DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part II CST 2023/2024
• My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
• Course notes will be updated, keep an eye on the course webpage.
INTRODUCTION
WHAT IS THIS COURSE ABOUT?

• **Formal methods:** tools for the specification, development, analysis and verification of software and hardware systems.
WHAT IS THIS COURSE ABOUT?

- **Formal methods**: tools for the specification, development, analysis and verification of software and hardware systems.
- **Programming language theory**: how to design, implement and reason about programming languages?
What is this course about?

- **Formal methods**: tools for the specification, development, analysis and verification of software and hardware systems.

- **Programming language theory**: how to design, implement and reason about programming languages?

- **Programming language semantics**: what is the (mathematical) meaning of a program?
WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.
Why should we care?

- **Insight**: exposes the mathematical “essence” of programming language concepts.
Why should we care?

- **Insight**: exposes the mathematical “essence” of programming language concepts.
- **Language design**: feedback from semantic concepts (monads, algebraic effects & effect handlers...).
Why should we care?

- **Insight**: exposes the mathematical “essence” of programming language concepts.
- **Language design**: feedback from semantic concepts (monads, algebraic effects & effect handlers...).
- **Rigour**: semantics is necessary to specify/justify formal methods (compilers, type systems, code analysis, certification...).
STYLES OF FORMAL SEMANTICS

• Operational

• Axiomatic

• Denotational
Styles of Formal Semantics

- **Operational**: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- **Axiomatic**
- **Denotational**
· **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).

· **Axiomatic**: indirect meaning of a program in terms of a *program logic* to reason about its properties (see Part II Hoare Logic & Model Checking).

· **Denotational**
• **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).

• **Axiomatic**: indirect meaning of a program in terms of a *program logic* to reason about its properties (see Part II Hoare Logic & Model Checking).

• **Denotational**: meaning of a program defined abstractly as object of some suitable *mathematical structure* (see this course).
DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax \rightarrow Semantics
Program P \mapsto Denotation $[P]$

Recursive program \leftrightarrow Partial recursive function
Boolean circuit \leftrightarrow Boolean function
...

Type \mapsto Domain
Program \mapsto Continuous functions between domains
Syntax \rightarrow Semantics

Program P \leftrightarrow Denotation $[P]$

Recursive program \leftrightarrow Partial recursive function

Boolean circuit \leftrightarrow Boolean function

... \rightarrow

Type \leftrightarrow Domain

Program \leftrightarrow Continuous functions between domains
Properties of Denotational Semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Compositionality

- The denotation of a phrase is defined using the denotation of its sub-phrases.
- \(J_P \) represents the contribution of \(P \) to any program containing \(P \).
- Much more flexible than whole-program semantics.
Properties of Denotational Semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Compositionality

- The denotation of a phrase is defined using the *denotation* of its sub-phrases.
- $\llbracket P \rrbracket$ represents the contribution of P to *any* program containing P.
- Much more flexible than whole-program semantics.
INTRODUCTION

A BASIC EXAMPLE
Commands

\[C \in \text{Comm} ::= \text{skip} \mid L := A \mid C;C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{while } B \text{ do } C \]
IMP SYNTAX

Arithmetic expressions

\[A \in \text{Aexp} ::= n \mid L \mid A + A \mid \ldots \]

Boolean expressions

\[B \in \text{Bexp} ::= \text{true} \mid \text{false} \mid A = A \mid \neg B \mid \ldots \]

Commands

\[C \in \text{Comm} ::= \text{skip} \mid L := A \mid C;C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{while } B \text{ do } C \]

ranges over a set \(\mathbb{L} \) of locations
Arithmetic expressions

\[A \in \text{Aexp} ::= n \mid L \mid A + A \mid \ldots \]

Commands

\[C \in \text{Comm} ::= \text{skip} \mid L := A \mid C;C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{while } B \text{ do } C \]
IMP SYNTAX

Arithmetic expressions

\[A \in \text{Aexp} ::= n | L | A + A | ... \]

Commands

\[C \in \text{Comm} ::= \text{skip} | L := A | C;C | \text{if } B \text{ then } C \text{ else } C | \text{while } B \text{ do } C \]
IMP SYNTAX

Arithmetic expressions

$$A \in Aexp ::= n \mid L \mid A + A \mid ...$$

Boolean expressions

$$B \in Bexp ::= true \mid false \mid A = A \mid \neg B \mid ...$$

Commands

$$C \in Comm ::= skip \mid L := A \mid C;C \mid if B then C else C \mid while B do C$$
Denotation functions — naïvely

\[A : A\text{exp} \rightarrow \mathbb{Z} \]

where

\[\mathbb{Z} = \{ ... , -1, 0, 1, ... \} \]
Denotation functions – naïvely

\[A : \text{Aexp} \rightarrow \mathbb{Z} \]
\[B : \text{Bexp} \rightarrow \mathbb{B} \]

where

\[\mathbb{Z} = \{..., -1, 0, 1,...\} \]
\[\mathbb{B} = \{\text{true, false}\} \]
ARITHMETIC EXPRESSIONS?

\[A[n] = n \]

Arithmetic expressions?

\[A[n] = n \]
\[A[L] = ??? \]
Denotation functions

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)

B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where ⇀ denotes partial functions and ℤ = {…, −1, 0, 1, …}

𝔹 = {true, false}.
Denotation functions

\[\text{State} = (\mathbb{L} \rightarrow \mathbb{Z}) \]

\[\mathcal{A} : \text{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z}) \]
\[\mathcal{B} : \text{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B}) \]

where

\[\mathbb{Z} = \{ ..., -1, 0, 1, ... \} \]
\[\mathbb{B} = \{ \text{true}, \text{false} \}. \]
Denotation functions

\begin{align*}
\text{State} &= (\mathbb{L} \to \mathbb{Z}) \\
\mathcal{A} : \text{Aexp} &\to (\text{State} \to \mathbb{Z}) \\
\mathcal{B} : \text{Bexp} &\to (\text{State} \to \mathbb{B}) \\
\mathcal{C} : \text{Comm} &\to (\text{State} \to \text{State})
\end{align*}

where \rightarrow denotes partial functions and

\begin{align*}
\mathbb{Z} &= \{\ldots, -1, 0, 1, \ldots\} \\
\mathbb{B} &= \{\text{true, false}\}.
\end{align*}
\begin{align*}
\mathcal{A}[n] &= \lambda s \in \text{State}. \ n \\
\mathcal{A}[A_1 + A_2] &= \lambda s \in \text{State}. \ \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)
\end{align*}
The semantic rules for arithmetic expressions are as follows:

\[A[n] = \lambda s \in \text{State. } n \]

\[A[A_1 + A_2] = \lambda s \in \text{State. } A[A_1](s) + A[A_2](s) \]

\[A[L] = \lambda s \in \text{State. } s(L) \]
$$B[\text{true}] = \lambda s \in \text{State. true}$$

$$B[\text{false}] = \lambda s \in \text{State. false}$$

$$B[A_1 = A_2] = \lambda s \in \text{State. eq}(A[A_1](s), A[A_2](s))$$

where $$\text{eq}(a, a') = \begin{cases}
\text{true} & \text{if } a = a' \\
\text{false} & \text{if } a \neq a'
\end{cases}$$
$C[\text{skip}] = \lambda s \in \text{State}. s$
\[C[\text{skip}] = \lambda s \in \text{State}. s \]

\[C[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State}. \text{if} (C[B](s), C[C](s), C[C'](s)) \]

where \(\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases} \)
Semantics of commands

\[C[\text{skip}] = \lambda s \in \text{State. } s \]

\[C[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State. } \text{if } (C[B](s), C[C](s), C[C'](s)) \]

where \(\text{if}(b, x, x') = \begin{cases}
 x & \text{if } b = \text{true} \\
 x' & \text{if } b = \text{false}
\end{cases} \)

This is compositionality!
$C[\text{skip}] = \lambda s \in \text{State. } s$

$C[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State. if } (C[B](s), C[C](s), C[C'](s))$

where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$C[L := A] = \lambda s \in \text{State. } s[L \mapsto A[A](s)]$

where $s[L \mapsto n](L') = \begin{cases} n & \text{if } L' = L \\ s(L) & \text{otherwise} \end{cases}$
Semantics of commands

\[
C[\text{skip}] = \lambda s \in \text{State}. s
\]

\[
C[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State}. \text{if } (C[B](s), C[C](s), C[C'](s))
\]

where if\((b, x, x') = \begin{cases}
 x & \text{if } b = \text{true} \\
 x' & \text{if } b = \text{false}
\end{cases}
\]

\[
C[L := A] = \lambda s \in \text{State}. s[L \mapsto A[A](s)]
\]

where \(s[L \mapsto n](L') = \begin{cases}
 n & \text{if } L' = L \\
 s(L) & \text{otherwise}
\end{cases}\)

\[
C[C; C'] = C[C'] \circ C[C]
\]

\[
= \lambda s \in \text{State}. C[C'](C[C](s))
\]
INTRODUCTION

A SEMANTICS FOR LOOPS
This is all very nice, but...

\[\text{[while } B \text{ do } C \text{]} = ??? \]
This is all very nice, but...

\[\text{[while } B \text{ do } C] = \text{??} \]

Remember:

- \((\text{while } B \text{ do } C,s) \rightarrow (\text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip}, s)\)
- we want a \textit{compositional} semantic: we should give \([\text{while } B \text{ do } C]\) in terms of \([C]\) and \([B]\)
[while B do C] = [if B then $(C;\;\text{while } B \text{ do } C)$ else skip]
= $\lambda s \in \text{State. if}(\llbracket B \rrbracket, \llbracket\text{while } B \text{ do } C\rrbracket \circ \llbracket C \rrbracket (s), s)$
LOOP AS A FIXPOINT

\[
[\text{while } B \text{ do } C] = [\text{if } B \text{ then } (C;\text{while } B \text{ do } C) \text{ else skip}]
\]

\[
= \lambda s \in \text{State}. \text{if}(\llbracket B \rrbracket, \llbracket \text{while } B \text{ do } C \rrbracket \circ \llbracket C \rrbracket (s), s)
\]

Not a direct definition for \([\text{while } B \text{ do } C] \)... But a fixed point equation!

\[
[\text{while } B \text{ do } C] = F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\text{while } B \text{ do } C)
\]

where \(F_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State}) \)

\[
w \mapsto \lambda s \in \text{State}. \text{if}(b(s), w \circ c(s), s).
\]
• Why/when does $w = F_{b,c}(w)$ have a solution?
• What if it has several solutions? Which one should be our $\textbf{while } B \textbf{ do } C$?
Now we have a goal

• Why/when does $w = F_{b,c}(w)$ have a solution?
• What if it has several solutions? Which one should be our \([\text{while } B \text{ do } C]\)?

