Here are marks for IA Algorithms questions last year:

Women: [17, 14, 18, 12, 17, ...]
Men: [18, 18, 11, 17, 17, ...]
Other: [17, 18, 9, 9, 11, ...]

The mean marks are

Women: 13.22 (n=49)
Men: 12.28 (n=219)
Other: 13.10 (n=10)

Women do better.

EXERCISE. How would you critique this analysis?

- This doesn't report significance e.g. confidence.
- It's inappropriate to share this data, or to report unaggregated data for small-n categories.
- It's drawing a general conclusion ("women do better") from just one year of past data.
 (On the other hand, if we restricted ourselves to simply describing what has happened, and never said anything about the future, we'd never be able to influence the future.)

Made-up data
Based on the model

\[\text{Mark} \sim \mu_{\text{gender}} + N(0, \sigma^2) \]

the 95% confidence intervals are

\[\hat{\mu}_F \in [11.8, 14.6] \]
\[\hat{\mu}_M \in [11.6, 12.9] \]
\[\hat{\mu}_O \in [10.0, 16.2] \]

Women tend to do better than Men. Here is too little data about Other to be confident in any comparison.

EXERCISE.
How would you critique this revised analysis?

- Marks are not independent (each student does 2 questions)
- A Gaussian dist. is inappropriate

If I want to report differences, I should report a conf. int. for differences.
Based on a model using one-hot coding of gender,

\[\text{Mark} \sim \mu_F + \delta_M \mathbf{1}_{\text{gender}=M} + \delta_O \mathbf{1}_{\text{gender}=O} + N(0, \sigma^2) \]

the 95% confidence intervals are

\[
\hat{\mu}_F \in [11.8, 14.6] \\
\hat{\delta}_M \in [-2.5, 0.6] \\
\hat{\delta}_O \in [-3.6, 3.3]
\]

Neither \(\hat{\delta}_M \) nor \(\hat{\delta}_O \) is convincingly non-zero.

EXERCISE. How would you implement this analysis?

The readout function

```python
def t(marks):
    use sklearn.linear_model to fit the proposed model to marks
    return a triple with the intercept_ (\( \mu_F \)) and the coef_ (\( \delta_M, \delta_O \))
```

To create a random synthetic dataset of marks

Let \(\hat{\mu}_F, \hat{\delta}_M, \hat{\delta}_O, \hat{\sigma} \) be the mle estimates from the marks column in the dataset

```python
def rmarks():
    \text{pred} = \hat{\mu}_F + \hat{\delta}_M \mathbf{1}_{\text{gender}=M} + \hat{\delta}_O \mathbf{1}_{\text{gender}=O}
    return np.random.normal(loc=pred, scale=\hat{\sigma})
```

Get lots of samples of the test statistic

```python
t_ = [t(rmarks()) for _ in range(10000)]
np.quantile([\theta[0] for \theta in t_], [.025, .975]) # confint for \( \mu_F \)
```
How might we decide whether this simpler model is good enough?

I think everyone gets pretty much the same mark, regardless of gender.
Mark \sim \mu + \text{Normal}(0, \sigma^2)

I think gender affects marks.
Mark \sim \mu_{\text{gender}} + \text{Normal}(0, \sigma^2)

To answer this, it can be helpful to introduce a richer model.
<table>
<thead>
<tr>
<th>FREQUENTIST</th>
<th>BAYESIANIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>(The answer might depend on how we resample.)</td>
<td>(The answer depends on our priors for the unknowns.)</td>
</tr>
<tr>
<td>confidence intervals</td>
<td>model selection</td>
</tr>
<tr>
<td>For just two genders: Consider the richer model with μ_{gender} and find a 95% confidence interval for $\hat{\mu}_M - \hat{\mu}_F$. $\mathbb{P}(\hat{\mu}_M - \hat{\mu}_F \in [-2.5, 0.6]) = 95%$ so it looks like the simpler model is OK.</td>
<td>Hypothesis Testing</td>
</tr>
<tr>
<td></td>
<td>For just two genders: Consider the richer model with μ_{gender} and find a 95% confidence interval for $\mu_M - \mu_F$. $\mathbb{P}(\mu_M - \mu_F \in [-3.1, -0.2]) = 95%$ so it looks like the simpler model isn’t good enough.</td>
</tr>
<tr>
<td></td>
<td>If we have prior weights for two models (the simple model, and the richer model with μ_{gender}), we can find posterior weights using Bayes’s rule. For prior weights 50%/50%, the posterior weights are 79%/21% in favour of the simpler model.</td>
</tr>
<tr>
<td>This is great if there’s a single model parameter that we want to investigate</td>
<td>This is for when we want to evaluate the model as a whole</td>
</tr>
</tbody>
</table>
Bayesianist vs frequentist smackdown

Climate confidence challenge

Find a 95% confidence interval for the rate of temperate increase in Cambridge from 1985 to the present, in °C/year
§9.3 HYPOTHESIS TESTING
Can you taste the difference between milk-first versus tea-first?

HYPOTHESIS: you can’t.
Fisher’s hypothesis testing

Let \(x \) be the dataset.

