$$
\begin{gathered}
\{a, b\}=\{c\} \\
\Leftrightarrow\{a, b\} \subseteq\{c\} \wedge\{c\} \subseteq\{a, b\} \\
\Leftrightarrow(a=c) \wedge(b=c) \wedge \quad(c=a \vee c=b) \\
\Leftrightarrow(a=c) \wedge(b=c)
\end{gathered}
$$

Proposition 104 For all finite sets $u, \quad U=\left\{u_{1} \ldots u_{n}\right\}$

$$
\# \mathcal{P}(\mathrm{U})=2^{\# \mathrm{u}} \cdot \quad \# U=n
$$

Proof idea:

$$
P(u)=\{s \mid s \subseteq u\}
$$

$S \subseteq U \longmapsto \operatorname{array}(s)$ of length n

$$
\operatorname{array}(S)[i]= \begin{cases}0 & i \notin S \\
1 & i \in S\end{cases}
$$

$$
\operatorname{set}(A)=\left\{u_{i} \mid A[i]=1\right\} \longleftrightarrow A
$$

To count $P(u)$ is to count the number of arrays of $0 k^{n}$ 's of length $n$.
The number of which is $2^{n}$.

$$
\begin{aligned}
\overline{\#}\{s \mid s \subseteq u\} & =\sum_{k=0}^{n} \#\{s \mid s \subseteq u \text { of size } k\} \\
& =\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
\end{aligned}
$$

## Venn diagrams ${ }^{\text {a }}$


${ }^{\text {a From }}$ http://en.wikipedia.org/wiki/Intersection_(set_theory).

Union


Intersection


Complement

## The powerset Boolean algebra

$$
\left(\mathcal{P}(\mathrm{U}), \quad \emptyset, \quad \mathrm{U}, \quad \cup, \quad \cap, \quad(\cdot)^{\mathrm{c}}\right)
$$

For all $A, B \in \mathcal{P}(U)$,

$$
\phi=\{x \in U \mid \text { false }\}
$$

$$
U=\{x \in U \mid \text { true }\}
$$

$$
\begin{array}{rlrl}
A \cup B & =\{x \in U \mid x \in A \vee x \in B\} & \in \mathcal{P}(U) \\
A \cap B & =\{x \in U \mid x \in A \wedge x \in B\} & \in \mathcal{P}(U) \\
A^{c} & =\{x \in U \mid \neg(x \in A)\} & & \in \mathcal{P}(U)
\end{array}
$$

- The union operation $\cup$ and the intersection operation $\cap$ are associative, commutative, and idempotent.

$$
\begin{array}{ll}
(A \cup B) \cup C=A \cup(B \cup C), & A \cup B=B \cup A, \\
A \cup A=A \\
(A \cap B) \cap C=A \cap(B \cap C), & A \cap B=B \cap A,
\end{array} \quad A \cap A=A
$$

- The empty set $\emptyset$ is a neutral element for $\cup$ and the universal set U is a neutral element for $\cap$.

$$
\emptyset \cup A=A=U \cap A
$$

- The empty set $\emptyset$ is an annihilator for $\cap$ and the universal set $U$ is an annihilator for $\cup$.

$$
\emptyset \cap A=\emptyset
$$

$$
\mathrm{U} \cup A=\mathrm{U}
$$

- With respect to each other, the union operation $\cup$ and the intersection operation $\cap$ are distributive and absorptive.
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$$
A \cup(A \cap B)=A=A \cap(A \cup B)
$$

$$
\begin{aligned}
& A \cup(A \cap B)=A \\
& \begin{array}{l}
\Leftrightarrow A \cup(A \cap B) \subseteq A \wedge \frac{A \subseteq A \cup(A \cap B)}{?} \\
\forall x \in A \cup(A \cap B)
\end{array} \\
& \text { Lemma: } X \subseteq X \cup Y \\
& \forall x \in X \text { : } \\
& \text { RIP } x \in X_{v} x \in Y \\
& \text { But } x \in X \text { ad } \\
& \text { ware done. } \\
& \text { In either case } x \in A \text { and ie are done? }
\end{aligned}
$$

- The complement operation $(\cdot)^{\mathrm{c}}$ satisfies complementation laws.

$$
A \cup A^{c}=U, \quad A \cap A^{c}=\emptyset
$$

Proposition 105 Let $U$ be a set and let $A, B \in \mathcal{P}(U)$.
(1) $\forall X \in \mathcal{P}(U) . A \cup B \subseteq X \Longleftrightarrow(A \subseteq X \wedge B \subseteq X)$.
2. $\forall X \in \mathcal{P}(U) . X \subseteq A \cap B \Longleftrightarrow(X \subseteq A \wedge X \subseteq B)$.

