$$\begin{cases} a_1b_1^2 = \{c\} \end{cases}$$

$$\begin{cases} a_1b_1^2 \subseteq \{c\} \land \quad \{c\} \subseteq \{a_1b\} \end{cases}$$

$$\Leftrightarrow \quad (a=c) \land (b=c) \land \quad (c=a \lor c=b)$$

$$\Leftrightarrow \quad (a=c) \land (b=c)$$

Proposition 104 For all finite sets U,

$$\mathcal{U} = \{ u_1, \dots, u_n \}$$

$$\# \mathcal{U} = n$$

$$\# \mathcal{P}(U) = 2^{\# U}$$
 .

PROOF IDEA:

$$S \subseteq U \longrightarrow array(S) \text{ of length } n$$

$$array(S)[i] = \begin{cases} 0 & i \notin S \\ 1 & i \notin S \end{cases}$$

to count P(u) is to count the number of errors of 0 km's of length n.
The number of which is 2n.

 $\frac{1}{4} \{ S | S \subseteq U \} = \sum_{k=0}^{n} \# \{ S | S \subseteq U \text{ of size k} \} \\
= \sum_{k=0}^{n} \binom{n}{k} = (1+1)^{n} = 2^{n}$

Venn diagrams^a

^aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory).

Union

Complement

The powerset Boolean algebra

For all
$$A, B \in \mathcal{P}(U)$$
, \emptyset , U , \cup , \cap , $(\cdot)^c$)
$$\emptyset = \{ x \in U \mid f \text{ like } \}$$

$$U = \{ x \in U \mid f \text{ like } \}$$

$$A \cup B = \{ x \in U \mid x \in A \lor x \in B \} \in \mathcal{P}(U)$$

$$A \cap B = \{ x \in U \mid x \in A \land x \in B \} \in \mathcal{P}(U)$$

$$A^c = \{ x \in U \mid \neg (x \in A) \} \in \mathcal{P}(U)$$

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $A \cup B = B \cup A$, $A \cup A = A$
 $(A \cap B) \cap C = A \cap (B \cap C)$, $A \cap B = B \cap A$, $A \cap A = A$

► The *empty set* \emptyset is a neutral element for \cup and the *universal* set \cup is a neutral element for \cap .

$$\emptyset \cup A = A = U \cap A$$

► The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

▶ With respect to each other, the union operation \cup and the intersection operation \cap are distributive and absorptive.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cup (A \cap B) = A = A \cap (A \cup B)$$

AU(AMB) = A A G A U (AMB) AU(ANB) CA YXE AU(AnB) Lemma: XCXUY RTP: ZEA Yxex: RTP x EXV X E Y
Brut x E X and
we are done. E ze A v (xeAn xeB)

In either cese 26A and we are done!

 \blacktriangleright The complement operation $(\cdot)^c$ satisfies complementation laws.

$$A \cup A^{c} = U$$
, $A \cap A^{c} = \emptyset$

Proposition 105 Let U be a set and let A, $B \in \mathcal{P}(U)$.

2.
$$\forall X \in \mathcal{P}(U)$$
. $X \subseteq A \cap B \iff (X \subseteq A \land X \subseteq B)$.

AUB is contained in every set that wintains both A and B; in other words, AUB is the smallest set is contained on every set containing

Corollary 106 Let U be a set and let $A, B, C \in \mathcal{P}(U)$.

1. $C = A \cup B$

Beguirdent by show:

- - \wedge
- $2. \qquad C = A \cap B$

iff

To show C is the intersection of A and B equivalently show.

- - \wedge

 $MB: \gcd(a,b) | a \wedge \gcd(a,b) | b$

∀d. (d|and|b) => d|gcd(a,b)

Sets and logic

$\mathcal{P}(\mathbf{U})$	$ig\{ ext{ false} , ext{true} ig\}$
Ø	false
U	true
U	
\cap	\wedge
$(\cdot)^{\mathrm{c}}$	$\neg(\cdot)$
big ()	A
bia U	3
<u></u>	— 34 1 —

Pairing axiom

For every α and b, there is a set with α and b as its only elements.

$$\{a,b\}$$

defined by

$$\forall x. x \in \{a, b\} \iff (x = a \lor x = b)$$

NB The set $\{a, a\}$ is abbreviated as $\{a\}$, and referred to as a *singleton*.

Examples:

- $\blacktriangleright \#\{\emptyset\} = 1$
- ▶ $\#\{\{\emptyset\}\}=1$
- ▶ $\#\{\emptyset, \{\emptyset\}\} = 2$

Proposition 107 For all a, b, c, x, y,

1.
$$\{a\} = \{x,y\} \implies x = y = a$$

2.
$$\{c, x\} = \{c, y\} \implies x = y$$

PROOF:

Assume
$$\{c, x\} = \{c, y\}$$
.
Since $\{c, x\} \subseteq \{c, y\}$ we have $(x = c \lor x = y)$
Since $\{c, y\} \subseteq \{c, x\}$ we have $(y = c \lor y = x)$
RTD $x = y$
From 0 and 0 , $x = y$ always.

Giren a sid b, de fine (a,b) = out { {a,b}}

Consider $(a,b) = \langle x, y \rangle$

Then { { a }, { a , b } } = { { x }, { x , y } }

So { a 3 = { 27 or { a 2 = { 2, y 3

Therefore $\{\{a\}, \{a,b\}\} = \{\{a\}, \{a,y\}\}$

Thus

and .

We have shown:

$$\langle a,b\rangle = \langle x,y\rangle \Rightarrow (a=z) \wedge (b=y)$$

defining property of order paining

Ordered pairing

Notation:

$$(a,b)$$
 or $\langle a,b\rangle$

Fundamental property:

$$(a,b) = (x,y) \implies a = x \land b = y$$