A little arithmetic
Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: Let p be a pos. $m t$. and m a nat. muser Assume $m=0 \vee m=p$
RIP: $\binom{p}{m} \equiv 1(\bmod p)$

$$
C_{m}^{p}=\binom{p}{m}=\frac{p!}{m!(p-m)!}
$$

Consider $m=0$. Then $\binom{P_{0}}{0}=1$ and we are done.
Consider $m=p$. Then $\binom{p}{p}=1$ and ne are done. \otimes

Lemma 28 For all integers p and m , if p is prime and $0<\mathrm{m}<\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 0(\bmod \mathrm{p})$.
Proof: Let p and m be integers.
Assume p prime and $0<m<p$.
RIP: $\binom{P}{m}=0(m$ od

$$
\binom{p}{m}=\frac{p!}{m!(p-m)!}
$$

Then
$m!(p-m)!\binom{p}{m}=p \cdot(p-1)!\quad$ is a natural number
So p divides $m!(p-m)!.\binom{p}{m}$. And p does not dived $m!(p-m)$! The re fore it divides $\binom{p}{m}$.

NB: The argument hinges on the prime factorization the orem and
$P \mid(a \cdot b) \Rightarrow(P \mid a$ or $P \mid b) \quad$ prime
So That

$$
\begin{aligned}
& \text { Wast } \\
& (P I(a . b) \text { and } P \nmid a) \Rightarrow P \mid b \text {. }
\end{aligned}
$$

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0(\bmod \mathfrak{p})$ or $\binom{p}{m} \equiv 1(\bmod p)$.
Proof: Let p be a prime and m an integer $0 \leq m \leq p$.
Case $m=0$ or $m=p$: Then $\binom{p}{m} \equiv 1$ (nard $\left.p\right)$
Case $0<m<p$: Then $\binom{p}{m} \equiv 0(\min p)$.
Therefore either $\binom{p}{m} \equiv 0$ or $\binom{p}{m} \equiv 1($ nd $p)$

Newton's Binomal Formula

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}
$$

Say n is a prime, what's

$$
\begin{aligned}
(x+y)^{n} & \equiv\binom{n}{0} y^{n}+\binom{n}{n} x^{n} \quad(\bmod n) \\
& \equiv y^{n}+x^{n} .
\end{aligned}
$$

A little more arithmetic
Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p,

$$
(\mathfrak{m}+\mathfrak{n})^{\mathfrak{p}} \equiv \mathfrak{m}^{\mathfrak{p}}+\mathfrak{n}^{\mathfrak{p}}(\bmod \mathfrak{p})
$$

Proof: Let m and n be natural numbers, and p be a prime. Then

$$
(m+n)^{p}=\sum_{i=0}^{P}\binom{P}{i} m^{i} n^{p-i}=m^{p}+n^{P}+\sum_{i=1}^{p-1}\binom{P_{i}}{i} m^{i} n^{p-i}
$$

Since $\binom{P_{i}}{i} \equiv O(\bmod p)$ for $0<i<p$. Then, we are done.

NB: $\quad a \equiv b(\operatorname{mos} d m) \quad x \equiv y(\operatorname{mrd} m)$

$$
\begin{aligned}
\Rightarrow \quad a+x & \equiv b+y(\bmod m) \\
a \cdot x & \equiv b \cdot y(\bmod m)
\end{aligned}
$$

Corollary 34 (The Dropout Lemma) For all natural numbers m and primes p,

$$
(\mathfrak{m}+1)^{p} \equiv \mathfrak{m}^{p}+1(\bmod p) .
$$

Proposition 35 (The Many Dropout Lemma) For all natural numbbers m and i, and primes p,

$$
(\mathfrak{m}+\mathfrak{i})^{\mathfrak{p}} \equiv \mathfrak{m}^{\mathfrak{p}}+\mathfrak{i}(\bmod \mathfrak{p})
$$

Proof: Let m and i be natural numbers, and p be a prime. Consider

$$
\begin{aligned}
& (m+i)^{p}=\left(m+\frac{1+1+\cdots+1}{i \text { times }}\right)^{p} \equiv\left(\frac{(n+1+\cdots+1}{i-1 \text { times }}\right)^{p}+1 \\
& \equiv\left(m+\frac{1+1+\cdots+1}{1-2 \text { times }}\right)^{p}+\frac{1+1}{2 \text { tines }} \equiv \cdots \equiv\left(m+\frac{1+\cdots+1}{i-k \text { times }}\right)^{p+(1+\cdots+1)} \underset{k \text { times }}{ }
\end{aligned}
$$

For $k=i$, we have

$$
(m+i)^{p} \equiv m^{p}+i \quad(\bmod p)
$$

For $m=0$,
Then

$$
i^{p} \equiv i \quad(\bmod p)
$$

$$
\left(i^{P}-i\right) \equiv 0(\bmod p)
$$

and 80

$$
p \text { divides } i\left(i^{p-1}-1\right)
$$

From which we have p divides $\left(i^{p-1}-1\right)$ when er p does not divide i.

