Ordered pairing

Notation:

$$
(a, b) \text { or }\langle a, b\rangle
$$

Fundamental property:

$$
(a, b)=(x, y) \Longrightarrow a=x \wedge b=y
$$

A construction:

For every pair a and b,

$$
\langle a, b\rangle=\{\{a\},\{a, b\}\}
$$

defines an ordered pairing of a and b.

Proposition 108 (Fundamental property of ordered pairing)

For all a, b, x, y,

$$
\langle\mathrm{a}, \mathrm{~b}\rangle=\langle\mathrm{x}, \mathrm{y}\rangle \Longleftrightarrow(\mathrm{a}=\mathrm{x} \wedge \mathrm{~b}=\mathrm{y})
$$

Proof:

Products

The product $A \times B$ of two sets A and B is the set

$$
A \times B=\{x \mid \exists a \in A, b \in B . x=(a, b)\}
$$

where

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A, b_{1}, b_{2} \in B . \\
& \quad\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \wedge b_{1}=b_{2}\right)
\end{aligned}
$$

Thus,

$$
\forall x \in A \times B . \exists!a \in A . \exists!b \in B . x=(a, b)
$$

Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal components is formally

$$
\left\{x \in A \times A \mid \exists a_{1} \in A . \exists a_{2} \in A . x=\left(a_{1}, a_{2}\right) \wedge a_{1}=a_{2}\right\}
$$

but often abbreviated using pattern-matching notation as

$$
\left\{\left(a_{1}, a_{2}\right) \in A \times A \mid a_{1}=a_{2}\right\}
$$

Notation: For a property $P(a, b)$ with a ranging over a set A and b ranging over a set B,

$$
\{(a, b) \in A \times B \mid P(a, b)\}
$$

abbreviates

$$
\begin{gathered}
\{x \in A \times B \mid \exists a \in A . \exists b \in B \cdot x=(a, b) \wedge P(a, b)\} . \\
-353-a-
\end{gathered}
$$

Proposition 110 For all finite sets A and B,

$$
\#(A \times B)=\# A \cdot \# B .
$$

Proof idea:

$$
A=\left\{a_{1}, \ldots, a_{n}\right\} \quad B=\left\{b_{1}, \ldots, b_{n}\right\}
$$

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{c}$	$\neg(\cdot)$
\cup	\exists
\cap	\forall

Big unions

Example:

$$
[s]=\{0,1,2,3,4\} .
$$

- Consider the family of sets

$$
\left.\begin{array}{rl}
\mathcal{T} & =\{T \subseteq[5]
\end{array} \begin{array}{l}
\text { the sum of the elements of } \\
\mathrm{T} \text { is less than or equal } 2
\end{array}\right\}
$$

- The big union of the family \mathcal{T} is the set $\bigcup \mathcal{T}$ given by the union of the sets in \mathcal{T} :

$$
\mathrm{n} \in \bigcup \mathcal{T} \Longleftrightarrow \exists \mathrm{~T} \in \mathcal{T} . \mathrm{n} \in \mathrm{~T}
$$

Hence, $\bigcup \mathcal{T}=\{0,1,2\}$.
$N B: F \in P(P(u)) \Rightarrow U F \in P(u)$

Definition 111 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\bigcup \mathcal{F}=\{x \in \mathrm{U} \mid \exists A \in \mathcal{F} . x \in A\} \in \mathcal{P}(\mathrm{U}) .
$$

$$
\begin{aligned}
& U(U F) \in P(u) \\
& \mathbb{Z} \\
& \mathbb{Z} \in P(P(u))
\end{aligned}
$$

Proposition 112 For all $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U})))$,

Proof:

$$
x \in U(\cup F)
$$

$$
\Leftrightarrow \exists X . X \in \cup \mathcal{F} \wedge x \in X
$$

$$
\Leftrightarrow \exists X \cdot \exists A \cdot A \in \mathcal{F} \wedge X \in A \wedge x \in X
$$

$$
\Leftrightarrow \exists A \cdot A \in F_{\wedge} \exists X \cdot X \in A \wedge x \in X
$$

$$
\Leftrightarrow \exists A \cdot A \in \underset{-360-}{\wedge} x \in \cup A \Leftrightarrow x \in(*)
$$

Big intersections

Example:

- Consider the family of sets

$$
\begin{aligned}
\mathcal{S} & =\{S \subseteq[5] \mid \text { the sum of the elements of } S \text { is } 6\} \\
& =\{\{2,4\},\{0,2,4\},\{1,2,3\} \text { 善, }\{0,1,2,3\}\}
\end{aligned}
$$

- The big intersection of the family \mathcal{S} is the set $\bigcap \mathcal{S}$ given by the intersection of the sets in \mathcal{S} :

$$
\mathrm{n} \in \bigcap \mathcal{S} \Longleftrightarrow \forall \mathrm{~S} \in \mathcal{S} . \mathrm{n} \in \mathrm{~S}
$$

Hence, $\bigcap \mathcal{S}=\{2\}$.