State a null hypothesis \(H_0 \), i.e. a probability model for the dataset

1. Choose a test statistic
 \[t : \text{dataset} \mapsto \mathbb{R} \]

2. Define a random synthetic dataset \(X^* \), what we might see if \(H_0 \) were true.

3. Look at the histogram of \(t(X^*) \), and let \(p \) be the probability of seeing a value as extreme or more so than the observed \(t(x) \).

A low \(p \)-value is a sign that \(H_0 \) should be rejected.

\(x = \text{taster's assignment & labels} \)

\(H_0: \text{taster can't tell the difference} \)

hence assignment is a random permutation of \(\{ t, t, t, t, m, m, m, m \} \)

\(t(x) = \# \text{correct} \)

```
def X_star(): return random perm of \( \{ t, t, t, t, m, m, m, m \} \)
```

\(\text{hist. of } t(X^*) \)

What would be the dist. of the test statistic, if \(H_0 \) were true?

\[p = P(t(X^*) > t(x)) = 1.4\% \]

\(p < 5\%: \text{we'll reject } H_0. \)
I have a dataset with readings from two groups, $x = [x_1, ..., x_m]$ and $y = [y_1, ..., y_n]$. Test whether the two groups are significantly different, using the test statistic $\bar{y} - \bar{x}$.

```python
# 1. Define the test statistic
def t(x, y):
    return np.mean(y) - np.mean(x)

# 2. To generate a synthetic dataset, assuming $H_0$, ...
xy = np.concatenate([x, y])
def rxy_star():
    return (np.random.choice(xy, size=len(x)),
            np.random.choice(xy, size=len(y)))

# 3. Sample the test statistic under $H_0$; find p-value for observed data
trxy_star = [t(*rxy_star()) for _ in range(10000)]
t_ = np.array([t(*rxy_star()) for _ in range(10000)])
p = ...
```
Example 9.3.1.
I have a dataset with readings from two groups, \(x = [x_1, ..., x_m] \) and \(y = [y_1, ..., y_n] \). Test whether the two groups are significantly different, using the test statistic \(\bar{y} - \bar{x} \).

\[H_0: \quad x_i, y_i \text{ both } \sim N(\mu, \sigma^2) \]

Equivalently, assume \(x_i \sim N(\mu, \sigma^2) \), \(y_i \sim N(\mu + \delta, \sigma^2) \)

\[H_0: \quad \delta = 0 \]

1. Define the test statistic

```python
def t(x, y):
    return np.mean(y) - np.mean(x)
```

2. To generate a synthetic dataset, assuming \(H_0 \), ...

```python
xy = np.concatenate([x, y])
\mu = np.mean(xy)
\sigma = np.sqrt(np.mean((xy - \mu)**2))
def rxy_star():
    return (np.random.normal(loc=\mu, scale=\sigma, size=len(x)),
            np.random.normal(loc=\mu, scale=\sigma, size=len(y)))
```

3. Sample the test statistic under \(H_0 \); find p-value for observed data

```python
t_ = np.array([t(*rxy_star()) for _ in range(10000)])
p = 2 * min(np.mean(t_ >= t(x, y)), np.mean(t_ <= t(x, y)))
```
What counts as ‘more extreme’?

- Plot the histogram for $t(X^*)$, assuming H_0 is true
- Also plot the histogram for some scenarios where H_0 is false
- Do the alternatives push $t(X^*)$ bigger, or smaller, or either? This determines what ‘more extreme’ means — either one-tailed or two-tailed.

If the observed t lies at either extreme, it’s evidence against $H_0: \delta=0$.
How do we compute \(p \) for a two-tailed test?

The \(p \)-value is

\[
\mathbb{P}
\left(
\begin{array}{c}
t(X^*) \\
\text{at least}
\end{array}
\left|
\begin{array}{c}
t(x) \\
\text{as extreme as}
\end{array}
\right.
\begin{array}{c}
H_0 \text{ is true}
\end{array}
\right)
\]

\[
p = 2 \times \min(\text{np.mean(t_ >= t(x,y))}, \text{np.mean(t_ <= t(x,y)))}
\]

"6 of my samples of \(t(X^*,Y^*) \) are more extreme than \(t(x,y) \)."
The beauty of hypothesis testing is that it lets us test whether H_0 is a good enough model for the data, without our having to specify an alternative model. Instead, we specify a test.

Where do test statistics come from?

There are two common scenarios, exploratory and rhetorical.

EXPLORATORY.
You, the modeller, are trying to come up with a good model for the dataset. Suppose you’ve tried out several models, and H_0 is the best you’ve come up with. Is it good enough?

- If you settle for H_0 and someone else comes up with a better model, you lose.
- So it’s up to you to creatively think up ways to test if H_0 might be deficient.

RHETORICAL.
Sometimes, there’s a model H_1 that everyone accepts to be the natural alternative to H_0.

- Example: $H_0 = “my drug makes no difference”, H_1 = “it makes a difference”.
- If so, craft the test statistic to look for evidence pointing in the direction of H_1.