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1. On proofs
1.1. Basic exercises
The main aim is to practice the analysis and understanding of mathematical statements (e.g. by isolating the
different components of composite statements) and exercise the art of presenting a logical argument in the

form of a clear proof (e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. Suppose n is a natural number larger than 2, and n is not a prime number. Then 2 · n+ 13 is
not a prime number.

2. If x2 + y = 13 and y ̸= 4 then x ̸= 3.

3. For an integer n, n2 is even if and only if n is even.

4. For all real numbers x and y there is a real number z such that x + z = y − z.

5. For all integers x and y there is an integer z such that x + z = y − z.

6. The addition of two rational numbers is a rational number.

7. For every real number x , if x ≠ 2 then there is a unique real number y such that 2· y/(y+1) = x .

8. For all integers m and n, if m · n is even, then either m is even or n is even.

1.2. Core exercises
Having practised how to analyse and understand basic mathematical statements and

clearly present their proofs, the aim is to get familiar with the basics of divisibility.

1. Characterise those integers d and n such that:

a) 0 | n

b) d | 0

2. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n

3. Prove or disprove that: For all natural numbers n, 2 | 2n.

4. Show that for all integers l , m, n,

l | m ∧ m | n=⇒ l | n

5. Find a counterexample to the statement: For all positive integers k, m, n,

(m | k ∧ n | k) =⇒ (m · n) | k
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6. Prove that for all integers d , k, l , m, n,

a) d | m ∧ d | n=⇒ d | (m+ n)

b) d | m=⇒ d | k ·m

c) d | m ∧ d | n=⇒ d | (k ·m+ l · n)

7. Prove that for all integers n,

30 | n ⇐⇒ (2 | n ∧ 3 | n ∧ 5 | n)

8. Show that for all integers m and n,

(m | n ∧ n | m) =⇒ (m= n ∨ m= −n)

9. Prove or disprove that: For all positive integers k, m, n,

k | (m · n) =⇒ k | m ∨ k | n

10. Let P(m) be a statement for m ranging over the natural numbers, and consider the following
derived statement (with n also ranging over the natural numbers):

P#(n)≜ ∀k ∈ N. 0≤ k ≤ n=⇒ P(k)

a) Show that, for all natural numbers ℓ, P#(ℓ) =⇒ P(ℓ).

b) Exhibit a concrete statement P(m) and a specific natural number n for which the following
statement does not hold:

P(n) =⇒ P#(n)

c) Prove the following:

• P#(0) ⇐⇒ P(0)

• ∀n ∈ N.
�

P#(n) =⇒ P#(n+ 1)
�

⇐⇒
�

P#(n) =⇒ P(n+ 1)
�

•
�

∀m ∈ N. P#(m)
�

⇐⇒ (∀m ∈ N. P(m))

1.3. Optional exercises
1. A series of questions about the properties and relationship of triangular and square numbers

(adapted from David Burton).

a) A natural number is said to be triangular if it is of the form
∑k

i=0 i = 0+ 1+ · · ·+ k, for
some natural k. For example, the first three triangular numbers are t0 = 0, t1 = 1 and
t2 = 3.

Find the next three triangular numbers t3, t4 and t5.

b) Find a formula for the kth triangular number tk.

c) A natural number is said to be square if it is of the form k2 for some natural number k.
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Show that n is triangular iff 8 · n+ 1 is a square. (Plutarch, circ. 100BC)

d) Show that the sum of every two consecutive triangular numbers is square. (Nicomachus,
circ. 100BC)

e) Show that, for all natural numbers n, if n is triangular, then so are 9 · n+ 1, 25 · n+ 3,
49 · n+ 6 and 81 · n+ 10. (Euler, 1775)

f) Prove the generalisation: For all n and k natural numbers, there exists a natural number q
such that (2n+ 1)2 · tk + tn = tq. (Jordan, 1991, attributed to Euler)

2. Let P(x) be a predicate on a variable x and let Q be a statement not mentioning x . Show that
the following equivalence holds:

