A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if
m=0orm=p then (?) =1 (mod p).
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Lemma 28 For all integers p and m, ifp is prime and 0 < m < p
then (7) = 0 (mod p).
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Proposition 29 For all prime numbers p and integers 0 < m < p,
either (¥) =0 (mod p) or (7) =1 (mod p).
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Wewlon's Bioned Formula
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(M +n)P =mP +nP (mod p) .
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(M4 1) =mP 4+ 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(M +1)P =mP +1 (mod p) .
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Fermat’s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i
and primes p,

1. i =1 (mod p), and

2. i*71 =1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .
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Every natural number i not a multiple of a
prime number p has a reciprocal modulo p,

namely iP7%, as i- (iP) = 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # i (mod m).
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Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

-(P=Q) < PA-Q
(P<:>Q) — P&=-Q
-(Vx.P(x)) <=  Ix.—P(x)
(P/\Q) — (7P) V (—Q)
-(Ix.P(x)) &  Vx.—P(x)
-(PV Q) < (-P)A(—Q)
-(-P) & P
—P &= (P = false)
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Theorem 37 For all statements P and Q,

(P = Q) = [7Q = —P) .
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P & P
which is classically accepted.

In this light,
to prove P
one may equivalently
prove —P — f{alse;
that is,
assuming — P leads to contradiction.

This technique is known as proof by contradiction.
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement =P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction
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Theorem 39 For all statements P and Q,

((Q = —P) = (P = Q) .
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Proof by contrapositive

Corollary 40 For all statements P and Q,

(P = Q) & (/Q = —P)

Btw Using the above equivalence to prove an implication is
Known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real
number +/x is irrational.
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