Definition 113 Let U be a set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$, we let the big intersection (relative to U) be defined as

$$
\bigcap \mathcal{F}=\{x \in U \mid \forall A \in \mathcal{F} . x \in A\} .
$$

Theorem 114 Let

$$
\mathcal{F}=\{S \subseteq \mathbb{R} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} \cdot x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \cap \mathcal{F}$. Hence, $\cap \mathcal{F}=\mathbb{N}$.
Proof:

$$
\begin{aligned}
& \mathbb{R} \in F \\
& \mathbb{Q} \in F \\
& \mathbb{Z} \in F \\
& \mathbb{N} \in F
\end{aligned}
$$

$$
\mathbb{N} \subseteq \cap F
$$

$$
\Leftrightarrow
$$

$$
\forall x \cdot x \in \mathbb{N} \Rightarrow x \in \cap \mathcal{F}
$$

Let $x \in \mathbb{N}$.

$$
\forall x \in \mathbb{N}, \forall S \in F, x \in S
$$

$$
\begin{aligned}
& \text { RIP: } x \in \cap \mathcal{F} \\
& \Leftrightarrow \forall S \in \mathcal{F} . x \in S .
\end{aligned}
$$

Proposition 115 Let U be a set and let $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$ be a family of subsets of U.

To flow S is $U F$

1. For all $\mathrm{S} \in \mathcal{P}(\mathrm{U})$, establish:

$$
S=\bigcup \mathcal{F}
$$

jiff

$$
\text { (1) }[\forall A \in \mathcal{F} . A \subseteq S]
$$

$$
\text { 2) }[\forall X \in \mathcal{P}(U) \cdot(\forall A \in \mathcal{F} \cdot A \subseteq X) \Rightarrow S \subseteq X]
$$

2. For all $\mathrm{T} \in \mathcal{P}(\mathrm{U})$,
To show T is $\cap F$

$$
\mathrm{T}=\bigcap_{\mathcal{F}}
$$ establish:

ff
(1) $[\forall A \in \mathcal{F} . T \subseteq A]$

$$
\text { (2) }[\forall Y \in \mathcal{P}(U) \cdot(\forall A \in \mathcal{F} . Y \subseteq A) \Rightarrow Y \subseteq T]
$$

Union axiom

Every collection of sets has a union.

$$
\begin{gathered}
\bigcup \mathcal{F} \\
x \in \bigcup \mathcal{F} \Longleftrightarrow \exists X \in \mathcal{F} . x \in X
\end{gathered}
$$

For non-empty \mathcal{F} we also have

$$
\bigcap \mathcal{F}
$$

defined by

$$
\forall x . x \in \bigcap \mathcal{F} \Longleftrightarrow(\forall X \in \mathcal{F} . x \in X)
$$

Sunset and ta element consider

$$
\{t\} \times S=\{(t, s) \mid s \in S\}
$$

Disjoint unions
Definition 116 The disjoint union $A \uplus B$ of two sets A and B is the set

$$
A \uplus B=(\{1\} \times A) \cup(\{2\} \times B)
$$

Thus,

$$
(\{1\} \times A) \cap(\{2\} \times B)=\varnothing
$$

$$
\forall x \cdot x \in(A \uplus B) \Longleftrightarrow(\exists a \in A \cdot x=(1, a)) \vee(\exists b \in B \cdot x=(2, b))
$$

datatype
(α, β) disjoin tunis $=$ left of $\alpha \mid$ right of β.

Proposition 118 For all finite sets A and B,

$$
A \cap B=\emptyset \Longrightarrow \#(A \cup B)=\# A+\# B .
$$

Proof idea:
Let $A \cap B=\varnothing \quad A=\left\{a_{1}-a_{m}\right\} \quad B=\left\{b_{1}-b_{n}\right\}$
Then

$$
A \cup B=\left\{a_{1} \ldots a_{m} b_{1} \ldots b_{n}\right\}
$$

$$
\# A \cup B=m+n .
$$

Corollary 119 For all finite sets A and B,

$$
\begin{gathered}
\#(A \uplus B)=\# A+\# B . \\
-373-
\end{gathered}
$$