�

�

∃x . P(x)
�

=⇒Q
�

⇐⇒
�

∀x .
�

P(x) =⇒Q
�

�
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2. On numbers
2.1. Basic exercises

1. Let i, j be integers and let m, n be positive integers. Show that:

a) i ≡ i (mod m)

b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

c) i ≡ j (mod m) ∧ j ≡ k (mod m) =⇒ i ≡ k (mod m)

2. Prove that for all integers i, j, k, l , m, n with m positive and n nonnegative,

a) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i + k ≡ j + l (mod m)

b) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

c) i ≡ j (mod m) =⇒ in ≡ jn (mod m)

3. Prove that for all natural numbers k, l and positive integers m,

a) rem(k ·m+ l, m) = rem(l, m)

b) rem(k+ l, m) = rem(rem(k, m) + l, m)

c) rem(k · l, m) = rem(k · rem(l, m), m)

4. Let m be a positive integer.

a) Prove the associativity of the addition and multiplication operations in Zm; that is:

∀i, j, k ∈ Zm. (i +m j) +m k = i +m ( j +m k) and (i ·m j) ·m k = i ·m ( j ·m k)

b) Prove that the additive inverse of k in Zm is [−k]m.

2.2. Core exercises
1. Find an integer i, natural numbers k, l and a positive integer m for which k ≡ l (mod m) holds

while ik ≡ i l (mod m) does not.

2. Formalise and prove the following statement: A natural number is a multiple of 3 iff so is the
number obtained by summing its digits. Do the same for the analogous criterion for multiples
of 9 and a similar condition for multiples of 11.

3. Show that for every integer n, the remainder when n2 is divided by 4 is either 0 or 1.

4. What are rem(552, 79), rem(232, 79), rem(23 · 55, 79) and rem(5578, 79)?

5. Calculate that 2153 ≡ 53 (mod 153). At first sight this seems to contradict Fermat’s Little The-
orem, why isn’t this the case though? Hint: Simplify the problem by applying known congruences
to subexpressions using the properties in §2.1.2.
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6. Calculate the addition and multiplication tables, and the additive and multiplicative inverses
tables for Z3, Z6 and Z7.

7. Let i and n be positive integers and let p be a prime. Show that if n ≡ 1 (mod p− 1) then
in ≡ i (mod p) for all i not multiple of p.

8. Prove that n3 ≡ n (mod 6) for all integers n.

9. Prove that n7 ≡ n (mod 42) for all integers n.

2.3. Optional exercises
1. Prove that for all integers n, there exist natural numbers i and j such that n= i2 − j2 iff either

n≡ 0 (mod 4) or n≡ 1 (mod 4) or n≡ 3 (mod 4).

2. A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary)
representation consists solely of 1’s.

a) What are the first three decimal repunits? And the first three binary ones?

b) Show that no decimal repunit strictly greater than 1 is a square, and that the same holds
for binary repunits. Is this the case for every base? Hint: Use Lemma 27 of the notes.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=103
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3. More on numbers
3.1. Basic exercises

1. Calculate the set CD(666,330) of common divisors of 666 and 330.

2. Find the gcd of 21212121 and 12121212.

3. Prove that for all positive integers m and n, and integers k and l ,

gcd(m, n) | (k ·m+ l · n)

4. Find integers x and y such that x · 30+ y · 22 = gcd(30, 22). Now find integers x ′ and y ′ with
0≤ y ′ < 30 such that x ′ · 30+ y ′ · 22= gcd(30,22).

5. Prove that for all positive integers m and n, there exists integers k and l such that k ·m+ l ·n = 1
iff gcd(m, n) = 1.

6. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p) then either n ≡ 1 (mod p) or
n≡ −1 (mod p).

