The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $\mathrm{q} \geq 0,0 \leq \mathrm{r}<\mathrm{n}$, and $\mathrm{m}=\mathrm{q} \cdot \mathrm{n}+\mathrm{r}$.

Definition 54 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and $\operatorname{rem}(m, n)$.

The Division Algorithm in ML:

$$
\begin{aligned}
& \frac{\text { fun }}{=\frac{\operatorname{divalg} g}{\text { let }}(\mathrm{m}, \mathrm{n})} \sim \text { Suppose } m=q \cdot n+r \\
& \text { fun divider (} q \text {, r) } \\
& =\text { if } r<n \text { then (} q, r \text {) } \\
& \text { else divider (} q+1, r-n) \\
& \text { in } m \stackrel{?}{=}(q+1) \cdot n+(r-n) \\
& \text { end } n=m=\underbrace{\text { fivitert }}(0, m) \\
& m=\text { quo }(m, n) \cdot n+\text { rem }(m, n) \text {. } \\
& \text { fun quo(} \mathrm{m}, \mathrm{n} \text {) = \#1 (divalg (} \mathrm{m}, \mathrm{n} \text {)) } \\
& \text { fun rem (m , n) = \#2 (divalg (m, n)) }
\end{aligned}
$$

Theorem 56 For every natural number m and positive natural number n, the evaluation of $\operatorname{divalg}(m, n)$ terminates, outputing a pair of natural numbers (q_{0}, r_{0}) such that $r_{0}<n$ and $m=q_{0} \cdot n+r_{0}$.

$$
\begin{aligned}
& \text { Proof: } \\
& \operatorname{divalg}(m, n)=\frac{\operatorname{diviter}}{n}(0, m) \\
& m m=\beta_{0 t} \arg \cdot n+\sin d 2 r g \\
& m=q \cdot n+r \sim \frac{\operatorname{dir}-\operatorname{ter}}{r<n}(q, r) \\
& \text { onpuit }(q, r) \quad \text { divider }(q+1, r-n) \\
& m=(q+1) \cdot n+(r-n)
\end{aligned}
$$

$\operatorname{divdg}(m, n)$

- Every integer in either even or sold.
- Every nature in either even or sold. For every natural meier m There exist appir q, r sit. $m=2 q+r$ with $0 \leqslant r<2$. perique

Proposition 57 Let m be a positive integer. For all natural numbers k and l ,

$$
k \equiv l(\bmod m) \Longleftrightarrow \operatorname{rem}(k, m)=\operatorname{rem}(l, m)
$$

Proof: Let m be a positive integer. Let k and l be natural numbers.
(\Rightarrow) Assume $k \equiv l(\bmod m)$

$$
\text { and } l=q \cdot m+r \quad \text { with }{ }^{(6)} 0 \leq r<m
$$

$S_{0}^{(2)} k \equiv r(\bmod m)$ and ${ }^{(3)} l \equiv r^{\prime}(\operatorname{modm})$
And Therefore $r \equiv r^{\prime}(\bmod m)$. From a previous result ad using (4) \& (5) iso we have $r=r$!.

Corollary 58 Let m be a positive integer.

1. For every natural number n,

$$
n \equiv \operatorname{rem}(n, m) \quad(\bmod m) .
$$

2. For every integer k there exists a unique integer $[\mathrm{k}]_{\mathrm{m}}$ such that

$$
0 \leq[k]_{\mathrm{m}}<\mathfrak{m} \quad \text { and } k \equiv[k]_{\mathfrak{m}}(\bmod m) .
$$

Proof:

$$
k \equiv k+i \cdot m(m o d m)
$$

For $i=-k, k+i m$ is a nat. number for all i So we hive $R \equiv[R+i m]_{m \text { 182-a }}$

Modular arithmetic

For every positive integer m, the integers modulo m are:

$$
\mathbb{Z}_{\mathrm{m}}: 0, \quad 1, \quad \cdots, m-1
$$

with arithmetic operations of addition $+_{m}$ and multiplication $\cdot m$ defined as follows

$$
\begin{aligned}
& k+_{m} l=[k+l]_{m}=\operatorname{rem}(k+l, m), \\
& k \cdot m=[k \cdot l]_{m}=\operatorname{rem}(k \cdot l, m)
\end{aligned}
$$

for all $0 \leq k, l<m$.

For k and l in \mathbb{Z}_{m},

$$
k+_{m} l \text { and } k \cdot m l
$$

are the unique modular integers in \mathbb{Z}_{m} such that

$$
\begin{aligned}
k+_{m} l & \equiv k+l(\bmod m) \\
k \cdot \cdot_{m} l & \equiv k \cdot l(\bmod m)
\end{aligned}
$$

Example 60 The addition and multiplication tables for \mathbb{Z}_{4} are:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

.4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse
0	0
1	3
2	2
3	1

	multiplicative inverse
0	-
1	1
2	-
3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 61 The addition and multiplication tables for \mathbb{Z}_{5} are:

$+_{5}$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$\cdot 5$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

| additive |
| :---: | :---: |
| inverse |, | 1 |
| :--- |
| 0 |

	multiplicative inverse
0	-
1	1
2	3
3	2
4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 62 For all natural numbers $m>1$, the modular-arithmetic structure

$$
\left(\mathbb{Z}_{m}, 0,+_{m}, 1, \cdot{ }_{m}\right)
$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Proposition 63 Let m be a positive integer. A modular integer k in \mathbb{Z}_{m} has a reciprocal if, and only if, there exist integers i and j such that $\mathrm{k} \cdot \mathrm{i}+\mathrm{m} \cdot \mathrm{j}=1$.
Proof: Let m be a positive inte per.
(\Rightarrow) Let $0 \leqslant k<m$ with reciprocal \bar{k}, that is, $0 \leq \bar{k}<m$ and $k \cdot \bar{k} \equiv 1(\bmod m)$. Then, $k \cdot \bar{k}-1=j \cdot m$ for some $\bar{m} t . j$. So $k \cdot \bar{k}+(-j) \cdot m=1$. Hence, 1 is an int. linear combination of k and m.
(\Leftrightarrow) Suppose: $k i+m \cdot j=1$ then $k \cdot i-1$ is a milinple of m. Hence, $R \cdot i \equiv 1(\bmod m)$ and k has α reciprocal. (wavily $\left.[i]_{-1}\right)$.

Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a pair of integers m and n whenever there are integers s and t such that $\mathrm{s} \cdot \mathrm{m}+\mathrm{t} \cdot \mathrm{n}=\mathrm{r}$.

Proposition 65 Let m be a positive integer. A modular integer k in \mathbb{Z}_{m} has a reciprocal if, and only if, 1 is an integer linear combination of m and k.

