Existential quantifications

- How to prove them as goals.
- How to use them as assumptions.

Existential quantification

Existential statements are of the form
there exists an individual x in the universe of discourse for which the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
for some individual x in the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in symbols,

$$
\exists x . \mathrm{P}(\mathrm{x})
$$

Example: The Pigeonhole Principle.

Let n be a positive integer. If $n+1$ letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 20 (Intermediate value theorem) Let f be a real-valued continuous function on an interval $[\mathrm{a}, \mathrm{b}$. For every y in between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$, there exists v in between a and b such that $\mathrm{f}(v)=\mathrm{y}$.

Intuition:

NB $\quad \exists x \cdot P(x) \equiv \exists y \cdot P(y)$

The main proof strategy for existential statements:
To prove a goal of the form

$$
\exists x . P(x)
$$

find a witness for the existential statement; that is, a value of x, say w, for which you think $P(x)$ will be true, and show that indeed $P(w)$, i.e. the predicate $P(x)$ instantiated with the value w, holds.

Proof pattern:

In order to prove

$$
\exists x . P(x)
$$

1. Write: Let $w=\ldots$ (the witness you decided on).
2. Provide a proof of $P(w)$.

Scratch work:

Before using the strategy
Assumptions

Goal

$$
\exists x . P(x)
$$

After using the strategy
Assumptions
Goals
$P(w)$
$w=\ldots$ (the witness you decided on)

Proposition 21 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k=i^{2}-j^{2}$.

Proof:
\forall pos. int. R. \exists nat. numbers i, j.

$$
4 k=i^{2}-j^{2}
$$

Let k be an arbitrary positive integer.
Let io be $k+1$
Let j_{0} be $k-1$
R78:4

$$
: 4 k=b_{0}^{2}-j_{0}^{2}
$$

$$
\begin{aligned}
& =1_{0}^{2}-j_{0}^{2} \\
& =(k+1)^{2}-(k-1)^{2} \\
& \\
& = \\
& \\
& =\cdots
\end{aligned} \frac{12}{} \quad 4 \quad 2 \begin{array}{ccc}
8 & 12 \\
\vdots & \vdots & \vdots
\end{array}
$$

$$
=\cdots
$$

The use of existential statements:
To use an assumption of the form $\exists x . \mathrm{P}(x)$, introduce a new variable x_{0} into the proof to stand for some individual for which the property $P(x)$ holds. This means that you can now assume $P\left(x_{0}\right)$ true.

Theorem 23 For all integers $\mathrm{l}, \mathrm{m}, \mathrm{n}$, if $\mathfrak{l} \mid \mathrm{m}$ and $\mathrm{m} \mid \mathrm{n}$ then $l \mid \mathrm{n}$.
Proof: Let l, m, n be integers.
Assume $l \mid m \Leftrightarrow \exists i$. $l i=m$

$$
m \mid n \Leftrightarrow{ }^{2} \exists_{j} \cdot m_{j}=n
$$

RTP: $\exists k \cdot k \cdot l=n$
By (2). let i_{0} be such That l. $1_{0}=m$
By (2), let j_{0} be such That m. jo $=n$
Consider $k_{0}=00 \cdot j 0$.

$$
l \cdot b_{0} \cdot j_{0}=m \cdot j_{0}=n
$$

Then, $l . k_{0}=n$ and we are done.

Unique existence

The notation

$$
\exists!x . P(x)
$$

stands for
the unique existence of an x for which the property $P(x)$ holds .

That is,

Example: The congruence property modulo m uniquely characterises the natural numbers from 0 to $m-1$.

Proposition 24 Let m be a positive integer and let n be an integer.
Define

$$
\mathrm{P}(z)=[0 \leq z<\mathrm{m} \wedge z \equiv \mathrm{n}(\bmod \mathrm{~m})] .
$$

Then
Let m be a positre integer, let n be an integer

$$
\forall x, y \cdot P(x) \wedge P(y) \Longrightarrow x=y
$$

Proof: Let x and y be arbitrary.
Assume (1) $0 \leq x<m$ and $x \equiv n$ (m od m)
(2) $0 \leq y<m$ and $y \equiv n(\bmod m)$

RIP: $x=y$
$x \equiv y(\bmod m)$ $0 \leqslant x<m$
$x-y=k m$ for some k. $0 \leq y<m$
Then, $x \geqslant y$,

$$
0 \leqslant x-y<m
$$

So

$$
0 \leq k m<m
$$

thin ce $k=0$.
Analogously, $y \geqslant x, \ldots$

A proof strategy

To prove

$$
\forall x \cdot \exists!y \cdot P(x, y),
$$

for an arbitrary x construct the unique witness and name it, say as $f(x)$, showing that

$$
P(x, f(x))
$$

and

$$
\forall y \cdot P(x, y) \Longrightarrow y=f(x)
$$

hold.

Disjunctions

- How to prove them as goals.
- How to use them as assumptions.

Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,

> either P, Q, or both hold
or, in symbols,

$$
P \vee Q
$$

The main proof strategy for disjunction:

To prove a goal of the form

$$
P \vee Q
$$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q .

Proposition 25 For all integers n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Proof: Let n be an integer.
RIP: $\quad n^{2} \equiv 0(\bmod 4) \vee \quad n^{2} \equiv 1(\bmod 4)$.
[? $n^{2} \equiv 0(\operatorname{mad} 4) ?$

$$
n=0
$$

? $n^{2} \equiv 1(\bmod 4) n=0 x$

$$
n=\cdots-2,-1,0,1,2, \ldots
$$

$\cdots 01010 \cdots n^{2}$ modulus 4

Consider 2 cases
(1) let $n=2 i$ for an in leger i.

Then $n^{2}=4 i^{2} \equiv 0(\bmod 4)$
(2) let $n=2 i+1$ for an integer i

Then $n^{2}=(2 i+1)^{2}=4 i^{2}+4 i+1$

$$
=4\left(i^{2}+i\right)+1 \equiv 1(\operatorname{mrd} 4)
$$

In both cases, $n^{2} \equiv 0(\operatorname{mrd} 4)$ or $n^{2} \equiv 1(\operatorname{mrd} 4)$ hold.

The use of disjunction:
To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q , consider the following two cases in turn: (i) assume P_{1} to establish Q , and (ii) assume P_{2} to establish Q.

Scratch work:

Before using the strategy

Assumptions
 Goal

Q

$$
P_{1} \vee P_{2}
$$

After using the strategy
Assumptions Goal
Q
Assumptions

Goal
Q
\vdots
P_{2}

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$
P_{1} \vee P_{2}
$$

write: We prove the following two cases in turn: (i) that assuming P_{1}, we have Q ; and ($\mathfrak{i i}$) that assuming P_{2}, we have Q . Case (\mathfrak{i}): Assume P_{1}. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_{2}. and provide a proof of Q from it and the other assumptions.

A little arithmetic
Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: Let p be a pos. $m t$. and m a nat. muser Assume $m=0 \vee m=p$
RIP: $\binom{p}{m} \equiv 1(\bmod p)$

$$
C_{m}^{p}=\binom{p}{m}=\frac{p!}{m!(p-m)!}
$$

Consider $m=0$. Then $\binom{P_{0}}{0}=1$ and we are done.
Consider $m=p$. Then $\binom{p}{p}=1$ and ne are done. \otimes

