
Ordered pairing

Notation:

(a, b) or ha, bi

Fundamental property:

(a, b) = (x, y) =⇒ a = x ∧ b = y
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A construction:

For every pair a and b,

ha, bi =
�
{a } , {a, b }

	

defines an ordered pairing of a and b.
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Proposition 108 (Fundamental property of ordered pairing)

For all a, b, x, y,

ha, bi = hx, yi ⇐⇒
�

a = x ∧ b = y
�

.

PROOF:
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Products

The product A× B of two sets A and B is the set

A× B =
�
x | ∃a ∈ A,b ∈ B. x = (a, b)

	

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal

components is formally

{ x ∈ A×A | ∃a1 ∈ A.∃a2 ∈ A. x = (a1, a2) ∧ a1 = a2 }

but often abbreviated using pattern-matching notation as

{ (a1, a2) ∈ A×A | a1 = a2 } .

Notation: For a property P(a, b) with a ranging over a set A and b

ranging over a set B,

{ (a, b) ∈ A× B | P(a, b) }

abbreviates

{ x ∈ A× B | ∃a ∈ A.∃b ∈ B. x = (a, b) ∧ P(a, b) } .
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Proposition 110 For all finite sets A and B,

# (A× B) = #A ·#B .

PROOF IDEA :
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Sets and logic

P(U)
�
false , true

	

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)
� ∃
� ∀
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Big unions

Example:

◮ Consider the family of sets

T =




 T ⊆ [5]
the sum of the elements of

T is less than or equal 2






=
�
∅ , {0} , {1} , {0, 1} , {0, 2}

	

◮ The big union of the family T is the set
�

T given by the union of

the sets in T:

n ∈ �

T ⇐⇒ ∃ T ∈ T. n ∈ T .

Hence,
�

T = { 0, 1, 2 }.
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Definition 111 Let U be a set. For a collection of sets F ∈ P(P(U)),

we let the big union (relative to U) be defined as

�

F =
�
x ∈ U | ∃A ∈ F. x ∈ A

	
∈ P(U) .
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Proposition 112 For all F ∈ P(P(P(U))),

�
�
�

F
�

=
�



�

A ∈ P(U) A ∈ F

�
∈ P(U) .

PROOF:
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Big intersections

Example:

◮ Consider the family of sets

S =



S ⊆ [5] the sum of the elements of S is 6

�

=
�
{ 2, 4 } , { 0, 2, 4 } , { 1, 2, 3 }

	

◮ The big intersection of the family S is the set
�

S given by the

intersection of the sets in S:

n ∈ �

S ⇐⇒ ∀S ∈ S. n ∈ S .

Hence,
�

S = { 2 }.
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Definition 113 Let U be a set. For a collection of sets F ⊆ P(U),

we let the big intersection (relative to U) be defined as

�

F =
�
x ∈ U | ∀A ∈ F. x ∈ A

	
.
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Theorem 114 Let

F =



S ⊆ R (0 ∈ S) ∧
�

∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S
�

�
.

Then, (i) N ∈ F and (ii) N ⊆ �

F. Hence,
�

F = N.

PROOF:
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Proposition 115 Let U be a set and let F ⊆ P(U) be a family of

subsets of U.

1. For all S ∈ P(U),

S =
�

F

iff
�

∀A ∈ F. A ⊆ S
�

∧
�

∀X ∈ P(U). (∀A ∈ F. A ⊆ X) ⇒ S ⊆ X
�

2. For all T ∈ P(U),

T =
�

F

iff
�

∀A ∈ F. T ⊆ A
�

∧
�

∀Y ∈ P(U). (∀A ∈ F. Y ⊆ A) ⇒ Y ⊆ T
�
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Union axiom

Every collection of sets has a union.

�

F

x ∈ �

F ⇐⇒ ∃X ∈ F. x ∈ X
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For non-empty F we also have

�

F

defined by

∀x. x ∈ �

F ⇐⇒
�

∀X ∈ F. x ∈ X
�

.
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Disjoint unions

Definition 116 The disjoint union A ⊎ B of two sets A and B is the

set

A ⊎ B =
�

{1}×A
�

∪
�

{2}× B
�

.

Thus,

∀ x. x ∈ (A ⊎ B) ⇐⇒
�

∃a ∈ A. x = (1, a)
�

∨
�

∃b ∈ B. x = (2, b)
�

.
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Proposition 118 For all finite sets A and B,

A ∩ B = ∅ =⇒ # (A ∪ B) = #A+#B .

PROOF IDEA:

Corollary 119 For all finite sets A and B,

# (A ⊎ B) = #A+#B .
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