The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number \mathfrak{m} and positive natural number \mathfrak{n} , there exists a unique pair of integers \mathfrak{q} and \mathfrak{r} such that $\mathfrak{q} \geq 0$, $0 \leq \mathfrak{r} < \mathfrak{n}$, and $\mathfrak{m} = \mathfrak{q} \cdot \mathfrak{n} + \mathfrak{r}$.

The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number \mathfrak{m} and positive natural number \mathfrak{n} , there exists a unique pair of integers \mathfrak{q} and \mathfrak{r} such that $\mathfrak{q} \geq 0$, $0 \leq \mathfrak{r} < \mathfrak{n}$, and $\mathfrak{m} = \mathfrak{q} \cdot \mathfrak{n} + \mathfrak{r}$.

Definition 54 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

The Division Algorithm in ML:

```
fun divalg( m , n )
                          Suppose m=q.n+r
     = let
        fun diviter( q , r )
          = if r < n then (q, r)
            else diviter(q+1, r-n)
                   m = (q+1) \cdot h + (r-n) 
      in
        diviter( 0 , m )
                            m = first arg. n + 8nd arg.
m = quo (m,n).n+rem (m,h).
   fun quo(m, n) = #1(divalg(m, n))
   fun rem(m, n) = #2(divalg(m, n))
                        — 176 —
```

Theorem 56 For every natural number \mathfrak{m} and positive natural number \mathfrak{n} , the evaluation of $divalg(\mathfrak{m},\mathfrak{n})$ terminates, outputing a pair of natural numbers (q_0,r_0) such that $r_0<\mathfrak{n}$ and $\mathfrak{m}=q_0\cdot\mathfrak{n}+r_0$.

PROOF: divolg(m,n) = diviter (0,m) m = fot org.n+sndorg $m = q \cdot n + r$ $r \cdot n / (q_1 r)$

divdg (m,n)

diviter (o,m) At each call of diviter the seas of argument decreases while Keeping 7,0. diviter(q,r)

- · Every integer is either even or sold.
- · Every notural is either even or odd.

For every natural unber in There exist 2 pair 9, 1 s.t. m=29+1 with 0<1<2.

notique

Proposition 57 Let m be a positive integer. For all natural numbers k and l,

PROOF: Let m be a pasitive integer. Let k and
$$l$$
 be natural numbers.

(\Rightarrow) Assume $k \equiv l \pmod{m}$
 $k = q \cdot m + r$ with $0 \le r < m$

and $l = q! \cdot m + r'$ with $0 \le r' < m$
 $S_0 = k = r \pmod{m}$ and $l = r' \pmod{m}$

And Therefore $r = r' \pmod{m}$, From a previous result and using $(a \otimes b) = m + r'$.

Corollary 58 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

2. For every integer k there exists a unique integer $[k]_m$ such that

$$0 \le [k]_{\mathfrak{m}} < \mathfrak{m}$$
 and $k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_{\mathfrak{m}}$$
: 0, 1, ..., $\mathfrak{m}-1$.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k +_m l = [k + l]_m = \operatorname{rem}(k + l, m),$$

 $k \cdot_m l = [k \cdot l]_m = \operatorname{rem}(k \cdot l, m)$

for all $0 \le k, l < m$.

For k and l in \mathbb{Z}_m ,

$$k +_{m} l$$
 and $k \cdot_{m} l$

are the unique modular integers in \mathbb{Z}_m such that

$$k +_{\mathfrak{m}} \mathfrak{l} \equiv k + \mathfrak{l} \pmod{\mathfrak{m}}$$

$$k \cdot_{\mathfrak{m}} l \equiv k \cdot l \pmod{\mathfrak{m}}$$

Example 60 The addition and multiplication tables for \mathbb{Z}_4 are:

+4	0	1	2	3	•4	0	1	2	3
0					0	0	0	0	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	1

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	3	1	1
2	2	2	
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 61 The addition and multiplication tables for \mathbb{Z}_5 are:

+5	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2		0				
4	4	0	1	2	3	4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 62 For all natural numbers m > 1, the modular-arithmetic structure

$$(\mathbb{Z}_{\mathrm{m}},0,+_{\mathrm{m}},1,\cdot_{\mathrm{m}})$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

.

Proposition 63 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, there exist integers i and j such that $k \cdot i + m \cdot j = 1$.

PROOF: Let m be a positive inte per. (=) Let 0 < k < m with reciprocal k, that is, $0 \le \overline{k} \le m$ and $R.\overline{k} = 1 (mvd m)$. Then, $k.\overline{k} - 1 = j.m$ for some int. j. So k.k+(-j).m=1. Hence, 1 is an int. linear containation of k and m. (=) Suppose: ki+m·j=1 Then k·i-1 is a melliple of m. Hence, R. i = 1 (mod m) and R hard re aprocal. (nowely [i]m).
— 1/92—

Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a pair of integers m and n whenever there are integers s and t such that $s \cdot m + t \cdot n = r$.

Proposition 65 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, 1 is an integer linear combination of m and k.