Our occupation for the next few lectures...
INTRODUCTION

A TASTE OF DOMAIN THEORY
AN EXAMPLE

\[\text{while } X > 0 \text{ do } (Y := X \ast Y; X := X - 1) \]
\[\text{while } X > 0 \text{ do (} Y := X \times Y; X := X - 1 \text{)} \]

should be some \(w \) such that:

\[w = F_{[X>0],[Y:=X\times Y;X:=X-1]}(w). \]
An example

\[
\text{while } X > 0 \text{ do } (Y := X \ast Y; X := X - 1)\]

should be some \(w \) such that:

\[
w = F_{[X>0],[Y:=X\ast Y;X:=X-1]}(w).
\]

That is, we are looking for a fixed point of the following \(F : D \rightarrow D \), where \(D \) is \((\text{State} \rightarrow \text{State})\):

\[
F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0.
\end{cases}
\]
Partial order \subseteq on $D (= \text{State} \rightarrow \text{State})$:

| $w \subseteq w'$ | if for all $s \in \text{State}$, if w is defined at s then so is w' and moreover $w(s) = w'(s)$. | if the graph of w is included in the graph of w'. |
Partial order \(\subseteq \) on \(D (= \text{State} \rightarrow \text{State}) \):

- \(w \subseteq w' \) if for all \(s \in \text{State} \), if \(w \) is defined at \(s \) then so is \(w' \) and moreover \(w(s) = w'(s) \).
- \(w \subseteq w' \) if the graph of \(w \) is included in the graph of \(w' \).

Least element \(\bot \in D \):

- \(\bot \) = totally undefined partial function
- \(\bot \) = partial function with empty graph
Define $w_n = F^n(w)$, that is

\[
\begin{align*}
 w_0 & = \bot \\
 w_{n+1} & = F(w_n)
\end{align*}
\]

Approximating the fixed point

Define $w_n = F^n(w)$, that is

$$
\begin{align*}
w_0 &= \bot \\
\forall n \geq 0 : \quad w_{n+1} &= F(w_n).
\end{align*}
$$

$$
\begin{align*}
w_1[\{X \mapsto x, Y \mapsto y\}] &= F(\bot)[\{X \mapsto x, Y \mapsto y\}] = \\
&= \begin{cases}
[\{X \mapsto x, Y \mapsto y\}] & \text{if } x \leq 0 \\
\text{undefined} & \text{if } x \geq 1
\end{cases}
\end{align*}
$$
Define \(w_n = F^n(w) \), that is

\[
\begin{align*}
 w_0 &= \bot \\
 w_{n+1} &= F(w_n)
\end{align*}
\]

\[
w_2[X \mapsto x, Y \mapsto y] = F(w_1)[X \mapsto x, Y \mapsto y] = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
[X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\
\text{undefined} & \text{if } x \geq 2
\end{cases}
\]
Define \(w_n = F^n(w) \), that is:

\[
\begin{align*}
 w_0 &= \perp \\
 w_{n+1} &= F(w_n)
\end{align*}
\]

\[
 w_3[X \mapsto x, Y \mapsto y] = F(w_2)[X \mapsto x, Y \mapsto y] = \begin{cases}
 [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
 [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\
 [X \mapsto 0, Y \mapsto 2y] & \text{if } x = 2 \\
 \text{undefined} & \text{if } x \geq 3
 \end{cases}
\]
Define \(w_n = F^n(w) \), that is
\[
\begin{cases}
 w_0 &= \perp \\
 w_{n+1} &= F(w_n)
\end{cases}
\]

\[w_n[\{X \mapsto x, Y \mapsto y\}] = \begin{cases}
 [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\
 [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \leq x < n \\
 \text{undefined} & \text{if } x \geq n
\end{cases} \]
Define $w_n = F^n(w)$, that is

$$
\begin{align*}
 w_0 &= \bot \\
 w_{n+1} &= F(w_n)
\end{align*}
$$

$$
\begin{align*}
 w_n[X \mapsto x, Y \mapsto y] &=
 \begin{cases}
 [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\
 [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \leq x < n \\
 \text{undefined} & \text{if } x \geq n
 \end{cases}
\end{align*}
$$

$$
\begin{align*}
 w_0 &\sqsubseteq w_1 \sqsubseteq \ldots \sqsubseteq w_n \sqsubseteq \ldots
\end{align*}
$$
Define \(w_n = F^n(w) \), that is
\[
\begin{align*}
 w_0 &= \perp \\
 w_{n+1} &= F(w_n).
\end{align*}
\]

\(w_n[X \mapsto x, Y \mapsto y] = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\
[X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \leq x < n \\
\text{undefined} & \text{if } x \geq n
\end{cases} \]

\(w_0 \subseteq w_1 \subseteq \ldots \subseteq w_n \subseteq \ldots \subseteq w_\infty \)?
Define $w_n = F^n(w)$, that is

$$
\begin{align*}
 w_0 &= \perp \\
 w_{n+1} &= F(w_n).
\end{align*}
$$

$$
w_n[X \mapsto x, Y \mapsto y] = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\
[X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \leq x < n \\
\text{undefined} & \text{if } x \geq n
\end{cases}
$$

$$
w_0 \subseteq w_1 \subseteq \ldots \subseteq w_n \subseteq \ldots \subseteq w_\infty
$$

$$
w_\infty[X \mapsto x, Y \mapsto y] = \bigsqcup_{i \in \mathbb{N}} w_i = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\
[X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \geq 0
\end{cases}
$$
We have our semantics

\[F(w_\infty)[X \mapsto x, Y \mapsto y] \]
\[F(w_\infty)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad \text{(by definition of } F') \]
We have our semantics

\[F(w_\infty)[X \mapsto x, Y \mapsto y] = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
 w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0
\end{cases} \]
(by definition of \(F \))

\[= \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
[X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0
\end{cases} \]
(by definition of \(w_\infty \))
\[F(\omega_\infty)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ \omega_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \]

(by definition of \(F \))

\[= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ \omega_\infty[X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \]

(by definition of \(\omega_\infty \))

\[= \omega_\infty[X \mapsto x, Y \mapsto y] \]
\[F(\omega_\infty)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ \omega_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \]

(by definition of \(F\))

\[= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \]

(by definition of \(\omega_\infty\))

\[= \omega_\infty[X \mapsto x, Y \mapsto y] \]

\(\omega_\infty\) is a fixed point

which moreover agrees with the operational semantics (!)
LEAST FIXED POINTS
LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS
A **partial order** on a set D is a binary relation \subseteq that is

- reflexive: $\forall d \in D. \ d \subseteq d$
- transitive: $\forall d, d', d'' \in D. \ d \subseteq d' \subseteq d'' \Rightarrow d \subseteq d''$
- antisymmetric: $\forall d, d' \in D. \ d \subseteq d' \subseteq d \Rightarrow d = d'$.
A **partial order** on a set D is a binary relation \sqsubseteq that is

- **reflexive**: $\forall d \in D. \; d \sqsubseteq d$
- **transitive**: $\forall d, d', d'' \in D. \; d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$
- **antisymmetric**: $\forall d, d' \in D. \; d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.
DOMAIN OF PARTIAL FUNCTIONS $X \rightarrow Y$

Underlying set: partial functions f with domain of definition $\text{dom}(f) \subseteq X$ and taking values in Y;
Underlying set: partial functions f with domain of definition $\text{dom}(f) \subseteq X$ and taking values in Y;

Order: $f \preceq g$ if $\text{dom}(f) \subseteq \text{dom}(g)$ and $\forall x \in \text{dom}(f). f(x) = g(x)$, i.e. if $\text{graph}(f) \subseteq \text{graph}(g)$.
A function $f: D \rightarrow E$ between posets is monotone if

$$\forall d, d' \in D. d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$
A function $f: D \rightarrow E$ between posets is monotone if

$$\forall d, d' \in D. \quad d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

$$\text{MON} \quad \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$
LEAST FIXED POINTS

LEAST ELEMENTS AND PRE-FIXED POINTS
An element $d \in S$ is the \textbf{least} element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x.$$
An element \(d \in S \) is the least element of \(S \) if it satisfies

\[
\forall x \in S. \ d \sqsubseteq x.
\]

If it exists, it is unique, and is written \(\bot_S \), or simply \(\bot \).
An element \(d \in S \) is the least element of \(S \) if it satisfies

\[
\forall x \in S. \ d \sqsubseteq x.
\]

If it exists, it is unique, and is written \(\bot_S \), or simply \(\bot \).

\[
\begin{align*}
\text{LEAST} & \quad x \in S \\
\text{ASYM} & \quad \bot_S \sqsubseteq x \\
\text{LEAST} & \quad \bot_S \sqsubseteq \bot'_S \\
\text{LEAST} & \quad \bot_S \sqsubseteq \bot_S \\
\text{LEAST} & \quad \bot'_S \sqsubseteq \bot_S \\
\end{align*}
\]

\(\bot_S = \bot'_S \)
An element \(d \in D \) is a pre-fixed point of \(f \) if it satisfies \(f(d) \sqsubseteq d \).
An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$\text{fix}(f)$$
An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

The **least pre-fixed point** of f, if it exists, will be written

$$\text{fix}(f)$$

It is thus (uniquely) specified by the two properties:

\[
\begin{align*}
\text{LFP-FIX} & \quad f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \\
\text{LFP-LEAST} & \quad f(d) \sqsubseteq d \implies \text{fix}(f) \sqsubseteq d
\end{align*}
\]
Proofs with least fixed points

\[\text{LFP-FIX} \quad f(\text{fix}(f)) \subseteq \text{fix}(f) \]

The least pre-fixed point is a fixed point.
To prove $\text{fix}(f) \subseteq d$, it is enough to show $f(d) \subseteq d$.

