Existential quantifications

- ► How to *prove* them as goals.
- ► How to *use* them as assumptions.

Existential quantification

Existential statements are of the form

there exists an individual x in the universe of discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the property P(x) holds

or, in symbols,

$$\exists x. P(x)$$

Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n pigeonholes then there will be a pigeonhole with more than one letter.

Theorem 20 (Intermediate value theorem) Let f be a real-valued continuous function on an interval [a, b]. For every y in between f(a) and f(b), there exists v in between a and b such that f(v) = y.

Intuition:

NB
$$\exists z. P(z) \equiv \exists y. P(y)$$

The main proof strategy for existential statements:

To prove a goal of the form

$$\exists x. P(x)$$

find a *witness* for the existential statement; that is, a value of x, say w, for which you think P(x) will be true, and show that indeed P(w), i.e. the predicate P(x) instantiated with the value w, holds.

Proof pattern:

In order to prove

$$\exists x. P(x)$$

- 1. Write: Let $w = \dots$ (the witness you decided on).
- 2. Provide a proof of P(w).

Scratch work:

Before using the strategy

Assumptions

Goal

 $\exists x. P(x)$

After using the strategy

Assumptions

Goals

P(w)

i

 $w = \dots$ (the witness you decided on)

Proposition 21 For every positive integer k, there exist natural numbers i and j such that $4 \cdot k = i^2 - j^2$.

Hpos. int. R. J not. numbers i, j. PROOF: $4k = i^2 - j^2$ Let k be en arbitrary positive integer. Let iobe kell k 4k i j i²-j² Let jo be k-1 RTP: 4k= 62-jo2 2831 $= (kH)^2 - (k-1)^2 = 3 + 2$

The use of existential statements:

To use an assumption of the form $\exists x. P(x)$, introduce a new variable x_0 into the proof to stand for some individual for which the property P(x) holds. This means that you can now assume $P(x_0)$ true.

Theorem 23 For all integers l, m, n, if $l \mid m$ and $m \mid n$ then $l \mid n$.

PROOF: Let l, m, n be integers.

Assume limes Fi. li=m

m|n=3 Fj. mj=n

RTP: Jk. k. l=n

By (3), let io be such That l. lo=m By (3), let jo be such That m. jo=n Consider ko=00.jo.

l. lo.jo=m.jo=n

Then, l. ko=n and we are done.

Unique existence

The notation

$$\exists ! x. P(x)$$

stands for

the *unique existence* of an x for which the property P(x) holds .

That is,

Is,
$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

$$\exists x. P(x) \land (\forall y. \forall z. (P(y) \land P(z)) \Longrightarrow y = z)$$

Example: The congruence property modulo m uniquely characterises the natural numbers from 0 to m-1.

Proposition 24 Let m be a positive integer and let n be an integer.

Define

Then

Let m be a positive integer, let n be an integer
$$\forall x, y. P(x) \land P(y) \Rightarrow x = y$$
.

PROOF: Let $x \text{ and } y \text{ be arbitrary}$.

Assume $0 \le x < m$ and $z \equiv n \pmod{m}$
 $2 \text{ os } y < m$ and $y \equiv n \pmod{m}$

RTP: $x = y$
 $-101 - y = m \pmod{m}$

 $x \equiv y \pmod{m}$ ofxem 05ycm z-y=km for some k. o g x m So 0 ≤ km<m think k=0. Andlogousty, y, x, ...

A proof strategy

To prove

$$\forall x. \exists ! y. P(x,y)$$
,

for an arbitrary x construct the unique witness and name it, say as f(x), showing that

and

$$\forall y. P(x,y) \implies y = f(x)$$

hold.

Disjunctions

- ► How to *prove* them as goals.
- ► How to *use* them as assumptions.

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

$$P \ \lor \ Q$$

The main proof strategy for disjunction:

To prove a goal of the form

 $P \lor Q$

you may

- 1. try to prove P (if you succeed, then you are done); or
- 2. try to prove Q (if you succeed, then you are done); otherwise
- 3. break your proof into cases; proving, in each case, either P or Q.

Proposition 25 For all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

PROOF: Let n be an integer.

RTP:
$$n^2 \equiv 0 \text{ (mod 4)} \vee n^2 \equiv 1 \text{ (mod 4)}$$
.

 $n^2 \equiv 0 \text{ (mod 4)} ? \quad n = 0 \vee n = 1 \times 10^2 = 1 \text{ (mod 4)}$

$$n = -.. - 2, -1, 0, 1, 2, -..$$

 $n = -.. - 2, -1, 0, 1, 2, -..$
 n^2 modulus 4

Consider 2 ceses (1) let n=2i for an in teger i. Then $n^2 = 4i^2 \equiv 0 \pmod{4}$ (2) let n=2i+1 for an integer i Then $n^2 = (2iH)^2 = 4i^2 + 4i + 1$ $=4(i^2+i)+1=1 \pmod{4}$ In both cases, $n^2 = 0 (msd4)$ or $n^2 = 1 (msd4)$ hold.

Ø

The use of disjunction:

To use a disjunctive assumption

$$P_1 \vee P_2$$

to establish a goal Q, consider the following two cases in turn: (i) assume P_1 to establish Q, and (ii) assume P_2 to establish Q.

Scratch work:

Before using the strategy

Assumptions Goal Q

After using the strategy

 $\begin{array}{c|cccc} \textbf{Assumptions} & \textbf{Goal} & \textbf{Assumptions} & \textbf{Goal} \\ & Q & & Q \\ & \vdots & & \vdots & & \vdots \\ & P_1 & & P_2 & & \end{array}$

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$P_1 \vee P_2$$

write: We prove the following two cases in turn: (i) that assuming P_1 , we have Q; and (ii) that assuming P_2 , we have Q. Case (i): Assume P_1 . and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2 . and provide a proof of Q from it and the other assumptions.

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if m = 0 or m = p then $\binom{p}{m} \equiv 1 \pmod{p}$.

PROOF: Let p be a pos. Int. and in a not. imber

Assume $m=0 \vee m=p$ RTP: $(P)=1 \pmod{p}$ $C_m = (p)=\frac{q!}{m!(p-m)!}$

Consider m=0. Then $\binom{p}{0} = 1$ and we seedone. Consider m=p. Then $\binom{p}{p} = 1$ and we are done.