Slides

for Part IA CST 2023/24

Discrete Mathematics

<wWw.cl.cam.ac.uk/teaching/2324/DiscMath>

Prof Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

What are we up to?

- Learn to read and write, and also work with, mathematical arguments.
- Doing some basic discrete mathematics.
- Getting a taste of computer science applications.

Lecture plan

I. Proofs.
II. Numbers.
III. Sets.
IV. Regular languages and finite automata.

Proofs

Objectives

- To develop techniques for analysing and understanding mathematical statements.
- To be able to present logical arguments that establish mathematical statements in the form of clear proofs.
- To prove Fermat's Little Theorem, a basic result in the theory of numbers that has many applications in computer science.

Proofs in practice

We are interested in examining the following statement:
The product of two odd integers is odd.
This seems innocuous enough, but it is in fact full of baggage.
For instance, it presupposes that you know:

- what a statement is;
- what the integers $(\ldots,-1,0,1, \ldots)$ are, and that amongst them there is a class of odd ones $(\ldots,-3,-1,1,3, \ldots)$;
- what the product of two integers is, and that this is in turn an integer.

More precisely put, we may write:
If m and n are odd integers then so is $m \cdot n$.
which further presupposes that you know:

- what variables are;
- what
if . . . then . . .
statements are, and how one goes about proving them;
- that the symbol "." is commonly used to denote the product operation.

Even more precisely, we should write

For all integers m and n, if m and n are odd then so is $\mathrm{m} \cdot \mathrm{n}$.
which now additionally presupposes that you know:

- what
for all . . .
statements are, and how one goes about proving them.
Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of mathematical jargon that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.

Some mathematical jargon

Statement

A sentence that is either true or false - but not both.

Example 1

$$
{ }^{\prime} e^{i \pi}+1=0 \prime
$$

Non-example
'This statement is false'

Predicate

A statement whose truth depends on the value of one or more variables.

Example 2

1.

$$
' e^{i x}=\cos x+i \sin x \prime
$$

2.

'the function f is differentiable'

Theorem

A very important true statement.

Proposition

A less important but nonetheless interesting true statement.
Lemma
A true statement used in proving other true statements.

Corollary

A true statement that is a simple deduction from a theorem or proposition.

Example 3

1.
2.

Fermat's Last Theorem
The Pumping Lemma

Conjecture

A statement believed to be true, but for which we have no proof.

Example 4

1.
2.

Goldbach's Conjecture
The Riemann Hypothesis

Proof

Logical explanation of why a statement is true; a method for establishing truth.

Logic

The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

Example 5

1.
2.
3.

Classical predicate logic

Hoare logic
Temporal logic
$-28-a-$

Axiom

A basic assumption about a mathematical situation.
Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

Example 6

1.
2.
3.

Euclidean Geometry

Riemannian Geometry
Hyperbolic Geometry
\square
Definition
An explanation of the mathematical meaning of a word (or phrase).
The word (or phrase) is generally defined in terms of properties.

Warning: It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.

Definition, theorem, intuition, proof in practice

Definition 7 An integer is said to be odd whenever it is of the form $2 \cdot i+1$ for some (necessarily unique) integer i.

Proposition 8 For all integers m and n , if m and n are odd then so is $\mathrm{m} \cdot \mathrm{n}$.
Intuition: $m \times n=2(2 i \times j+i+j)+1$
$\left\{\begin{array}{|c|c|c|}\hline 1 & j & j \\ \hline i & i \times j & i \times j \\ i & i \times j & i \times j \\ \hline j & j & i \\ \hline\end{array}\right.$

Proof of Proposition 8:
Let m and n be integers.
As m is odd, it is of the form $2 i+1$, for some integer i. Andolgonsly, n is of the form $2 j+1$ for some integer j. Therefore $m \times n=(2 i+1) \times(2 j+1)$
$=2(2 i \times j+i+j)+1$ by alg. manipulation.
That is, $m \times n$ is odd.

Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into other statements, and it is composite when it is built by using several (simple or composite statements) connected by logical expressions (e.g., if. . .then. .. ; ...implies ... ; ... if and only if ...; ... and....; either . . . or ... ; it is not the case that ... ; for all ... ; there exists ... ; etc.)

Examples:

' 2 is a prime number'
'for all integers m and n, if $m \cdot n$ is even then either n or m are even'

Proof Structure

Assumptions	Goals
statements that	statements
may be used	
to be	
for deduction	established

Implication

Theorems can usually be written in the form
if a collection of assumptions holds, then so does some conclusion
or, in other words,
a collection of assumptions implies some conclusion
or, in symbols,

$$
\text { a collection of hypotheses } \Longrightarrow \text { some conclusion }
$$

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

Assumption
 Gods.
 $$
P \Rightarrow Q ?
$$
 Implications

- How to prove them as goals.
- How to use them as assumptions.

How to prove implication goals

The main proof strategy for implication:
To prove a goal of the form

$$
P \Longrightarrow Q
$$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Proof pattern:

In order to prove that
$\mathrm{P} \Longrightarrow \mathrm{Q}$

1. Write: Assume P.
2. Show that Q logically follows.

Scratch work:

Before using the strategy

Assumptions
 Goal

$$
P \Longrightarrow Q
$$

After using the strategy
Assumptions
\vdots

Goal
Q

Proposition 8 If m and n are odd integers, then so is $\mathrm{m} \cdot \mathrm{n}$.
Proof:
To show

$$
(m \text { and } n \text { odd integers }) \Rightarrow\binom{m \cdot n \text { odd }}{\text { integers }}
$$

Assume
mane rare odd inter gers.
RTP (Required To Rove): $m \cdot n$ is odd integers.

Definition 9 A real number is:

- rational if it is of the form m / n for a pair of integers m and n ; otherwise it is irrational.
- positive if it is greater than 0 , and negative if it is smaller than 0.
- nonnegative if it is greater than or equal 0 , and nonpositive if it is smaller than or equal 0.
- natural if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If \sqrt{x} is rational then so is x.
Proof: Let x be a positive real number.
Scour
\sqrt{x} rational $\Rightarrow x$ rational.
Assume
$\sqrt{2}$ ratiouch (*)
RIP x rational.
By assumption (*), $\sqrt{x}=m / n$ for integers m and n.
We hare $x=(\sqrt{x})^{2}=(m / n)^{2}=m^{2} / n^{2}$ and Therefore
x is rational. $-50-$

How to use implication assumptions

Logical Deduction by Modus Ponens

A main rule of logical deduction is that of Modus Ponens:
From the statements P and $P \Longrightarrow Q$,
the statement Q follows.
or, in other words,
If P and $P \Longrightarrow Q$ hold then so does Q.
or, in symbols,

Q

The use of implications:
To use an assumption of the form $P \Longrightarrow Q$, aim at establishing P.
Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} be statements. If $\mathrm{P}_{1} \Longrightarrow \mathrm{P}_{2}$ and $P_{2} \Longrightarrow P_{3}$ then $P_{1} \Longrightarrow P_{3}$.

Proof: Let P_{1}, P_{2}, P_{3} be STate mento.
Assume: (1) $P_{1} \Rightarrow P_{2}$ and ${ }^{(2)} P_{2} \Rightarrow P_{3}$.
Goal: $P_{1} \Rightarrow P_{3}$
Assume: P_{1}
Goal: 1_{3}
From (1) and (3), we have P_{2} and from (2) ne have P_{g} as required.

Bi-implication

Some theorems can be written in the form
P is equivalent to Q
or, in other words,
P implies Q, and vice versa
or

> Q implies P, and vice versa
or
P if, and only if, Q

P iff Q
or, in symbols,