3.2. Core exercises
1. Prove that for all positive integers m and n, gcd(m, n) = m iff m | n.

2. Let m and n be positive integers with gcd(m, n) = 1. Prove that for every natural number k,

m | k ∧ n | k ⇐⇒ m · n | k

3. Prove that for all positive integers a, b, c, if gcd(a, c) = 1 then gcd(a · b, c) = gcd(b, c).

4. Prove that for all positive integers m and n, and integers i and j:

n · i ≡ n · j (mod m) ⇐⇒ i ≡ j
�

mod
m

gcd(m, n)

�

5. Prove that for all positive integers m, n, p, q such that gcd(m, n) = gcd(p, q) = 1, if q ·m = p ·n
then m= p and n= q.

6. Prove that for all positive integers a and b, gcd(13 · a+ 8 · b, 5 · a+ 3 · b) = gcd(a, b).

7. Let n be an integer.

a) Prove that if n is not divisible by 3, then n2 ≡ 1 (mod 3).

b) Show that if n is odd, then n2 ≡ 1 (mod 8).

c) Conclude that if p is a prime number greater than 3, then p2 − 1 is divisible by 24.
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8. Prove that n13 ≡ n (mod 10) for all integers n.

9. Prove that for all positive integers l , m and n, if gcd(l, m · n) = 1 then gcd(l, m) = 1 and
gcd(l, n) = 1.

10. Solve the following congruences:

a) 77 · x ≡ 11 (mod 40)

b) 12 · y ≡ 30 (mod 54)

c)

(

13≡ z (mod 21)

3 · z ≡ 2 (mod 17)

11. What is the multiplicative inverse of: (a) 2 in Z7, (b) 7 in Z40, and (c) 13 in Z23?

12. Prove that
�

2212001
�

175
has a multiplicative inverse in Z175.

3.3. Optional exercises
1. Let a and b be natural numbers such that a2 | b · (b+ a). Prove that a | b.

Hint: For positive a and b, consider a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) so that gcd(a0, b0) = 1, and
show that a2 | b(b+ a) implies a0 = 1.

2. Prove the converse of §1.3.1(f): For all natural numbers n and s, if there exists a natural number
q such that (2n+ 1)2 · s+ tn = tq, then s is a triangular number. (49th Putnam, 1988)

Hint: Recall that if †⃝ q = 2nk+ n+ k then (2n+ 1)2 tk + tn = tq. Solving for k in †⃝, we get
that k = q−n

2n+1 ; so it would be enough to show that the fraction q−n
2n+1 is a natural number.

3. Informally justify the correctness of the following alternative algorithm for computing the gcd
of two positive integers:

let rec gcd0(m, n) = if m = n then m
else let p = min m n

and q = max m n
in gcd0(p, q - p)
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4. On induction
4.1. Basic exercises

1. Prove that for all natural numbers n≥ 3, if n distinct points on a circle are joined in consecutive
order by straight lines, then the interior angles of the resulting polygon add up to 180 · (n− 2)
degrees.

2. Prove that, for any positive integer n, a 2n × 2n square grid with any one square removed can
be tiled with L-shaped pieces consisting of 3 squares.

4.2. Core exercises
1. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

(b) Suppose k is a positive integer that is not prime. Then 2k − 1 is not prime.

2. Prove that
∀n ∈ N. ∀x ∈ R. x ≥ −1 =⇒ (1+ x)n ≥ 1+ n · x

3. Recall that the Fibonacci numbers Fn for n ∈ N are defined recursively by F0 = 0, F1 = 1, and
Fn+2 = Fn + Fn+1 for n ∈ N.

a) Prove Cassini’s Identity: For all n ∈ N,

Fn · Fn+2 = Fn+1
2 + (−1)n+1

b) Prove that for all natural numbers k and n,

Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

c) Deduce that Fn | Fl·n for all natural numbers n and l .

d) Prove that gcd(Fn+2, Fn+1) terminates with output 1 in n steps for all positive integers n.

e) Deduce also that:

(i) for all positive integers n< m, gcd(Fm, Fn) = gcd(Fm−n, Fn),

and hence that:

(ii) for all positive integers m and n, gcd(Fm, Fn) = Fgcd(m,n).
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f) Show that for all positive integers m and n, (Fm · Fn) | Fm·n if gcd(m, n) = 1.

g) Conjecture and prove theorems concerning the following sums for any natural number n:

(i)
∑n

i=0 F2·i

(ii)
∑n

i=0 F2·i+1

(iii)
∑n

i=0 Fi

4.3. Optional exercises
1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2

to formally establish the following correctness property of the algorithm:

For all natural numbers l ≥ 2, we have that for all positive
integers m, n, if m+ n≤ l then gcd0(m, n) terminates.

2. The set of univariate polynomials (over the rationals) on a variable x is defined as that of
arithmetic expressions equal to those of the form

∑n
i=0 ai · x i , for some n ∈ N and some

coefficients a0, a1, . . . , an ∈Q.

(a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and p(x) · q(x).

(b) Deduce as a corollary that, for all a, b ∈Q, the linear combination a · p(x) + b · q(x) of
two polynomials p(x) and q(x) is a polynomial.

(c) Show that there exists a polynomial p2(x) such that p2(n) =
∑n

i=0 i2 = 02 + 12 + · · ·+ n2

for every n ∈ N.1

Hint: Note that for every n ∈ N,

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

(d) Show that, for every k ∈ N, there exists a polynomial pk(x) such that, for all n ∈ N,
pk(n) =
∑n

i=0 ik = 0k + 1k + · · ·+ nk.

Hint: Generalise the hint above, and the similar identity

(n+ 1)2 =
n
∑

i=0

(i + 1)2 −
n
∑

i=0

i2

1Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.
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5. On sets
5.1. Basic exercises

1. Prove that ⊆ is a partial order, that is, it is:

a) reflexive: ∀ sets A. A⊆ A

b) transitive: ∀ sets A, B, C . (A⊆ B ∧ B ⊆ C) =⇒ A⊆ C

c) antisymmetric: ∀ sets A, B. (A⊆ B ∧ B ⊆ A) ⇐⇒ A= B

2. Prove the following statements:

a) ∀ sets A. ; ⊆ A

b) ∀ sets A. (∀x . x /∈ A) ⇐⇒ A= ;

3. Find the union, and intersection of:

a) {1,2, 3,4, 5 } and {−1, 1,3, 5,7 }

b) { x ∈ R | x > 7 } and { x ∈ N | x > 5 }

4. Find the Cartesian product and disjoint union of {1, 2,3, 4,5 } and {−1, 1,3,5, 7 }.

5. Let I = {2, 3,4, 5 } and for each i ∈ I , let Ai = { i, i + 1, i − 1, 2 · i }.

a) List the elements of all sets Ai for i ∈ I .

b) Let {Ai | i ∈ I } stand for {A2, A3, A4, A5 }. Find
⋃

{Ai | i ∈ I } and
⋂

{Ai | i ∈ I }.

6. Let U be a set. For all A, B ∈ P(U), prove that:

a) Ac = B ⇐⇒ (A∪ B = U ∧ A∩ B = ;)

b) Double complement elimination: (Ac)c = A

c) The de Morgan laws: (A∪ B)c = Ac ∩ Bc and (A∩ B)c = Ac ∪ Bc

5.2. Core exercises
1. Prove that for all for all sets U and subsets A, B ⊆ U :

a) ∀X . A⊆ X ∧ B ⊆ X ⇐⇒ (A∪ B) ⊆ X b) ∀Y. Y ⊆ A ∧ Y ⊆ B ⇐⇒ Y ⊆ (A∩ B)

2. Either prove or disprove that, for all sets A and B,

a) A⊆ B =⇒ P(A) ⊆ P(B)

b) P(A∪ B) ⊆ P(A)∪P(B)

c) P(A)∪P(B) ⊆ P(A∪ B)
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d) P(A∩ B) ⊆ P(A)∩P(B)

e) P(A)∩P(B) ⊆ P(A∩ B)

