iv) of the proof of part (a) of Kleene’s Theorem

be constructed by simply taking M , making its start state the only accepting state and adding
new ϵ-transitions back from each old accepting state to its start state?

The problem is that we would be meddling with the internals of the automaton in unex-
pected ways by turning a (potentially) non-accepting start state into an accepting one.
If M has transitions looping back to the start state, we may be able to accept partially
recognised strings prematurely. For example, the automaton on the left below recognises
the language L(a(aa)∗b), but naively adding an ϵ-transition from q3 to q1 and making q1

accepting would result in a machine that accepts not only the expected L((a(aa)∗b)∗),
but also (aa)∗. By adding a new start state we ensure that the automaton “commits” to
performing a full repetition by explicitly transitioning into the start state of M .

q1 q2 q3
a

a

b q1 q2 q3
a

a

b

ϵ

2. Construct an NFAϵ M satisfying L(M) = L((ε|b)∗aab∗) using Kleene’s construction.

Using the entirely algorithmic construction we get the following automaton:

ϵ
ϵ

ϵ
b

ϵ

ϵ

ϵaϵaϵ

b ϵ

� Of course, there is a lot of redundancy, especially the large number of ϵ-transitions
that could be safely collapsed. The regex is not in its simplest form either, since (ε|b)∗ is
equivalent to b∗. However, these are concerns of implementation efficiency, and Kleene’s
theorem is a result that the two formalisms are “in principle” equivalent. There are examples
of languages that could be concisely expressed as regexes but the size of DFAs recognising
the language is exponential in the length of the redex (such as the strings which have
a specific symbol in the {kth } last position); conversely, some languages are simple to

https://www.cl.cam.ac.uk/teaching/current/DiscMath/2021-stajano-discmath-slides.pdf#page=74

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 1 0 – S O LU T I O N S W I T H CO M M E N TA RY

recognise by a DFA, but the corresponding regexes are enormous (divisibility by 7 requires
a DFA of 7 states, and converts to a regex of 10791 characters).

3. Show that any finite set of strings is a regular language.

Let L = {u1, u2, . . . , uk } be a finite set of strings. We construct the regular expression
u1|u2| . . . |uk which is clearly matched by all strings in L. Since such a regex exists, by
Kleene’s Theorem we conclude that L is regular.

4. Use the construction given in the proof of part (b) of Kleene’s Theorem to find a regular
expression for the DFA M whose state set is {0,1,2 }, whose start state is 0, whose only
accepting state is 2, whose alphabet of input symbols is { a, b }, and whose next-state function
is given by the following table.

δ a b
0 1 2
1 2 1
2 2 1

The DFA specified in the question is as follows:

0

1 2

a b

b a
a

b

We apply Kleene’s regex construction by first removing state 1, then state 2 – other orderings
are possible. The recursive cases are not expanded further when the required redex is
easily constructed by observation.

r{0,2}
0,2 = ba∗

r{0,2}
0,1 = r{0}0,1 | r

{0}
0,2

�

r{0}2,2

�∗
r{0}2,1 = a|ba∗b

r{0,2}
1,1 = r{0}1,1 | r

{0}
1,2

�

r{0}2,2

�∗
r{0}2,1 = b|aa∗b

r{0,2}
1,2 = r{0}1,2 | r

{0}
1,2

�

r{0}2,2

�∗
r{0}2,2 = a|aa∗a

r{0,1,2}
0,2 = r{0,2}

0,2 | r
{0,2}
0,1

�

r{0,2}
1,1

�∗
r{0,2}

1,2 = ba∗|(a|ba∗b)(b|aa∗b)∗(a|aa∗a)

5. If M = (Q,Σ,∆, s, F) is an NFA, let Not(M) be the NFA (Q,Σ,∆, s,Q \ F) obtained from M by
interchanging the role of accepting and nonaccepting states. Give an example of an alphabet Σ
and an NFA M with set of input symbols Σ such that {u ∈ Σ∗ | u ̸∈ L(M) } is not the same as
L(Not(M)).

A simple minimal example is the following automaton M with alphabet Σ= { a }:

https://codegolf.stackexchange.com/questions/3503/hard-code-golf-regex-for-divisibility-by-7

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 1 0 – S O LU T I O N S W I T H CO M M E N TA RY

q0

We have that L(M) = {ϵ }, but interchanging the accepting and nonaccepting states would
turn q0 into a nonaccepting state so the language recognised is ;. However, ; ≠ { a }∗ \{ϵ }.

6. Let r = (a|b)∗ab(a|b)∗. Find a regular expression that is equivalent to the complement for r
over the alphabet { a, b } with the property L(∼ r) = {u ∈ { a, b }∗ | u ̸∈ L(r) }.

The language matching r consists of all strings that contain ab as a substring. Thus, the
complement of L(r) is the setof strings that do not contain ab as a substring, which is only
possible if there are no occurrences of b after the first occurrence of a. The corresponding
regular expression is thus simply b∗a∗.