Proofs with least fixed points

\[
\text{LFP-FIX} \quad f(\text{fix}(f)) \sqsubseteq \text{fix}(f)
\]

LFP-LEAST

\[
\frac{f(d) \subseteq d}{\text{fix}(f) \subseteq d}
\]
PROOFS WITH LEAST FIXED POINTS

LFP-FIX
\[f(\text{fix}(f)) \subseteq \text{fix}(f) \]

LFP-LEAST
\[f(d) \subseteq d \]
\[\text{fix}(f) \subseteq d \]

Application: least pre-fixed points of monotone functions are (least) fixed points.

\[
\begin{align*}
\text{LFP-FIX} & : f(\text{fix}(f)) \subseteq \text{fix}(f) \\
\text{ASYM} & : f(\text{fix}(f)) \subseteq \text{fix}(f) \\
\text{LFP-FIX} & : f(\text{fix}(f)) \subseteq \text{fix}(f) \\
\text{fix}(f) & \subseteq f(\text{fix}(f)) \\
& \Rightarrow f(\text{fix}(f)) = \text{fix}(f)
\end{align*}
\]
PROOFS WITH LEAST FIXED POINTS

LFP-FIX
\[f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \]

LFP-LEAST
\[\text{fix}(f) \sqsubseteq d \]

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX
\[f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \]

MON
\[f(f(\text{fix}(f))) \sqsubseteq f(\text{fix}(f)) \]

LFP-LEAST
\[\text{fix}(f) \sqsubseteq f(\text{fix}(f)) \]

\[f(\text{fix}(f)) = \text{fix}(f) \]
The least upper bound of countable increasing chains $d_0 \subseteq d_1 \subseteq d_2 \subseteq \ldots$, written $\bigsqcup_{n \geq 0} d_n$, satisfies the two following properties:

LUB-BOUND

$$x_i \subseteq \bigsqcup_{n \geq 0} x_n$$

LUB-LEAST

$$\forall n \geq 0. x_n \subseteq x$$
Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$, $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_{n+N} d_n$.
Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \subseteq e_n$, then $\bigsqcup_n d_n \subseteq \bigsqcup_n e_n$.
Lubs are unique.

Lubs are monotone: if for all \(n \in \mathbb{N} \), \(d_n \subseteq e_n \), then \(\bigsqcup_n d_n \subseteq \bigsqcup_n e_n \).

\[
\begin{array}{c}
\forall i. \ d_i \subseteq e_i \\
\hline
\hline
\hline
\end{array}
\]

LUB-MON

\[\bigsqcup_n d_n \subseteq \bigsqcup_n e_n \]
Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \subseteq e_n$, then $\bigsqcup_n d_n \subseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.
PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \subseteq e_n$, then $\bigsqcup_n d_n \subseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$.
Lubs are unique (if they exist).

Lubs are monotone: if for all \(n \in \mathbb{N} \). \(d_n \subseteq e_n \), then \(\bigsqcup_n d_n \subseteq \bigsqcup_n e_n \) (if they exist).

For any \(d \), \(\bigsqcup_n d = d \) (and in particular it exists).

For any chain and \(N \in \mathbb{N} \), \(\bigsqcup_n d_n = \bigsqcup_n d_{n+N} \) (if any of the two exists).
Assume $d_{m,n} \in D \ (m, n \geq 0)$ satisfies

$$m \leq m' \land n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
Assume $d_{m,n} \in D \ (m, n \geq 0)$ satisfies
\[m \leq m' \land n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'} . \] (†)

Then, assuming they exist, the lubs form two chains
\[
\bigsqcup_{n \geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2,n} \sqsubseteq \ldots
\]
and
\[
\bigsqcup_{m \geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,2} \sqsubseteq \ldots
\]
Assume $d_{m,n} \in D \ (m, n \geq 0)$ satisfies

$$m \leq m' \wedge n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$ \hfill (†)

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n \geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2,n} \sqsubseteq \ldots$$

and

$$\bigsqcup_{m \geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,2} \sqsubseteq \ldots$$

Moreover, again assuming they exist,

$$\bigsqcup_{m \geq 0} \left(\bigsqcup_{n \geq 0} d_{m,n} \right) = \bigsqcup_{k \geq 0} d_{k,k} = \bigsqcup_{n \geq 0} \left(\bigsqcup_{m \geq 0} d_{m,n} \right).$$
LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS
A **chain complete poset/cpo** is a poset \((D, \sqsubseteq)\) in which all chains have least upper bounds.
A **chain complete poset/cpo** is a poset \((D, \sqsubseteq)\) in which all chains have least upper bounds.

Beware: the lub need only exist if the \(x_i\) form a chain!
A **chain complete poset/cpo** is a poset \((D, \sqsubseteq)\) in which all chains have least upper bounds.

Beware: the lub need only exist if the \(x_i\) form a chain!

A **domain** is a cpo with a least element \(\bot\).
Least element: \(\bot \) is the totally undefined function.
Least element: \bot is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \ldots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$
Least element: \bot is the totally undefined function.

Lub of a chain: $f_0 \subseteq f_1 \subseteq f_2 \subseteq \ldots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Beware: the definition of $\bigsqcup_{n \geq 0} f_n$ is unambiguous only if the f_i form a chain!
The flat natural numbers \mathbb{N}_\bot
LEAST FIXED POINTS
CONTINUOUS FUNCTIONS
Given two cpos D and E, a function $f: D \to E$ is **continuous** if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, we have

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$$
Continuity and strictness

Given two cpos D and E, a function $f: D \rightarrow E$ is **continuous** if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq ...$ in D, we have

\[
f(\bigsqcup_{n \geq 0} d_n) = \bigsqcup_{n \geq 0} f(d_n)
\]

A function f is **strict** if $f(\bot_D) = \bot_E$.
All computable functions are continuous.
All *computable* functions are continuous.
All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 ⊥ ...</td>
<td>⊥</td>
</tr>
<tr>
<td>0 0 0 0 1 ...</td>
<td>1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>
All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 ⊥ ...</td>
<td>⊥</td>
</tr>
<tr>
<td>0 0 0 0 1 ...</td>
<td>1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 ...</td>
<td>?</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: show the thesis… by giving a denotational semantics.
All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?

```
0 0 ⊥ ...  ↦ ⊥
0 0 0 0 1 ...  ↦ 1
0 0 0 0 0 0 0 0 ⊥ ...  ↦ ⊥
0 0 0 0 0 0 0 0 0 ...  ↦ ?
0 0 0 0 0 0 0 0 0 0 ...  ↦ 0
```
All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?

\[
\begin{array}{ccccccc}
0 & 0 & \bot & \ldots & & & \\
0 & 0 & 0 & 0 & 1 & \ldots & \mapsto 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mapsto \bot \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & \mapsto ? \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mapsto 0 \\
\end{array}
\]

Intuition: non-continuity \(\approx\) “jump at infinity” \(\approx\) non-computability
All computable functions are continuous.

The typical non-continuous function: “is a sequence the constant 0”?

\[
\begin{array}{cccccccc}
0 & 0 & \bot & \ldots & \mapsto & \bot \\
0 & 0 & 0 & 0 & 1 & \ldots & \mapsto & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \bot & \ldots & \mapsto & \bot \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & \mapsto & ? \\
0 & 0 & 0 & 0 & 0 & 0 & \bar{0} & \mapsto & 0 \\
\end{array}
\]

Intuition: non-continuity \(\approx\) “jump at infinity” \(\approx\) non-computability

 Later in the course: **show** the thesis... by giving a denotational semantics.
LEAST FIXED POINTS
KLEENE’S FIXED POINT THEOREM
Kleene’s fixed point theorem

Let \(f: D \to D \) be a continuous function on a domain \(D \). Then \(f \) possesses a least pre-fixed point, given by

\[
\text{fix}(f) = \bigsqcup_{n \geq 0} f^n(\bot).
\]
Kleene’s fixed point theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \geq 0} f^n(\bot).$$

It is thus also the least fixed point of f!
CONSTRUCTIONS ON DOMAINS
CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS
The flat domain on a set X is defined by:

- its underlying set $X \cup \{\bot\}$;
- $x \sqsubseteq x'$ if either $x = \bot$ or $x = x'$.
Let $f : X \rightarrow Y$ be a partial function between two sets. Then

$$f_\perp : X_\perp \rightarrow Y_\perp$$

$$d \mapsto \begin{cases} f(d) & \text{if } d \in X \text{ and } f \text{ is defined at } d \\ \perp & \text{if } d \in X \text{ and } f \text{ is not defined at } d \\ \perp & \text{if } d = \perp \end{cases}$$

defines a continuous function between the corresponding flat domains.
CONSTRUCTIONS ON DOMAINS

PRODUCTS OF DOMAINS
The **product** of two posets \((D_1, \sqsubseteq_1)\) and \((D_2, \sqsubseteq_2)\) has underlying set

\[
D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2\}
\]

and partial order \(\sqsubseteq\) defined by

\[
(d_1, d_2) \sqsubseteq (d_1', d_2') \iff d_1 \sqsubseteq_1 d_1' \land d_2 \sqsubseteq_2 d_2'
\]
The **product** of two posets \((D_1, \sqsubseteq_1)\) and \((D_2, \sqsubseteq_2)\) has underlying set

\[D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2\} \]

and partial order \(\sqsubseteq\) defined by

\[(d_1, d_2) \sqsubseteq (d_1', d_2') \overset{\text{def}}{\iff} d_1 \sqsubseteq_1 d_1' \land d_2 \sqsubseteq_2 d_2' \]
lubs of chains are computed componentwise:

\[
\bigsqcup_{n \geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \geq 0} d_{1,i}, \bigsqcup_{j \geq 0} d_{2,j}).
\]
COMPONENTWISE LUBS AND LEAST ELEMENTS

Lubs of chains are computed componentwise:

\[
\bigvee_{n \geq 0} (d_{1,n}, d_{2,n}) = \left(\bigvee_{i \geq 0} d_{1,i}, \bigvee_{j \geq 0} d_{2,j} \right).
\]

If \((D_1, \sqsubseteq_1)\) and \((D_2, \sqsubseteq_2)\) have least elements, so does \((D_1 \times D_2, \sqsubseteq)\) with

\[
\bot_{D_1 \times D_2} = (\bot_{D_1}, \bot_{D_2}).
\]
COMPONENTWISE LUBS AND LEAST ELEMENTS

Lubs of chains are computed componentwise:

\[
\bigsqcup_{n \geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \geq 0} d_{1,i}, \bigsqcup_{j \geq 0} d_{2,j}).
\]

If \((D_1, \sqsubseteq_1)\) and \((D_2, \sqsubseteq_2)\) have least elements, so does \((D_1 \times D_2, \sqsubseteq)\) with

\[
\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})
\]

Products of cpos (domains) are cpos (domains).
A function $f : (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

\[
\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)
\]

\[
\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').
\]
A function $f : (D \times E) \to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$
$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

$$f(\bigsqcup_{m \geq 0} d_m, e) = \bigsqcup_{m \geq 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n \geq 0} e_n) = \bigsqcup_{n \geq 0} f(d, e_n).$$
DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

\[
\text{MON}\times f \text{ monotone } x \sqsubseteq x' \quad y \sqsubseteq y' \\
f(x, y) \sqsubseteq f(x', y')
\]

\[
f\left(\bigsqcup_m x_m, \bigsqcup_n y_n\right) = \bigsqcup_m \bigsqcup_n f(x_m, y_n) = \bigsqcup_k f(x_k, y_k)
\]
Let D_1 and D_2 be cpos. The projections

\[\pi_1 : D_1 \times D_2 \rightarrow D_1 \quad (d_1, d_2) \mapsto d_1 \]

\[\pi_2 : D_1 \times D_2 \rightarrow D_2 \quad (d_1, d_2) \mapsto d_2 \]

are continuous functions.
Let D_1 and D_2 be cpos. The projections

$$
\pi_1 : \quad D_1 \times D_2 \rightarrow D_1 \quad (d_1, d_2) \mapsto d_1
$$

$$
\pi_2 : \quad D_1 \times D_2 \rightarrow D_2 \quad (d_1, d_2) \mapsto d_2
$$

are continuous functions.