3. Let U be a set. For all A, B ∈ P(U) prove that the following statements are equivalent.

a) A∪ B = B b) A⊆ B c) A∩ B = A d) Bc ⊆ Ac

4. For sets A, B, C , D, prove or disprove at least three of the following statements:

a) (A⊆ C ∧ B ⊆ D) =⇒ A× B ⊆ C × D

b) (A∪ C)× (B ∪ D) ⊆ (A× B)∪ (C × D)

c) (A× C)∪ (B × D) ⊆ (A∪ B)× (C ∪ D)

d) A× (B ∪ C) ⊆ (A× B)∪ (A× C)

e) (A× B)∪ (A× D) ⊆ A× (B ∪ D)

5. For sets A, B, C , D, prove or disprove at least three of the following statements:

a) (A⊆ C ∧ B ⊆ D) =⇒ A⊎ B ⊆ C ⊎ D

b) (A∪ B)⊎ C ⊆ (A⊎ C)∪ (B ⊎ C)

c) (A⊎ C)∪ (B ⊎ C) ⊆ (A∪ B)⊎ C

d) (A∩ B)⊎ C ⊆ (A⊎ C)∩ (B ⊎ C)

e) (A⊎ C)∩ (B ⊎ C) ⊆ (A∩ B)⊎ C

6. Prove the following properties of the big unions and intersections of a family of sets F ⊆ P(A):

a) ∀U ⊆ A. (∀X ∈ F . X ⊆ U) ⇐⇒
⋃

F ⊆ U

b) ∀L ⊆ A. (∀X ∈ F . L ⊆ X ) ⇐⇒ L ⊆
⋂

F

7. Let A be a set.

a) For a family F ⊆ P(A), let U ≜ {U ⊆ A | ∀S ∈ F . S ⊆ U }. Prove that
⋃

F =
⋂

U .

b) Analogously, define the family L ⊆ P(A) such that
⋂

F =
⋃

L. Also prove this statement.

5.3. Optional advanced exercises
1. Prove that for all families of sets F1 and F2,

�
⋃

F1

�

∪
�
⋃

F2

�

=
⋃

(F1 ∪F2)

State and prove the analogous property for intersections of non-empty families of sets.

2. For a set U , prove that (P(U),⊆,∪,∩, U ,;, (·)c) is a Boolean algebra.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=299
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6. On relations
6.1. Basic exercises

1. Let A= {1,2, 3,4 }, B = { a, b, c, d } and C = { x , y, z }.
Let R= { (1, a), (2, d), (3, a), (3, b), (3, d) }: A→ B
and S = { (b, x), (b, y), (c, y), (d, z) }: B → C .

Draw the internal diagrams of the relations. What is the composition S ◦ R: A→ C?

2. Prove that relational composition is associative and has the identity relation as the neutral
element.

3. For a relation R: A→ B, let its opposite, or dual relation, Rop : B → A be defined by:

b Rop a ⇐⇒ a R b

For R, S : A→ B and T : B → C , prove that:

a) R ⊆ S =⇒ Rop ⊆ Sop

b) (R∩ S)op = Rop ∩ Sop

c) (R∪ S)op = Rop ∪ Sop

d) (T ◦ S)op = Sop ◦ T op

6.2. Core exercises
1. Let R, R′ ⊆ A× B and S, S′ ⊆ B × C be two pairs of relations and assume R ⊆ R′ and S ⊆ S′.

Prove that S ◦ R ⊆ S′ ◦ R′.

2. Let F ⊆ P(A× B) and G ⊆ P(B × C) be two collections of relations from A to B and from B to
C , respectively. Prove that

�
⋃

G
�

◦
�
⋃

F
�

=
⋃

{S ◦ R | R ∈ F , S ∈ G }: A→ C

Recall that the notation {S ◦ R: A→ C | R ∈ F , S ∈ G } is common syntactic sugar for the
formal definition { T ∈ P(A× C) | ∃R ∈ F . ∃S ∈ G. T = S ◦ R }. Hence,

T ∈ {S ◦ R ∈ A→ C | R ∈ F , S ∈ G } ⇐⇒ ∃R ∈ F . ∃S ∈ G. T = S ◦ R

What happens in the case of big intersections?