7. Given DFAs Mi = (Q i,Σ,δi, si, Fi) for i = 1, 2, let And(M1, M2) be the DFA

(Q1 ×Q2,Σ,δ, (s1, s2), F1 × F2)

where δ : (Q1 ×Q2)×Σ→ (Q1 ×Q2) is given by

δ((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

for all q1 ∈Q1, q2 ∈Q2 and a ∈ Σ. Show that L(And(M1, M2)) = L(M1)∩ L(M2).

We prove the following lemma: for all strings u ∈ Σ∗ and states q1, q2, q′1, q′2 ∈Q,

(q1, q2)
u
=⇒ (q′1, q′2) in And(M1, M2) ⇐⇒ q1

u
=⇒ q′1 in M1 ∧ q2

u
=⇒ q′2 in M2

This will directly imply the required result for q1, q2 the start states s1, s2 and q′1, q′2 a pair
of accepting states in F1, F2. The lemma will be proved by induction on the length of the
string u.

Base case: |u| = 0, so u = ϵ. If (q1, q2)
ϵ
=⇒ (q′1, q′2) in And(M1, M2), we must have that

q1 = q′1 and q2 = q′2 because the automaton is deterministic and has no ϵ-transitions. But
this is exactly the case when q1

ϵ
=⇒ q1 and q2

ϵ
=⇒ q2.

Inductive case: |u| = k+ 1, so u = va with |v| = k and a ∈ Σ. Assume the IH⃝ for the string
v. If there is a path (p1, q1)

va
=⇒ (p3, q3) in And(M1, M2), there must be two states p2, q2

such that (p1, q1)
v
=⇒ (p2, q2) and (p2, q2)

a
−→ (p3, q3). By the IH⃝, we have that p1

v
=⇒ p2

and q1

v
=⇒ q2, and δ((p2, q2), a) = (p3, q3) by definition holds if δ1(p2, a) = p3 and

δ2(q2, a) = q3. Combining p1

v
=⇒ p2 with p2

a
−→ p3 and q1

v
=⇒ q2 with q2

a
−→ q3, we have a

path p1

va
=⇒ p3 and q1

va
=⇒ q3 in M1 and M2 respectively, as required.

18. On the Pumping Lemma
1. Briefly summarise the proof of the Pumping Lemma in your own words.

D I S C R E T E M AT H E M AT I C S E X E R C I S E S 1 0 – S O LU T I O N S W I T H CO M M E N TA RY

� Bookwork exercise, mainly intended to get you to read and understood the proof in
order to be able to reproduce it if needed. The core points to remember are:

• The pumping lemma property is a necessary condition: regularity of L implies PLP, but
not the other way around.

• The statement of the PLP should be read as a kind of dialogue: what are the objects
and constraints you are given (a regular language L, a word of an appropriate length,
and the number of repetitions of the central string), and what are things you have
control over (the minimum length of the string, and the decomposition).

• The negation of PLP (used in the contrapositive) is the same dialogue but flipped
around. An important consequence that is easy to overlook in informal proofs of
non-regularity is that the “opponent” chooses the decomposition: they will try their
very best to “catch you out” so the proof must not make any assumptions on how the
string is split (other than the constraints stated, which are there precisely to stop the
opponent choosing a decomposition for which the expected reasoning doesn’t work).

2. Consider the language L ≜ { cman bn | m≥ 1 ∧ n≥ 0 } ∪ { am bn | m, n≥ 0 }. The notes show
that L has the pumping lemma property. Show that there is no DFA M which accepts L.

Hint: argue by contradiction. If there were such an M , consider the DFA M ′ with the same states
as M , with alphabet of input symbols just consisting of a and b, with transitions all those of
M which are labelled by a or b, with start state δM(sM , c) where sM is the start state of M ,
and with the same accepting states as M . Show that the language accepted by M ′ has to be
{ an bn | n≥ 0 } and deduce that no such M can exist.

We follow the hint and take M and M ′ as given. We show that L(M ′) = { an bn | n≥ 0 }.

(⊆) If w ∈ { a, b }∗ is accepted by M ′, then cw ∈ L(M) since the start state of M ′ is reached
with a single c-transition from the start state of M . By definition of M , w must be of the
form an bn for some n ∈ N.

(⊇) If w = an bn, we have that can bn ∈ L(M), and by the definition of M ′, we have that
an bn ∈ L(M).

Thus, from the assumption that the DFA M exists, we constructed a DFA M ′ such that
L(M ′) = { an bn | n≥ 0 }; however, we know from the contrapositive statement of the
Pumping Lemma that { an bn | n≥ 0 } is not regular, so our assumption that M exists was
wrong. Consequently, the language L is not regular.

� The proof presented here is done using a technique called reduction: we reduce the
question of determining the membership of a string u in { an bn | n≥ 0 } to the question of
determining the membership of cu in L, so if the latter is answerable using a DFA, then so
is the former (which leads to a contradiction). The central property of the mapping u 7→ cu
is that u ∈ { an bn | n≥ 0 } if and only if cu ∈ L. Reduction proofs will be discussed in more
detail in the IB Computation Theory and Complexity Theory courses.

	On regular languages
	On the Pumping Lemma