If $f_1 : D \rightarrow D_1$ and $f_2 : D \rightarrow D_2$ are continuous functions from a cpo D, then the pairing function

$$
\langle f_1, f_2 \rangle : \quad D \rightarrow \quad D_1 \times D_2 \quad d \mapsto (f_1(d), f_2(d))
$$

is continuous.
The conditional function

\[
\text{if} : \mathbb{B}_\bot \times (D \times D) \rightarrow D \\
(x, d) \mapsto \begin{cases}
\pi_1(d) & \text{if } x = \text{true} \\
\pi_2(d) & \text{if } x = \text{false} \\
\bot_D & \text{if } x = \bot
\end{cases}
\]

is continuous.
Given a set I, suppose that for each $i \in I$ we are given a set X_i. The (cartesian) product of the X_i is

$$\prod_{i \in I} X_i$$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Projections (for any $i \in I$):

$$\pi_i: \left(\prod_{i \in I} X_i \right) \to X_i$$
Given a set I, suppose that for each $i \in I$ we are given a set X_i. The (cartesian) product of the X_i is

$$\prod_{i \in I} X_i$$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i. The (cartesian) product of the X_i is

$$\prod_{i \in I} X_i$$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i. The (cartesian) product of the X_i is

$$\prod_{i \in I} X_i$$

Two ways to see it:

- tuples: $(..., x_i, ...)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Projections (for any $i \in I$):

$$\pi_i : \left(\prod_{i \in I} X_i \right) \to X_i$$
Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i). The product of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i). The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

\[p \sqsubseteq p' \overset{\text{def}}{\iff} \forall i \in I. \ p_i \sqsubseteq_i p'_i. \]
Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i). The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

\[
p \sqsubseteq p' \iff \forall i \in I. p_i \sqsubseteq_i p'_i.
\]

I-indexed products of cpos (domains) are cpos (domains), and projections are continuous.
CONSTRUCTIONS ON DOMAINS

FUNCTION DOMAINS
Given two cpos $\langle D, \sqsubseteq_D \rangle$ and $\langle E, \sqsubseteq_E \rangle$, the function $\text{cpo} \ (D \to E, \sqsubseteq)$ has underlying set

$$\{ f : D \to E \mid \text{is a continuous function} \}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \iff \forall d \in D. \ f(d) \sqsubseteq_E f'(d).$$
Given two cpos \((D, \sqsubseteq_D)\) and \((E, \sqsubseteq_E)\), the function cpo \((D \to E, \sqsubseteq)\) has underlying set
\[
\{ f : D \to E \mid \text{is a continuous function} \}
\]
equipped with the pointwise order:
\[
f \sqsubseteq f' \iff \forall d \in D. \ f(d) \sqsubseteq_E f'(d).
\]

\[
\begin{align*}
f \sqsubseteq_{D \to E} g & \quad x \sqsubseteq_D y \\
\hline
f(x) \sqsubseteq_E g(y)
\end{align*}
\]
Given two cpos \((D, \sqsubseteq_D)\) and \((E, \sqsubseteq_E)\), the function \(\text{cpo } (D \to E, \sqsubseteq)\) has underlying set

\[
\{ f : D \to E \mid \text{is a continuous function} \}
\]
equipped with the pointwise order:

\[
f \sqsubseteq f' \iff \forall d \in D. \ f(d) \sqsubseteq_E f'(d).
\]

Argumentwise least elements and lubs:

\[
\bot_{D \to E}(d) = \bot_E \quad \quad \left(\bigsqcup_{n \geq 0} f_n \right)(d) = \bigsqcup_{n \geq 0} f_n(d)
\]
Evaluation, currying \((f : (D' \times D) \to E)\) and composition

\[
\text{eval} : (D \to E) \times D \to E \\
(f, d) \mapsto f(d)
\]

\[
\text{cur}(f) : D' \to (D \to E) \\
d' \mapsto \lambda d \in D. f(d', d)
\]

\[
\circ : ((E \to F) \times (D \to E)) \to (D \to F) \\
(f, g) \mapsto \lambda d \in D. g(f(d))
\]

are all well-defined and continuous.
contituency of the fixed point operator

\[\text{fix}: (D \to D) \to D \]

is continuous.
CONSTRUCTIONS ON DOMAINS

BACK TO THE INTRODUCTION
\[\text{while } X > 0 \text{ do } (Y := X \times Y; X := X - 1)\]

is a fixed point of the following \(F : D \rightarrow D \), where \(D \) is \((\text{State} \rightarrow \text{State})\):

\[
F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases}
[X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\
w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0.
\end{cases}
\]
[while $X > 0$ do ($Y := X \cdot Y; X := X - 1$)]

is a fixed point of the following $F : D \rightarrow D$, where D is ($\text{State}_\bot \rightarrow \text{State}_\bot$):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$

$$F(\bot) = \bot$$

$\text{State}_\bot \rightarrow \text{State}_\bot$ is a domain!
Kleene’s fixed point theorem:

\[w_\infty = \bigwedge_{i \in \mathbb{N}} F^n(\bot) \]

is the least fixed point of \(F \), and in particular a fixed point.
Kleene's fixed point theorem:

\[w_\infty = \bigsqcup_{i \in \mathbb{N}} F^n(\bot) \]

is the least fixed point of \(F \), and in particular a fixed point.

We can compute explicitly

\[w_\infty[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \geq 0 \end{cases} \]

And check this agrees with the operational semantics.
Let D be a domain, $f: D \rightarrow D$ be a continuous function and $S \subseteq D$ be a subset of D. If the set S

(i) contains \bot,

(ii) is stable under f, i.e. $f(S) \subseteq S$,

(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then $\text{fix}(f) \in S$.

\[\Phi(\bot) \Rightarrow \Phi(x) \Rightarrow \Phi(f(x)) \]
\[(\forall i \in \mathbb{N}. \Phi(x_i) \Rightarrow \Phi(\bigsqcup_{i \in \mathbb{N}} x_i)) \Rightarrow \Phi(\text{fix}(f)) \]
Reasoning on fixed points: Scott induction

Let D be a domain, $f: D \rightarrow D$ be a continuous function and $S \subseteq D$ be a subset of D. If the set S

(i) contains \bot,
(ii) is stable under f, i.e. $f(S) \subseteq S$,
(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,

then $\text{fix}(f) \in S$.

\[
\Phi(\bot) \quad \Phi(x) \Rightarrow \Phi(f(x)) \quad (\forall i \in \mathbb{N}. \Phi(x_i)) \Rightarrow \Phi(\bigsqcup_{i \in \mathbb{N}} x_i)
\]

ScottInd

\[
\Phi(\text{fix}(f))
\]
All the following are chain-closed:

\[
\{(x, y) \in D \times D \mid x \preceq y\}, \quad d \downarrow \defeq \{x \in D \mid x \preceq d\}
\]

and

\[
\{(x, y) \in D \times D \mid x = y\}
\]

\(f^{-1}(S) = \{x \in D \mid f(x) \in S\}\) if \(S \subseteq E\) is chain-closed, and \(f : D \to E\) is continuous.

\(S \cup T\) and \(\bigcap_{i \in I} S_i\) if \(S, T\) and \(S_i\) are

\[
\forall S \defeq \{y \in E \mid \forall x \in D. (x, y) \in S\} \subseteq E
\]

if \(S \subseteq D \times E\) is
All the following are chain-closed:

\[\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow \overset{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\} \]
All the following are chain-closed:

\[
\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \overset{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}
\]

\[
f^{-1}S = \{x \in D \mid f(x) \in S\} \quad \text{if } S \subseteq E \text{ is chain-closed, and } f : D \to E \text{ is continuous}
\]
All the following are chain-closed:

\[(x, y) \in D \times D \mid x \sqsubseteq y\] , \[d \overset{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}\] and \[\{(x, y) \in D \times D \mid x = y\}\]

\[f^{-1}S = \{x \in D \mid f(x) \in S\}\] if \(S \subseteq E\) is chain-closed, and \(f: D \to E\) is continuous

\[S \cup T\] and \[\bigcap_{i \in I} S_i\] if \(S, T\) and \(S_i\) are
All the following are chain-closed:

\{(x, y) \in D \times D \mid x \sqsubseteq y\} , \quad d \overset{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}

\[f^{-1}S = \{x \in D \mid f(x) \in S\} \quad \text{if} \ S \subseteq E \text{ is chain-closed, and} \ f : D \to E \text{ is continuous} \]

\[S \cup T \quad \text{and} \quad \bigcap_{i \in I} S_i \quad \text{if} \ S, T \text{ and } S_i \text{ are} \]

\[\forall S \overset{\text{def}}{=} \{y \in E \mid \forall x \in D. (x, y) \in S\} \subseteq E \quad \text{if} \ S \subseteq D \times E \text{ is} \]
Assume \(f(d) \sqsubseteq d \), i.e. \(d \) is a pre-fixed point of the continuous \(f : D \to D \). By Scott induction on \(d \downarrow \), \(\text{fix}(f) \sqsubseteq d \).
Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of the continuous $f : D \rightarrow D$. By Scott induction on $d \downarrow$, $\text{fix}(f) \sqsubseteq d$.