3. Suppose R is a relation on a set A. Prove that

a) R is reflexive iff idA ⊆ R

b) R is symmetric iff R= Rop
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c) R is transitive iff R ◦ R ⊆ R

d) R is antisymmetric iff R∩ Rop ⊆ idA

4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We
are interested in constructing the smallest transitive relation (graph) containing R, called the
transitive closure of R.

a) We define the family of relations which are transitive supersets of R:

TR ≜ {Q : A→ A | R ⊆Q and Q is transitive }

R is not necessarily going to be an element of this family, as it might not be transitive.
However, R is a lower bound for TR, as it is a subset of every element of the family.

Prove that the set
⋂

TR is the transitive closure for R.

b)
⋂

TR is the intersection of an infinite number of relations so it’s difficult to compute the
transitive closure this way. A better approach is to start with R, and keep adding the missing
connections until we get a transitive graph. This can be done by repeatedly composing R
with itself: after n compositions, all paths of length n in the graph represented by R will
have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition R◦+ ≜ R ◦ R◦∗ is the transitive closure
for R, i.e. it coincides with the greatest lower bound of TR: R◦+ =

⋂

TR. Hint: show that
R◦+ is both an element and a lower bound of TR.

7. On partial functions
7.1. Basic exercises

1. Let A2 = {1, 2 } and A3 = { a, b, c }. List the elements of the sets PFun(Ai, A j) for i, j ∈ {2, 3 }.
Hint: there may be quite a few, so you can think of ways of characterising all of them without
giving an explicit listing.

2. Prove that a relation R: A→ B is a partial function iff R ◦ Rop ⊆ idB .

3. Prove that the identity relation is a partial function, and that the composition of partial functions
is a partial function.

7.2. Core exercises
1. Show that (PFun(A, B),⊆) is a partial order. What is its least element, if it exists?

2. Let F ⊆ PFun(A, B) be a non-empty collection of partial functions from A to B.

a) Show that
⋂

F is a partial function.

b) Show that
⋃

F need not be a partial function by defining two partial functions f , g : A* B
such that f ∪ g : A→ B is a non-functional relation.

c) Let h: A* B be a partial function. Show that if every element of F is below h then
⋃

F
is a partial function.
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8. On functions
8.1. Basic exercises

1. Let A2 = {1, 2 } and A3 = { a, b, c }. List the elements of the sets Fun(Ai, A j) for i, j ∈ {2, 3 }.

2. Prove that the identity partial function is a function, and the composition of functions yields a
function.

3. Prove or disprove that (Fun(A, B),⊆) is a partial order.

4. Find endofunctions f , g : A→ A such that f ◦ g ̸= g ◦ f .

8.2. Core exercises
1. A relation R: A→ B is said to be total if ∀a ∈ A. ∃b ∈ B. a R b. Prove that this is equivalent to

idA ⊆ Rop ◦R. Conclude that a relation R: A→ B is a function iff R ◦Rop ⊆ idB and idA ⊆ Rop ◦R.

2. Let χ : P(U) → (U ⇒ [2]) be the function mapping subsets S ⊆ U to their characteristic
functions χS : U → [2].

a) Prove that for all x ∈ U ,

• χA∪B(x) = (χA(x) ∨ χB(x)) =max(χA(x),χB(x))

• χA∩B(x) = (χA(x) ∧ χB(x)) =min(χA(x),χB(x))

• χAc(x) = ¬(χA(x)) = (1−χA(x))

b) For what construction A?B on sets A and B does it hold that

χA?B(x) = (χA(x)⊕χB(x)) = (χA(x) +2 χB(x))

for all x ∈ U , where ⊕ is the exclusive or operator? Prove your claim.