Thus.

$$
i^{p-1} \equiv 1(\operatorname{mrd} p)
$$

whenever p does not divide i.
Then

$$
i \cdot\left(i^{p-2}\right) \equiv 1 \quad(\bmod p)
$$

whenever $i \neq 0$ (mod p).
So modulo p, i^{p-2} is a recipercal of i for $i \not \equiv 0(\bmod p)$.

Fermat's Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) For all natural numbers i and primes p ,

1. $\mathfrak{i}^{\mathfrak{p}} \equiv \mathfrak{i}(\bmod \mathfrak{p})$, and
2. $\mathfrak{i}^{p-1} \equiv 1(\bmod p)$ whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on.

> Every natural number i not a multiple of a prime number p has a reciprocal modulo p, namely \mathfrak{i}^{p-2}, as $\mathfrak{i} \cdot\left(\mathfrak{i}^{\mathfrak{p}-2}\right) \equiv 1(\bmod p)$.

Btw

1. Fermat's Little Theorem has applications to:
(a) primality testing ${ }^{\mathrm{a}}$,
(b) the verification of floating-point algorithms, and
(c) cryptographic security.
[^0]
Negation

Negations are statements of the form

$$
\text { not } P
$$

or, in other words, P is not the case
or

$$
\mathrm{P} \text { is absurd }
$$

or
P leads to contradiction
or, in symbols,

$$
\begin{array}{r}
\neg \mathrm{P} \\
-131-
\end{array}
$$

A first proof strategy for negated goals and assumptions:
If possible, reexpress the negation in an equivalent form and use instead this other statement.

Logical equivalences

$$
\begin{aligned}
& \neg(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \Longleftrightarrow \mathrm{Q}) \Longleftrightarrow \mathrm{P} \Longleftrightarrow \neg \mathrm{Q} \\
& \neg(\forall x \cdot \mathrm{P}(\mathrm{x})) \Longleftrightarrow \exists \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Longleftrightarrow(\neg \mathrm{P}) \vee(\neg \mathrm{Q}) \\
& \neg(\exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x})) \Longleftrightarrow \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Longleftrightarrow \mathrm{x} \cdot \neg \mathrm{P}(\mathrm{x}) \\
& \neg(\neg \mathrm{P}) \Longleftrightarrow(\neg \mathrm{P}) \wedge(\neg \mathrm{Q}) \\
& \neg \mathrm{P} \Longleftrightarrow \mathrm{P} \\
&(\mathrm{P} \Rightarrow \text { false })
\end{aligned}
$$

Theorem 37 For all statements P and Q ,

$$
(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longrightarrow(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P})
$$

Proof:
Let P and Q be statements. The contrapositive of $P \Rightarrow Q$
Asenne ${ }^{(2)} P \Rightarrow Q$.
Assume $\neg Q \Leftrightarrow(Q \Rightarrow$ false $)$
RIP $\neg P \Leftrightarrow(P \Rightarrow f o l s e)$
Assume P
RTP: fouls
By (1) \& (2), we hare Q. By (3) $\alpha(4)$, we hare false \otimes

Proof by contradiction

Amongst the equivalences for negation, we have postulated the somewhat controversial:

$$
\neg \neg \mathrm{P} \Longleftrightarrow \mathrm{P}
$$

which is classically accepted.
In this light,

$$
\text { to prove } P
$$

one may equivalently

$$
\text { prove } \neg \mathrm{P} \Longrightarrow \text { false }
$$

that is, assuming $\neg \mathrm{P}$ leads to contradiction.

This technique is known as proof by contradiction.

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg \mathrm{P} \Longrightarrow$ false

Proof pattern:
 In order to prove

P

1. Write: We use proof by contradiction. So, suppose P is false.
2. Deduce a logical contradiction.
3. Write: This is a contradiction. Therefore, P must be true.

Scratch work:

Before using the strategy

Assumptions Goal

P

After using the strategy
Assumptions Goal
contradiction
$\neg \mathrm{P}$

Theorem 39 For all statements P and Q ,

$$
(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}) \Longrightarrow(\mathrm{P} \Longrightarrow \mathrm{Q})
$$

Proof: Let P and Q be stete ments.
Assume (1) $\neg Q \Rightarrow \neg P$
Assume ${ }^{(2)} P$
RTP: Q
We proceed by con Tradiction
Assume: (3) $7 Q$
RTP: Palse
By (2) \& (2), we have $7 P$. And (2) \& (4) is C cuntradicion.

Proof by contrapositive

Corollary 40 For all statements P and Q ,

$$
(P \Longrightarrow Q) \Longleftrightarrow(\neg Q \Longrightarrow \neg P)
$$

Btw Using the above equivalence to prove an implication is known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real number \sqrt{x} is irrational.

[^0]: ${ }^{a}$ For instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^{m} \not \equiv i(\bmod m)$.