Proof!
Let $w_\infty : \text{State}_\perp \to \text{State}_\perp$ be the denotation of

$$\text{while } X > 0 \text{ do } (Y := X \times Y; X := X - 1)$$

Recall that $w_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

$$F(w)(\perp) = \perp$$
Let $\omega_\infty : \text{State}_\bot \rightarrow \text{State}_\bot$ be the denotation of

$$\text{while } X > 0 \text{ do } (Y := X \ast Y; X := X - 1)$$

Recall that $\omega_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

$F(w)(\bot) = \bot$

Claim:

$$\forall x. \forall y \geq 0. \omega_\infty(x, y) \Downarrow \implies \pi_Y(\omega_\infty(x, y)) \geq 0$$
Let $w_\infty : \text{State}_\bot \rightarrow \text{State}_\bot$ be the denotation of

$$\text{while } X > 0 \text{ do } (Y := X \ast Y; X := X - 1)$$

Recall that $w_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

$$F(w)(\bot) = \bot$$

Claim:

$$\forall x. \forall y \geq 0. w_\infty (x, y) \Downarrow \implies \pi_Y (w_\infty (x, y)) \geq 0$$

Proof: by Scott induction!
PCF
PCF

Terms and Types
Types: \[\tau ::= \text{nat} | \text{bool} | \tau \rightarrow \tau \]
Types: \(\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau \)

Terms: \(t ::= 0 \mid \text{succ}(t) \mid \text{pred}(t) \mid \text{true} \mid \text{false} \mid \text{zero?}(t) \mid \text{if } t \text{ then } t \text{ else } t \mid x \mid \text{fun } x : \tau . t \mid t \; t \mid \text{fix}(t) \)
The term t has type τ in context Γ.

\[
\begin{align*}
\text{ZERO} & : \quad \frac{}{\Gamma \vdash 0 : \text{nat}} \\
\text{Succ} & : \quad \frac{\Gamma \vdash t : \text{nat}}{\Gamma \vdash \text{succ}(t) : \text{nat}} \\
\text{Pred} & : \quad \frac{\Gamma \vdash t : \text{nat}}{\Gamma \vdash \text{pred}(t) : \text{nat}}
\end{align*}
\]
The term t has type τ in context Γ.

- **ZERO**
 \[
 \Gamma \vdash 0 : \text{nat}
 \]

- **SUCC**
 \[
 \Gamma \vdash t : \text{nat} \\
 \Gamma \vdash \text{succ}(t) : \text{nat}
 \]

- **PRED**
 \[
 \Gamma \vdash t : \text{nat} \\
 \Gamma \vdash \text{pred}(t) : \text{nat}
 \]

- **TRUE**
 \[
 \Gamma \vdash \text{true} : \text{bool}
 \]

- **FALSE**
 \[
 \Gamma \vdash \text{false} : \text{bool}
 \]

- **ISZ**
 \[
 \Gamma \vdash t : \text{nat} \\
 \Gamma \vdash \text{zero}?(t) : \text{bool}
 \]

- **IF**
 \[
 \Gamma \vdash b : \text{bool} \\
 \Gamma \vdash t : \tau \\
 \Gamma \vdash t' : \tau \\
 \Gamma \vdash \text{if } b \text{ then } t \text{ else } t' : \tau
 \]
Typing for PCF (II)

\[\Gamma(x) = \tau \]

VAR

\[\Gamma \vdash x : \tau \]

FUN

\[\Gamma, x:\sigma \vdash t : \tau \]

\[\Gamma \vdash \text{fun } x:\sigma. t : \sigma \rightarrow \tau \]

APP

\[\Gamma \vdash f : \sigma \rightarrow \tau \quad \Gamma \vdash u : \sigma \]

\[\Gamma \vdash f \ u : \tau \]

FIX

\[\Gamma \vdash f : \tau \rightarrow \tau \]

\[\Gamma \vdash \text{fix}(f) : \tau \]
Typing for PCF (II)

\[
\begin{align*}
\text{VAR} & : \quad \Gamma(x) = \tau \\
\frac{}{\Gamma \vdash x : \tau} \\
\text{FUN} & : \quad \Gamma, x: \sigma \vdash t : \tau \\
\frac{}{\Gamma \vdash \text{fun} x: \sigma. t : \sigma \to \tau} \\
\text{APP} & : \quad \Gamma \vdash f : \sigma \to \tau \quad \Gamma \vdash u : \sigma \\
\frac{}{\Gamma \vdash f u : \tau} \\
\text{FIX} & : \quad \Gamma \vdash f : \tau \to \tau \\
\frac{}{\Gamma \vdash \text{fix}(f) : \tau}
\end{align*}
\]

\[
\begin{align*}
\text{PCF}_{\Gamma,\tau} & \overset{\text{def}}{=} \{ t \mid \Gamma \vdash t : \tau \} \\
\text{PCF}_\tau & \overset{\text{def}}{=} \text{PCF}_{\cdot,\tau}
\end{align*}
\]
Values:

\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun } x: \tau. t \]
Values:
\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun } x: \tau. \ t \]

\[\text{VAL} \quad \frac{}{\text{\vdash } v : \tau} \]
\[\frac{}{v \Downarrow^\tau v} \]
Values:

\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun } x: \tau . t \]

\[
\begin{align*}
\text{VAL} & \quad \vdash v : \tau \\
\Downarrow_\tau & \quad v \Downarrow_\tau v \\
\text{SUCC} & \quad t \Downarrow_{\text{nat}} v \\
& \quad \text{succ}(t) \Downarrow_{\text{nat}} \text{succ}(v) \\
\text{PRED} & \quad t \Downarrow_{\text{nat}} \text{succ}(v) \\
& \quad \text{pred}(t) \Downarrow_{\text{nat}} v
\end{align*}
\]
Values:

\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun } x: \tau. t \]

\[\vdash v : \tau \]

\[v \Downarrow^{\tau} v \]

\[t \Downarrow^{\text{nat}} v \]

\[\text{succ}(t) \Downarrow^{\text{nat}} \text{succ}(v) \]

\[\text{pred}(t) \Downarrow^{\text{nat}} v \]

\[t \Downarrow^{\text{nat}} 0 \]

\[\text{zero?}(t) \Downarrow^{\text{bool}} \text{true} \]

\[b \Downarrow^{\text{bool}} \text{true} \]

\[\text{if } b \text{ then } t_1 \text{ else } t_2 \Downarrow^{\tau} v \]
PCF EVALUATION

Values:

\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun} \ x: \tau. \ t \]

\[
\begin{align*}
\text{VAL} & \quad \vdash v : \tau \\
\Rightarrow & \quad v \Downarrow^\tau v \\
\text{SUCC} & \quad t \Downarrow^\text{nat} v \\
\Rightarrow & \quad \text{succ}(t) \Downarrow^\text{nat} \text{succ}(v) \\
\text{PRED} & \quad t \Downarrow^\text{nat} \text{succ}(v) \\
\Rightarrow & \quad \text{pred}(t) \Downarrow^\text{nat} v \\
\text{ZEROZ} & \quad t \Downarrow^\text{nat} 0 \\
\Rightarrow & \quad \text{zero?}(t) \Downarrow^\text{bool} \text{true} \\
\text{FUN} & \quad t \Downarrow^\sigma \rightarrow^\tau \text{fun} \ x: \sigma. \ t' \\
\Rightarrow & \quad t \hspace{1mm} u \Downarrow^\tau v \\
\text{IFT} & \quad b \Downarrow^\text{bool} \text{true} \\
\Rightarrow & \quad \text{if} \ b \text{ then } t_1 \text{ else } t_2 \Downarrow^\tau v \\
\text{FIX} & \quad t \hspace{1mm} (\text{fix}(t)) \Downarrow^\tau v \\
\Rightarrow & \quad \text{fix}(t) \Downarrow^\tau v
\end{align*}
\]
Values:
\[v ::= 0 \mid \text{succ}(v) \mid \text{true} \mid \text{false} \mid \text{fun} \ x: \tau. \ t \]

\[\begin{align*}
\text{VAL} & : v : \tau \vdash v : \tau \\
\text{Succ} & : t \downarrow_{\text{nat}} v \quad \text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v) \\
\text{Pred} & : t \downarrow_{\text{nat}} \text{succ}(v) \quad \text{pred}(t) \downarrow_{\text{nat}} v \\
\text{ZeroZ} & : t \downarrow_{\text{nat}} 0 \quad \text{zero?}(t) \downarrow_{\text{bool}} \text{true} \\
\text{Fun} & : t \downarrow_{\sigma \rightarrow \tau} \text{fun} \ x: \sigma. \ t' \quad t'[u/x] \downarrow_{\tau} v \\
\text{Fix} & : t(\text{fix}(t)) \downarrow_{\tau} v
\end{align*} \]

Alternatively: small-step \(t \leadsto_{\tau} u \), we have \(t \downarrow_{\tau} v \) iff \(t \leadsto^*_{\tau} u \).
plus \text{def} \text{ = fun } x: \text{nat. fix(fun}(p: \text{nat }\rightarrow \text{nat})(y: \text{nat}). \\
\text{ if zero?(y) then } x \text{ else succ}(p \text{ pred(y)}))
\begin{align*}
\text{plus } 3 \ 1 & \Downarrow_{\text{nat}} 4
\end{align*}
plus \overset{\text{def}}{=} \text{fun } x : \text{nat}. \text{fix(fun}(p : \text{nat }\to \text{nat})(y : \text{nat}).
\text{if zero?}(y) \text{ then } x \text{ else } \text{succ}(p \text{ pred}(y)))

\text{plus } 3 \downarrow_\text{nat} 4

\Omega_\tau \overset{\text{def}}{=} \text{fix(fun } x : \tau. x)

\Omega_\tau \uparrow_\tau \quad \text{(diverges)}
 if zero?(y) then x else succ(p pred(y)))

plus 3 1 \downarrow_{\text{nat}} 4

Ωτ = fix(fun x: τ. x)

Ωτ \uparrow_τ \quad \text{(diverges)}

Try it out!
PCF is **Turing-complete**: for every partial recursive function \(\phi \), there is a PCF term \(_ \) \(\phi \) such that for all \(n \in \mathbb{N} \), if \(\phi(n) \) is defined then \(_ n \Downarrow_{\text{nat}} \phi(n) \).
PCF is Turing-complete: for every partial recursive function ϕ, there is a PCF term $\overline{\phi}$ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\overline{\phi \ n} \downarrow_{\text{nat}} \phi(n)$.

(Later on: $\phi = \left[\phi \right]$.)
Evaluation in PCF is **deterministic**: if both $t \Downarrow_{\tau} \nu$ and $t \Downarrow_{\tau} \nu'$ hold, then $\nu = \nu'$.
Evaluation in PCF is **deterministic**: if both $t \Downarrow_\tau \nu$ and $t \Downarrow_\tau \nu'$ hold, then $\nu = \nu'$.

By (rule) induction on evaluation \Downarrow:

$$\{(t, \tau, \nu) \mid t \Downarrow_\tau \nu \land \forall \nu'. (t \Downarrow_\tau \nu' \implies \nu = \nu')\}$$

Intuition: there is always exactly one rule which applies.
PCF

CONTEXTUAL EQUIVALENCE
Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.
Two phrases of a programming language are *contextually equivalent* if any occurrences of the first phrase in a *complete program* can be replaced by the second phrase without affecting the *observable results* of executing the program.