8.3. Optional advanced exercise
Consider a set A together with an element a ∈ A and an endofunction f : A→ A.

Say that a relation R: N→ A is (a, f )-closed whenever

R(0, a) and ∀n ∈ N, x ∈ A. R(n, x) =⇒ R(n+ 1, f (x))

Define the relation F : N→ A as

F ≜
⋂

{R: N→ A | R is (a, f )-closed }

a) Prove that F is (a, f )-closed.

b) Prove that F is total, that is: ∀n ∈ N. ∃y ∈ A. F(n, y).

c) Prove that F is a function N→ A, that is: ∀n ∈ N. ∃!y ∈ A. F(n, y).

Hint: Proceed by induction. Observe that, in view of the previous item, to show that ∃!y ∈
A. F(k, y) it suffices to exhibit an (a, f )-closed relation Rk such that ∃!y ∈ A. Rk(k, y). (Why?)
For instance, as the relation R0 = { (m, y) ∈ N× A | m = 0 =⇒ y = a } is (a, f )-closed one
has that F(0, y) =⇒ R0(0, y) =⇒ y = a.
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d) Show that if h is a function N→ A with h(0) = a and ∀n ∈ N. h(n+ 1) = f (h(n)) then h= F .

Thus, for every set A together with an element a ∈ A and an endofunction f : A→ A there exists a
unique function F : N→ A, typically said to be inductively defined, satisfying the recurrence relation

F(n) =

(

a for n= 0

f (F(n− 1)) for n≥ 1
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9. On bijections
9.1. Basic exercises

1. a) Define a function that has (i) none, (ii) exactly one, and (iii) more than one retraction.

b) Define a function that has (i) none, (ii) exactly one, and (iii) more than one section.

2. Let n be an integer.

a) How many sections are there for the absolute-value map x 7→ |x |: [−n..n]→ [0..n]?

b) How many retractions are there for the exponential map x 7→ 2x : [0..n]→ [0..2n]?

3. Give an example of two sets A and B and a function f : A→ B such that f has a retraction but
no section. Explain how you know that f has these properties.

4. Prove that the identity function is a bijection and that the composition of bijections is a bijection.

5. For f : A→ B, prove that if there are g, h: B→ A such that g ◦ f = idA and f ◦ h = idB then
g = h. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

9.2. Core exercises
1. We say that two functions s : A → B and r : B → A are a section-retraction pair whenever

r ◦ s = idA; and that a function e : B→ B is an idempotent whenever e ◦ e = e. This question
demonstrates that section-retraction pairs and idempotents are closely connected: any section-
retraction pair gives rise to an idempotent function, and any idempotent function can be split
into a section-retraction pair.

a) Let f : C → D and g : D→ C be functions such that f ◦ g ◦ f = f .

(i) Can you conclude that f ◦ g is idempotent? What about g ◦ f ? Justify your answers.

(ii) Define a map g ′ using f and g that satisfies both

f ◦ g ′ ◦ f = f and g ′ ◦ f ◦ g ′ = g ′

b) Show that if s : A→ B and r : B → A are a section-retraction pair then the composite
s ◦ r : B→ B is idempotent.

c) Show that for every idempotent e : B→ B there exists a set A (called a retract of B) and a
section-rectraction pair s : A→ B and r : B→ A such that s ◦ r = e.
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10. On equivalence relations
10.1. Basic exercises

1. Prove that the isomorphism relation ∼= between sets is an equivalence relation.

2. Prove that the identity relation idA on a set A is an equivalence relation, and that A/idA
∼= A.

3. Show that, for a positive integer m, the relation ≡m on Z given by

x ≡m y ⇐⇒ x ≡ y (mod m)

is an equivalence relation. What are the equivalence classes of this relation?

4. Show that the relation ≡ on Z×Z+ given by

(a, b)≡ (x , y) ⇐⇒ a · y = x · b

is an equivalence relation. What are the equivalence classes of this relation?