$$
\left.\begin{array}{l}
\text { Proof: } \\
A \cup B \subseteq x \stackrel{\{ }{A} \Rightarrow(A \subseteq x \cup B \wedge B \subseteq A \cup B \\
(A \subseteq x \wedge B \subseteq x) \Rightarrow A \cup B \subseteq x
\end{array} \quad \forall x \subseteq U\right\}
$$

$A \cup B$ is contained in every set that cointains both $A$ and $B$; in other words, $A \cup B$ is the smallest set is contained on every set containg $A$ ad.

Corollary 106 Let U be a set and let A, B, C $\in \mathcal{P}(\mathrm{U})$.

1. $C=A \cup B$

To show $C$ is the union of $A$ and B equirdert by show r:
jiff
(1) $[A \subseteq C \wedge B \subseteq C]$
(2) $[\forall X \in \mathcal{P}(U) \cdot(A \subseteq X \wedge B \subseteq X) \Longrightarrow C \subseteq X]$
2. $C=A \cap B$
jiff To show $C$ is the intersection of $A$ and $B$ equivalently show:
(1) $[C \subseteq A \wedge C \subseteq B]$
$\wedge$
(2) $[\forall X \in \mathcal{P}(U) \cdot(X \subseteq A \wedge X \subseteq B) \Longrightarrow X \subseteq C]$

NB:

$$
\begin{aligned}
& \operatorname{gcd}(a, b)|a \wedge \operatorname{gcd}(a, b)| b \\
& \forall d .(d|a \wedge d| b) \Rightarrow d \mid \operatorname{gcd}(a, b)
\end{aligned}
$$

## Sets and logic

$\left.\begin{array}{|c||c|}\hline \mathcal{P}(\mathrm{U}) & \{\text { false, true }\} \\ \emptyset & \text { false } \\ \mathrm{U} & \text { true } \\ \cup & \vee \\ \cap & \wedge \\ (\cdot)^{c} & \neg(\cdot) \\ \hline \operatorname{big} \cap & \forall \\ \operatorname{big} \cup & \exists\end{array}\right]=341-$

## Pairing axiom

For every $a$ and $b$, there is a set with $a$ and $b$ as its only elements.

$$
\{a, b\}
$$

defined by

$$
\forall x . x \in\{a, b\} \Longleftrightarrow(x=a \vee x=b)
$$

NB The set $\{a, a\}$ is abbreviated as $\{a\}$, and referred to as a singleton.

## Examples:

- $\#\{\emptyset\}=1$
- $\#\{\{\emptyset\}\}=1$
- $\#\{\emptyset,\{\emptyset\}\}=2$

Proposition 107 For all $a, b, c, x, y$,

1. $\{a\}=\{x, y\} \Longrightarrow x=y=a$
2. $\{c, x\}=\{c, y\} \Longrightarrow x=y$

Proof:
Assume $\{c, x\}=\{c, y\}$.
Since $\{c, x\} \subseteq\{c, y\}$ whee have $(x=c \vee x=y)$
Since $\{c, y\} \subseteq\{c, x\}$ we hare ${ }^{(2)}(y=c \vee y=x)$
RID $x=y$
From (1) ad (2), $x=y$ always.

Given $a$ and $b$, de fine

$$
\langle a, b\rangle=\operatorname{def}\{\{a\},\{a, b\}\}
$$

Consider

$$
\langle a, b\rangle=\langle x, y\rangle
$$

Then $\{\{a\},\{a, b\}\}=\{\{x\},\{x, y\}\}$
So $\{a\}=\{x\}$ or $\{a\}=\{x, y\}$

$$
\begin{array}{ll}
\forall & \forall \\
a=x & a=x
\end{array}
$$

There fore $\{\{a\},\{a, b\}\}=\{\{a\},\{a, y\}\}$

Thus

$$
\{a, b\}=\{a, y\}
$$

and. $\quad b=y$
We have shown:

$$
\langle a, b\rangle=\langle x, y\rangle \Rightarrow(a=x) \wedge(b=y)
$$

defining property of order pairing

## Ordered pairing

Notation:

$$
(a, b) \text { or }\langle a, b\rangle
$$

Fundamental property:

$$
(a, b)=(x, y) \Longrightarrow a=x \wedge b=y
$$