The intuitive notion of *program equivalence* for programmers.
\[C ::= - \mid \text{succ}(C) \mid \text{pred}(C) \mid \text{zero}\?(C) \mid \begin{cases} \text{if } C \text{ then } t \text{ else } t \end{cases} \mid \begin{cases} \text{if } t \text{ then } C \text{ else } t \end{cases} \mid \begin{cases} \text{if } t \text{ then } t \text{ else } C \end{cases} \mid \text{fun } x : \tau . C \mid C t \mid t C \mid \text{fix}(C) \]
\[C ::= \, - \, | \, \text{succ}(C) \, | \, \text{pred}(C) \, | \, \text{zero?}(C) \, | \, \text{if } C \text{ then } t \text{ else } t \, | \, \text{if } t \text{ then } C \text{ else } t \, | \, \text{if } t \text{ then } t \text{ else } C \, | \, \text{fun } x: \tau. \, C \, | \, C \, t \, | \, t \, C \, | \, \text{fix}(C) \]

Typing extended to evaluation contexts: \(\Gamma \vdash_{\Delta, \sigma} C : \tau \).
Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta,\sigma} C : \tau$.

\[
\Gamma \vdash_{\Gamma,\tau} \tau - : \tau \quad \frac{\Gamma \vdash_{\Delta,\sigma} C : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash u : \tau_1}{\Gamma \vdash_{\Delta,\sigma} C u : \tau_2} \quad \ldots
\]
Given a type τ, a typing context Γ and terms $t, t' \in \text{PCF}_{\Gamma,\tau}$, contextual equivalence, written $\Gamma \vdash t \equiv_{\text{ctx}} t' : \tau$ is defined to hold if for all evaluation contexts C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$, where γ is nat or bool, and for all values $v \in \text{PCF}_\gamma$,

$$C[t] \downarrow_\gamma v \iff C[t'] \downarrow_\gamma v.$$

When Γ is the empty context, we simply write $t \equiv_{\text{ctx}} t' : \tau$ for $\cdot \vdash t \equiv_{\text{ctx}} t' : \tau$.

PCF

INTRODUCING DENOTATIONAL SEMANTICS
THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types \(\tau \) to domains \([\tau]\);
- a mapping of closed, well-typed PCF terms \(\vdash t : \tau \) to elements \([t] \in [\tau]\);
- denotation of open terms will be continuous functions.
The aims of denotational semantics

- a mapping of PCF types \(\tau \) to domains \([\tau]\);
- a mapping of closed, well-typed PCF terms \(\vdash t : \tau \) to elements \([t] \in [\tau] \);
- denotation of open terms will be continuous functions.

Compositionality: \([t] = [t'] \implies [C[t]] = [C[t']] \).

Soundness: for any type \(\tau \), \(t \Downarrow_{\tau} v \implies [t] = [v] \).

Adequacy: for \(\gamma = \text{bool} \) or \(\text{nat} \), if \(t \in \text{PCF}_\gamma \) and \([t] = [v] \) then \(t \Downarrow_{\gamma} v \).
Proof principle: to show

\[t_1 \cong_{\text{ctx}} t_2 : \tau \]

it suffices to establish

\[[t_1] = [t_2] \in [\tau] \]
The power of denotational semantics

Proof principle: to show

\[t_1 \cong_{\text{ctx}} t_2 : \tau \]

it suffices to establish

\[[t_1] = [t_2] \in \llbracket \tau \rrbracket \]

\[C[t_1] \downarrow_{\text{nat}} \nu \Rightarrow [C[t_1]] = [\nu] \] (soundness)

\[\Rightarrow [C[t_2]] = [\nu] \] (compositionality on \([t_1] = [t_2]\))

\[\Rightarrow C[t_2] \downarrow_{\text{nat}} \nu \] (adequacy)
Proof principle: to show

\[t_1 \simeq_{\text{ctx}} t_2 : \tau \]

it suffices to establish

\[[t_1] = [t_2] \in [\tau] \]

\[
C[t_1] \downarrow_{\text{nat}} v \Rightarrow [C[t_1]] = [v] \quad \text{(soundness)}
\]
\[
\Rightarrow [C[t_2]] = [v] \quad \text{(compositionality on } [t_1] = [t_2])
\]
\[
\Rightarrow C[t_2] \downarrow_{\text{nat}} v \quad \text{(adequacy)}
\]

and symmetrically for \(C[t_2] \downarrow_{\text{nat}} v \Rightarrow C[t_1] \downarrow_{\text{nat}} v \), and similarly for \textbf{bool}.\]
Proof principle: to show

\[t_1 \simeq_{\text{ctx}} t_2 : \tau \]

it suffices to establish

\[[t_1] = [t_2] \in [\tau] \]

Denotational equality is **sound**, but is it **complete**?
Does equality in the model imply contextual equivalence?
Proof principle: to show

\[t_1 \equiv_{\text{ctx}} t_2 : \tau \]

it suffices to establish

\[[t_1] = [t_2] \in [\tau] \]

Denotational equality is **sound**, but is it **complete**?
Does equality in the model imply contextual equivalence?

Full abstraction.
DENOTATIONAL SEMANTICS FOR PCF
DENOTATIONAL SEMANTICS FOR PCF

TYPES AND CONTEXTS
}\text{nat} \overset{\text{def}}{=} \mathbb{N}_ot \\
\text{bool} \overset{\text{def}}{=} \mathbb{B}_ot \\
[\tau \to \tau'] \overset{\text{def}}{=} [\tau] \to [\tau'] \\
\text{(function domain)}

\text{(flat domain)}
$$[\Gamma] \overset{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} [\Gamma(x)] \quad (\Gamma\text{-environments})$$
Semantics of contexts

\[[\Gamma] \overset{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} [\Gamma(x)] \quad (\Gamma\text{-environments}) \]

- \([\cdot]\) = 1 (one element set)
- \([x: \tau] = (\{x\} \rightarrow [\tau]) \cong [\tau]\)
- \([x_1: \tau_1, \ldots, x_n: \tau_n] = [\tau_1] \times \cdots \times [\tau_n]\)
DENOTATIONAL SEMANTICS FOR PCF TERMS
To every typing judgement

$$\Gamma \vdash t : \tau$$

we associate a continuous function

$$[\Gamma \vdash t : \tau] : [\Gamma] \rightarrow [\tau]$$

between domains. In other words,

$$[-] : \text{PCF}_{\Gamma,\tau} \rightarrow [\Gamma] \rightarrow [\tau]$$
Denotation of operations on \mathbb{B} and \mathbb{N}

\[
\text{succ} : \mathbb{N} \rightarrow \mathbb{N} \quad \text{pred} : \mathbb{N} \rightarrow \mathbb{N}
\]

\[
succ(n) = n + 1 \quad \text{pred}(n) = \begin{cases}
0 & \text{undefined} \\
0 & \text{true} \\
n + 1 & \text{false}
\end{cases}
\]

\[
\text{zero?} : \mathbb{N} \rightarrow \mathbb{B} \quad q \quad \text{if} \quad b \quad \text{then} \quad t \quad \text{else} \quad t' \\
\text{def} = \begin{cases}
0 & \text{true} \\
n + 1 & \text{false}
\end{cases}
\]

\[
\text{def} = \begin{cases}
0 & \text{true} \\
n & \text{false}
\end{cases}
\]
Denotation of operations on \(\mathbb{B} \) and \(\mathbb{N} \)

\[
\text{succ}_\bot : \quad \mathbb{N}_\bot \rightarrow \mathbb{N}_\bot \\
\quad n \mapsto n + 1 \\
\quad \bot \mapsto \bot
\]

\[
\text{pred}_\bot : \quad \mathbb{N}_\bot \rightarrow \mathbb{N}_\bot \\
\quad 0 \mapsto \bot \\
\quad n + 1 \mapsto n \\
\quad \bot \mapsto \bot
\]

\[
\text{zero?}_\bot : \quad \mathbb{N}_\bot \rightarrow \mathbb{B}_\bot \\
\quad 0 \mapsto \text{true} \\
\quad n + 1 \mapsto \text{false} \\
\quad \bot \mapsto \bot
\]

\[
\text{if} \quad b \quad \text{then} \quad t \quad \text{else} \quad t' \\
\defeq \text{if}(b, t, q(t', \rho)) \in J(\tau)
\]
Denotation of operations on \mathbb{B} and \mathbb{N}

\[
\begin{align*}
\text{[0]}(\rho) & \overset{\text{def}}{=} 0 & \in \mathbb{N}_\bot \\
\text{[true]}(\rho) & = \text{true} & \in \mathbb{B}_\bot \\
\text{[false]}(\rho) & = \text{false} & \in \mathbb{B}_\bot
\end{align*}
\]
Denotation of operations on \mathbb{B} and \mathbb{N}

\[
\begin{align*}
[0](\rho) & \overset{\text{def}}{=} 0 \in \mathbb{N}_\perp \\
[\text{true}](\rho) & \overset{\text{def}}{=} \text{true} \in \mathbb{B}_\perp \\
[\text{false}](\rho) & \overset{\text{def}}{=} \text{false} \in \mathbb{B}_\perp \\
[succ(t)](\rho) & \overset{\text{def}}{=} \text{succ}_\perp([t](\rho)) \in \mathbb{N}_\perp \\
[pred(t)](\rho) & \overset{\text{def}}{=} \text{pred}_\perp([t](\rho)) \in \mathbb{N}_\perp \\
[\text{zero?}(t)](\rho) & \overset{\text{def}}{=} \text{zero?}_\perp([t](\rho)) \in \mathbb{B}_\perp
\end{align*}
\]

\[[\text{succ}(t)] = \text{succ}_\perp \circ [t] \]
Denotation of operations on \mathbb{B} and \mathbb{N}

\[
\begin{align*}
[0](\rho) & \overset{\text{def}}{=} 0 & \in \mathbb{N}_\perp \\
[\text{true}](\rho) & \overset{\text{def}}{=} \text{true} & \in \mathbb{B}_\perp \\
[\text{false}](\rho) & \overset{\text{def}}{=} \text{false} & \in \mathbb{B}_\perp \\
[\text{succ}(t)](\rho) & \overset{\text{def}}{=} \text{succ}_\perp([t](\rho)) & \in \mathbb{N}_\perp \\
[\text{pred}(t)](\rho) & \overset{\text{def}}{=} \text{pred}_\perp([t](\rho)) & \in \mathbb{N}_\perp \\
[\text{zero?}(t)](\rho) & \overset{\text{def}}{=} \text{zero?}_\perp([t](\rho)) & \in \mathbb{B}_\perp \\
[\text{if } b \text{ then } t \text{ else } t'] & \overset{\text{def}}{=} \text{if}([b](\rho), [t](\rho), [t'](\rho)) & \in [\tau] \\
[\text{if } b \text{ then } t \text{ else } t'] & = \text{if }\circ\langle [b], [t], [t'] \rangle
\end{align*}
\]
[x] (\rho) \overset{\text{def}}{=} \rho(x) \in \Gamma(x)
Denotation of the \(\lambda \)-calculus operations