10.2. Core exercises
1. Let E1 and E2 be two equivalence relations on a set A. Either prove or disprove the following

statements.

a) E1 ∪ E2 is an equivalence relation on A.

b) E1 ∩ E2 is an equivalence relation on A.

2. For an equivalence relation E on a set A, show that [a1]E = [a2]E iff a1 E a2, where

[a]E = { x ∈ A | x E a }.

3. For a function f : A→ B define a relation ≡ f on A by the rule: for all a, a′ ∈ A,

a ≡ f a′ ⇐⇒ f (a) = f (a′)

a) Show that for every function f : A→ B, the relation ≡ f is an equivalence relation on A.

b) Prove that every equivalence relation E in a set A is equal to ≡q, where q : A↠ A/E is the
quotient function q(a) = [a]E .

c) Prove that for every surjection f : A↠ B,

B ∼=
�

A/≡ f

�
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11. On surjections and injections
11.1. Basic exercises

1. Give two examples of functions that are surjective, and two examples of functions that are not.

2. Give two examples of functions that are injective, and two examples of functions that are not.

11.2. Core exercises
1. Explain and justify the phrase injections can be undone.

2. Show that f : A→ B is a surjection if and only if for all sets C and functions g, h: B → C ,
g ◦ f = h ◦ f implies g = h.

What would be an analogous condition for injections?

12. On images
12.1. Basic exercises

1. Let R2 = { (m, n) | m = n2 }: N→ Z be the integer square-root relation. What is the direct
image of N under R2? And what is the inverse image of N?

2. For a relation R: A→ B, show that:

a) −→R(X ) =
⋃

x∈X
−→
R({ x }) for all X ⊆ A

b) ←−R(Y ) =
�

a ∈ A
�

�

−→
R({ a }) ⊆ Y
	

for all Y ⊆ B.

12.2. Core exercises
1. For X ⊆ A, prove that the direct image

−→
f (X ) ⊆ B under an injective function f : A↣ B is in

bijection with X ; that is, X ∼=
−→
f (X ).

2. Prove that for a surjective function f : A↠ B, the direct image function
−→
f : P(A)→ P(B) is

surjective.

3. Show that any function f : A→ B can be decomposed into an injection and a surjection: that
is, there exists a set X , a surjection s : A↠ X and an injection i : X ↣ B such that f = i ◦ s.

4. For a relation R: A→ B, prove that

a) −→R
�⋃

F
�

=
⋃� −→

R(X )
�

� X ∈ F
	

for all F ⊆ P(A)

b) ←−R
�⋂

G
�

=
⋂�←−

R(Y )
�

� Y ∈ G
	

for all G ⊆ P(B)

5. Show that, by the inverse image, every map A→ B induces a Boolean algebramapP(B)→ P(A).
That is, for every function f : A→ B, its inverse image preserves set operations:
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•
←−
f (;) = ;

•
←−
f (B) = A

•
←−
f (X ∪ Y ) =

←−
f (X )∪

←−
f (Y )

•
←−
f (X ∩ Y ) =

←−
f (X )∩

←−
f (Y )

•
←−
f (X c) =
�←−

f (X )
�c

13. On countability
13.1. Basic exercises

1. Prove that every finite set is countable.

2. Demonstrate that N, Z, Q are countable sets.

13.2. Core exercises
1. Let A be an infinite subset of N. Show that A ∼= N. Hint: Adapt the argument shown in the proof

of Proposition 168, showing that the map N→ A is both injective and surjective.

2. For an infinite set A, prove that the following are equivalent:

a) There is a bijection N ∼=−→ A.
b) There is a surjection N↠ A.
c) There is an injection A↣N.

3. Prove that:

a) Every subset of a countable set is countable.

b) The product and disjoint union of countable sets is countable.

4. For a set A, prove that there is no injection P(A)↣ A.

13.3. Optional advanced exercise
1. Prove that if A and B are countable sets then so are A∗, Pfin(A) and PFunfin(A, B).

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=399
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