\[
[x] (\rho) \overset{\text{def}}{=} \rho(x) \in \Gamma(x)
\]

\[
[t_1 \ t_2] (\rho) \overset{\text{def}}{=} ([t_1] (\rho)) ([t_2] (\rho))
\]

\[
[t_1 \ t_2] = \text{eval} \circ \langle [t_1], [t_2] \rangle
\]
Denotation of the λ-calculus operations

\[
\begin{align*}
[x] (\rho) & \overset{\text{def}}{=} \rho(x) \quad \in [\Gamma(x)] \\
[t_1 \ t_2] (\rho) & \overset{\text{def}}{=} ([t_1] (\rho)) ([t_2] (\rho)) \\
[\text{fun } x: \tau. \ t] (\rho) & \overset{\text{def}}{=} \lambda d \in [\tau]. [t] (\rho, d)
\end{align*}
\]

\[
[\text{fun } x: \tau. \ t] = \text{cur}([t])
\]
\[[\text{fix } f](\rho) \overset{\text{def}}{=} \text{fix}(\lfloor f \rfloor(\rho)) \]
For any PCF term t such that $\Gamma \vdash t : \tau$, the object $[t]$ is well-defined and a continuous function $[t] : [\Gamma] \rightarrow \tau$.
For any PCF term t such that $\Gamma \vdash t : \tau$, the object $[t]$ is well-defined and a continuous function $[t] : [\Gamma] \to \tau$.

If $t \in \text{PCF}_\tau$: $[t] \in [\cdot] \to [\tau] = 1 \to [\tau] \cong [\tau]$
DENOTATIONAL SEMANTICS FOR PCF

COMPOSITIONALITY
Suppose $t, u \in \text{PCF}_{\Gamma, \tau}$, such that

$$[t] = [u] : [\Gamma] \to [\tau]$$

Suppose moreover that $C[\cdot]$ is a PCF context such that $\Gamma' \vdash_{\Gamma, \tau} C : \tau'$. Then

$$[C[t]] = [C[u]] : [\Gamma'] \to [\tau'].$$
If $\Gamma \vdash_{\Delta, \sigma} C : \tau$, then define $\llbracket C \rrbracket$ such that

$$\llbracket C \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$
If $\Gamma \vdash_{\Delta, \sigma} C : \tau$, then define $\llbracket C \rrbracket$ such that

$$\llbracket C \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

$$\llbracket [t] \rrbracket (d)(\rho) = (\llbracket C \rrbracket (d)(\rho))(\llbracket t \rrbracket (\rho))$$

$$\vdots$$
If $\Gamma \vdash_{\Delta, \sigma} C : \tau$, then define $\llbracket C \rrbracket$ such that

$$\llbracket C \rrbracket : ([\Delta] \rightarrow [\sigma]) \rightarrow [\Gamma] \rightarrow [\tau]$$

$$[-](d) = d$$

$$\llbracket C \, t \rrbracket (d)(\rho) = ([C] (d)(\rho))(\llbracket t \rrbracket (\rho))$$

$$\vdots$$

If $\Gamma \vdash_{\Delta, \sigma} C : \tau$ and $\Delta \vdash t : \sigma$, then

$$\llbracket [C \, t] \rrbracket = \llbracket C \rrbracket ([t])$$
Assume

\[\Gamma \vdash u : \sigma \]
\[\Gamma, x : \sigma \vdash t : \tau \]

Then for all \(\rho \in \llbracket \Gamma \rrbracket \)

\[\llbracket t[u/x] \rrbracket (\rho) = \llbracket t \rrbracket (\rho[x \mapsto \llbracket u \rrbracket (\rho))]. \]

In particular when \(\Gamma = \cdot, \llbracket t \rrbracket : \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \) and

\[\llbracket t[u/x] \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \]
DENOTATIONAL SEMANTICS FOR PCF

SOUNDNESS
For all PCF types τ and all closed terms $t, v \in \text{PCF}_\tau$ with v a value, if $t \downarrow_\tau v$ is derivable, then

$$[t] = [v] \in [\tau]$$
Relating Denotational and Operational Semantics
For any **closed** PCF term t and value v of **ground** type $\gamma \in \{\text{nat, bool}\}$

$$[t] = [v] \in [\gamma] \Rightarrow t \downarrow_\gamma v$$
REMINDER: ADEQUACY

For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat, bool}\}$

$$[t] = [v] \in [\gamma] \Rightarrow t \downarrow_\gamma v$$

Adequacy does not hold at function types or for open terms
For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat}, \text{bool}\}$

$$[t] = [v] \in [\gamma] \Rightarrow t \downarrow_\gamma v$$

Adequacy does not hold at function types or for open terms

$$[\text{fun } x: \tau. (\text{fun } y: \tau. y) \, x] \; = \; [\text{fun } x: \tau. \, x] : [\tau] \rightarrow [\tau]$$

but

$$\text{fun } x: \tau. (\text{fun } y: \tau. y) \, x \downarrow_{\tau \rightarrow \tau} \; \text{fun } x: \tau. \, x$$
Relating Denotational and Operational Semantics

Formal approximation relation
Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow^n n$ (same for booleans);
2. for any well-typed term t, $R([t], t)$;
HOW TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);
2. for any well-typed term t, $R([t], t)$;

Assume $t, v \in \text{PCF}_{\text{nat}}$, $[t] = [v]$, and v is a value.
Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);
2. for any well-typed term t, $R([t], t)$;

Assume $t, v \in \text{PCF}_{\text{nat}}$, $[t] = [v]$, and v is a value.

Thus $v = n$ for some $n \in \mathbb{N}$, and $[v] = n$.
Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);
2. for any well-typed term t, $R([t], t)$;

Assume $t, v \in \text{PCF}_{\text{nat}}$, $[t] = [v]$, and v is a value.

Thus $v = n$ for some $n \in \mathbb{N}$, and $[v] = n$.

\[
[t] = [n] = n \\
\Rightarrow R(n, t) \\
\Rightarrow t \Downarrow n = v
\]
Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);
2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

But at non-base types, adequacy does not hold.
HOW TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{\text{nat}}, n \in \mathbb{N}$, and $R(n, t)$, then $t \downarrow_n$ (same for booleans);
2. for any well-typed term t, $R([t], t)$;

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

$$<_{\tau} \subseteq [\tau] \times \text{PCF}_{\tau}$$
FORMAL APPROXIMATION AT BASE TYPES

\[
\begin{align*}
 d \triangleleft_{\text{nat}} t \ & \overset{\text{def}}{\iff} (d \in \mathbb{N} \Rightarrow t \downarrow_{\text{nat}} d) \\
 d \triangleleft_{\text{bool}} t \ & \overset{\text{def}}{\iff} (d = \text{true} \Rightarrow t \downarrow_{\text{bool}} \text{true}) \\
 & \quad \land (d = \text{false} \Rightarrow t \downarrow_{\text{bool}} \text{false})
\end{align*}
\]
FORMAL APPROXIMATION AT BASE TYPES

\[\begin{align*}
\text{def } d \succeq_{\text{nat}} t & \iff (d \in \mathbb{N} \Rightarrow t \downarrow_{\text{nat}} d) \\
\text{def } d \succeq_{\text{bool}} t & \iff (d = \text{true} \Rightarrow t \downarrow_{\text{bool}} \text{true}) \\
& \quad \land (d = \text{false} \Rightarrow t \downarrow_{\text{bool}} \text{false})
\end{align*}\]

Exactly what we need to get 1.
FORMAL APPROXIMATION AT BASE TYPES

\[
\begin{align*}
d \triangleleft_{\text{nat}} t & \overset{\text{def}}{\iff} (d \in \mathbb{N} \Rightarrow t \downarrow_{\text{nat}} d) \\
d \triangleleft_{\text{bool}} t & \overset{\text{def}}{\iff} (d = \text{true} \Rightarrow t \downarrow_{\text{bool}} \text{true}) \\
& \quad \land (d = \text{false} \Rightarrow t \downarrow_{\text{bool}} \text{false})
\end{align*}
\]

Exactly what we need to get 1.

Note though that \(\bot \triangleleft_{\text{nat}} t \) for any \(t \in \text{PCF}_{\text{nat}} \).
1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);

2. for any well-typed term t, $R([t], t)$.

1. if \(t \in \text{PCF}_{\text{nat}} \), \(n \in \mathbb{N} \), and \(R(n, t) \), then \(t \Downarrow n \) (same for booleans);

2. for any well-typed term \(t \), \(R(\llbracket t \rrbracket, t) \).

 2.1 By induction on (the typing derivation of) \(t \);

 2.2 we need to interpret each typing rule.
1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);

2. for any well-typed term t, $R([t], t)$.

 2.1 By induction on (the typing derivation of) t;
 2.2 we need to interpret each typing rule.
1. if $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans); ✓

2. for any well-typed term t, $R([t], t)$.

 2.1 By induction on (the typing derivation of) t;

 2.2 we need to interpret each typing rule.

\[
\begin{array}{c}
\text{APP} \\
\vdash t : \tau \rightarrow \tau' \\
\vdash u : \tau \\
\hline
\vdash t u : \tau'
\end{array}
\]

Assume $[u] \triangleright_{\tau} u$ and $[t] \triangleright_{\tau \rightarrow \tau'} t$, how do we get $[t u] = [t] ([u]) \triangleright_{\tau} t u$?
1. If $t \in \text{PCF}_{\text{nat}}$, $n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow n$ (same for booleans);

2. For any well-typed term t, $R([t], t)$.
 2.1 By induction on (the typing derivation of) t;
 2.2 We need to interpret each typing rule.

\[
\text{APP} \vdash t : \tau \rightarrow \tau' \quad \vdash u : \tau \\
\hline
\vdash t u : \tau'
\]

Assume $[u] \triangleleft_{\tau} u$ and $[t] \triangleleft_{\tau \rightarrow \tau'} t$, how do we get $[t u] = [t] ([u]) \triangleleft_{\tau} t u$?

Define

\[
d \triangleleft_{\tau \rightarrow \tau'} t \quad \overset{\text{def}}{=} \quad \forall e \in [\tau], u \in \text{PCF}_{\tau}. (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u)
\]
To prove Item 2, we need to talk about open terms.
FORMAL APPROXIMATION FOR OPEN TERMS

\[\text{ABS} \quad \frac{\Gamma, x: \tau \vdash t : \tau'}{\Gamma \vdash \text{fun } x: \tau. t : \tau \rightarrow \tau'} \]

To prove Item 2, we need to talk about open terms.

\[[t](\llbracket u \rrbracket) = \llbracket (t[u/x]) \rrbracket \quad \text{Semantic application} \approx \text{syntactic substitution} \]
To prove Item 2, we need to talk about open terms.

\[
[t] ([u]) = [(t[u/x])] \quad \text{Semantic application} \approx \text{syntactic substitution}
\]

Fundamental property of formal approximation

Given a term \(t \) such that \(\Gamma \vdash t : \tau \) for some \(\Gamma \) and \(\tau \), for any environment \(\rho \) and substitution \(\sigma \) such that \(\rho \triangleleft \Gamma \sigma \), we have \([t] (\rho) \triangleleft_\tau t[\sigma] \).
To prove Item 2, we need to talk about open terms.

\[[t]([u]) = [(t[u/x])] \quad \text{Semantic application} \approx \text{syntactic substitution} \]

Fundamental property of formal approximation

Given a term \(t \) such that \(\Gamma \vdash t : \tau \) for some \(\Gamma \) and \(\tau \), for any environment \(\rho \) and substitution \(\sigma \) such that \(\rho \triangleleft_\Gamma \sigma \), we have \([t](\rho) \triangleleft_\tau t[\sigma] \).

Parallel substitution: maps each \(x \in \text{dom}(\Gamma) \) to \(\sigma(x) \in \text{PCF}_{\Gamma(x)} \).
RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION
1. The least element approximates any program: for any τ and $t \in \text{PCF}_\tau$, $\perp[\tau] \triangleleft_\tau t$;

2. the set $\{d \in [\tau] \mid d \triangleleft_\tau t\}$ is chain-closed;
1. The least element approximates any program: for any τ and $t \in \text{PCF}_\tau$, $\bot_{[\tau]} \triangleleft_\tau t$;

2. the set $\{d \in [\tau] \mid d \triangleleft_\tau t\}$ is chain-closed;

3. if $\forall v. t \Downarrow_\tau v \Rightarrow t' \Downarrow_\tau v$, and $d \triangleleft_\tau t$, then $d \triangleleft_\tau t'$.
RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

EXTENSIONALITY
Contextual preorder is the one-sided version of contextual equivalence: \(\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \)
if for all \(C \) such that \(\cdot \vdash_{\Gamma,\tau} C : \gamma \) and for all values \(v \),

\[C[t] \downarrow_{\gamma} v \Rightarrow C[t'] \downarrow_{\gamma} v. \]
Characterizing formal approximation

Contextual preorder is the one-sided version of contextual equivalence: \(\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \) if for all \(C \) such that \(\vdash_{\Gamma, \tau} C : \gamma \) and for all values \(v \),

\[
C[t] \downarrow_{\gamma} v \Rightarrow C[t'] \downarrow_{\gamma} v.
\]

\[
\Gamma \vdash t \equiv_{\text{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\text{ctx}} t : \tau)
\]
Contextual preorder is the one-sided version of contextual equivalence: \(\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \)

if for all \(C \) such that \(\cdot \vdash_{\Gamma, \tau} C : \gamma \) and for all values \(v \),

\[
C[t] \downarrow_{\gamma} v \Rightarrow C[t'] \downarrow_{\gamma} v.
\]

\[
\Gamma \vdash t \equiv_{\text{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\text{ctx}} t : \tau)
\]

It corresponds to formal approximation: for all PCF types \(\tau \) and closed terms \(t_1, t_2 \in \text{PCF}_\tau \)

\[
t_1 \leq_{\text{ctx}} t_2 : \tau \Leftrightarrow \llbracket t_1 \rrbracket \prec_{\tau} t_2.
\]
Lemma: Application Contexts

For contextual preorder between closed terms, applicative contexts are enough.
For contextual preorder between closed terms, applicative contexts are enough.

Let t_1, t_2 be closed terms of type τ. Then $t_1 \leq_{ctx} t_2 : \tau$ if and only if, for every term $f : \tau \rightarrow \text{bool}$,

$$f t_1 \downarrow_{\text{bool}} \text{true} \Rightarrow f t_2 \downarrow_{\text{bool}} \text{true}.$$
For $\gamma = \text{bool}$ or nat, $t_1 \leq_{\text{ctx}} t_2 : \tau$ holds if and only if

$$\forall v. (t_1 \Downarrow_\gamma v \Rightarrow t_2 \Downarrow_\gamma v).$$
For $\gamma = \text{bool}$ or nat, $t_1 \leq_{\text{ctx}} t_2 : \tau$ holds if and only if

$$\forall v. (t_1 \downarrow_\gamma v \Rightarrow t_2 \downarrow_\gamma v).$$

At a function type $\tau \rightarrow \tau'$, $t_1 \leq_{\text{ctx}} t_2 : \tau \rightarrow \tau'$ holds if and only if

$$\forall t \in \text{PCF}_\tau . (t_1 \downarrow t \leq_{\text{ctx}} t_2 t : \tau').$$
FULL ABSTRACTION
FULL ABSTRACTION

FAILURE OF FULL ABSTRACTION
A denotational model is **fully abstract** if

\[t_1 \cong_{\text{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket \]
A denotational model is **fully abstract** if

\[t_1 \cong_{ctx} t_2 : \tau \implies \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket \]

A form of **completeness** of semantic equivalence wrt. program equivalence.
A denotational model is **fully abstract** if

\[t_1 \equiv_{\text{ctx}} t_2 : \tau \Rightarrow [t_1] = [t_2] \in \tau \]

A form of **completeness** of semantic equivalence wrt. program equivalence.

The domain model of PCF is *not* fully abstract.
The parallel or function $\text{por} : \mathbb{B}_\bot \times \mathbb{B}_\bot \rightarrow \mathbb{B}_\bot$ is defined as given by the following table:

<table>
<thead>
<tr>
<th>por</th>
<th>true</th>
<th>false</th>
<th>\bot</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>\bot</td>
</tr>
<tr>
<td>\bot</td>
<td>true</td>
<td>\bot</td>
<td>\bot</td>
</tr>
</tbody>
</table>
The (left) sequential or function \(\text{or} : B_\perp \times B_\perp \rightarrow B_\perp \) is defined as

\[
\text{or} \overset{\text{def}}{=} \left[\text{fun} \ x : \text{bool}. \ \text{fun} \ y : \text{bool}. \ \text{if} \ x \ \text{then} \ \text{true} \ \text{else} \ y \right]
\]

It is given by the following table:

<table>
<thead>
<tr>
<th>or</th>
<th>true</th>
<th>false</th>
<th>(\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\perp)</td>
<td>(\perp)</td>
<td>(\perp)</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>
Parallel vs Sequential OR

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>true</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Parallel vs Sequential OR

<table>
<thead>
<tr>
<th>por</th>
<th>true</th>
<th>false</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>true</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>or</th>
<th>true</th>
<th>false</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

or is **sequential**, but *por* is **not**.
There is no closed PCF term

\[t : \text{bool} \rightarrow \text{bool} \rightarrow \text{bool} \]

satisfying

\[[t] = \text{por} : \mathbb{B}_\bot \rightarrow \mathbb{B}_\bot \rightarrow \mathbb{B}_\bot. \]
The denotational model of PCF in domains and continuous functions is not fully abstract.
The denotational model of PCF in domains and continuous functions is not fully abstract. For well-chosen T_{true} and T_{false},

$$T_{\text{true}} \equiv_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$

$$[T_{\text{true}}] \neq [T_{\text{false}}] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$
The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false},

$$T_{\text{true}} \equiv_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$

$$[T_{\text{true}}] \neq [T_{\text{false}}] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$

Idea:

- for all $f \in PCF_{\text{bool} \to \text{bool} \to \text{bool}}$, ensure $Tb \ f \uparrow_{\text{bool}}$
- but $[Tb] \ (\text{por}) = [b]$.
$T_b \overset{\text{def}}{=} \text{fun } f : \text{bool } \to (\text{bool } \to \text{bool}).$
\[
\begin{align*}
&\quad \text{if}(f \text{ true } \Omega_{\text{bool}}) \text{ then } \\
&\quad \quad \text{if } (f \Omega_{\text{bool}} \text{ true}) \text{ then } \\
&\quad \quad \quad \text{if } (f \text{ false false}) \text{ then } \Omega_{\text{bool}} \text{ else } b \\
&\quad \quad \text{else } \Omega_{\text{bool}} \\
&\quad \text{else } \Omega_{\text{bool}}
\end{align*}
\]
FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE
• PCF is not expressive enough to present the model?
• The model does not adequately capture PCF?
• Contexts are too weak: they do not distinguish enough programs?
Γ ⊢ t : τ

Γ ⊢ t₁ : τ Γ ⊢ t₂ : τ
Γ ⊢ por(t₁, t₂) : τ

t ↓ᵣ v

spar(t₁, t₂) ↓ᵣ bool true

spar(t₁, t₂) ↓ᵣ bool false

spar(t₁, t₂) ↓ᵣ bool true

spar(t₁, t₂) ↓ᵣ bool true
If we extend the semantics of PCF to PCF+por with

$$[\text{por}] = \text{por}$$

the resulting denotational semantics is fully abstract.
If we extend the semantics of PCF to PCF+por with

\[\text{[por]} = \text{por} \]

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?
Fully abstract semantics for PCF

- first step: dl-domains & stable functions \rightarrow no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics
Fully abstract semantics for PCF

• first step: dI-domains & stable functions → no *por* any more, but still not fully abstract...
• only proper answers in the late 90s (!): logical relations and game semantics

Real languages have *effects*

• If you add effects (references, control flow...) to a language, contexts become *much more* expressive.
• Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable idea?
WHERE TO GO FROM HERE?
Source of a very rich literature:

- linear logic
- logical relations
- game semantics
- bisimulations techniques
- …
Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)
Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- a type τ as an object in a category;
- a term $\Gamma \vdash t : \tau$ as a morphism/arrow $[t] : [\Gamma] \to [\tau]$.
CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- a type τ as an object in a category;
- a term $\Gamma \vdash t : \tau$ as a morphism/arrow $[t] : [\Gamma] \rightarrow [\tau]$.

Example: λ-calculus \rightarrow cartesian closed categories
OCaml’s ADT:

It is a **fixed point equation**! We can use domain theory to solve it.
Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!
Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \overset{\text{def}}{=} (A \times \text{State})^{\text{State}}$)
Effects: control flow (errors), mutability/state, input-output...
An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \overset{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $[\Gamma] \rightarrow T([\tau])$
Easter: *axiomatic semantic* (Hoare Logic and Model Checking)
Easter: *axiomatic semantic* (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the *interaction* between different approaches.