Climate challenge

- What is the rate of temperature increase at Cambridge?
- Are temperatures increasing at a constant rate, or has the increase accelerated?
- How do the results compare across the whole of the UK?

Your task is to answer these questions using appropriate linear models, and to produce elegant plots to communicate your findings.
Q1. What is the rate of temperature increase in Cambridge?

Fit the model:
Temp ≈ α + β₁ sin(2πt) + β₂ cos(2πt) + γt

\[
X = \text{np.column_stack}([\text{np.sin}(2\pi\text{df.t}), \text{np.cos}(2\pi\text{df.t}), \text{df.t}])
\]

model = sklearn.linear_model.LinearRegression()
model.fit(X, df.temp)
α, (β₁, β₂, γ) = (model.intercept_, model.coef_)

- 0.028°C per year [1959 to present]
- 0.025°C per year [???]
Q2. Are temperatures increasing at a constant rate?

To see if there’s a sign of nonlinearity, fit the model:
Temp ≈ α + β₁ sin(2πt) + β₂ cos(2πt) + γt + δt²

Conclusion: δ = 0.00032

Report a few significant figures, rather than “δ = 0.000”

Joel Robinson. This change is very small so may be insignificant. Assuming that the change is significant, we can conclude that the temperature change is increasing and accelerating. However since we have no data for values past 2024 it would be unwise to try to extrapolate what future temperature values may be from this model.

Report your fitted model in meaningful units (e.g. impact on predicted response, not just raw coefficients)

Show the context
Q2. Are temperatures increasing at a constant rate?

To see if there’s a sign of nonlinearity, fit the model:
Temp ≈ α + β₁ sin(2πt) + β₂ cos(2πt) + γt + δt²

Make it easy to compare models to the data. ... but it’s a sin to waste data! Use *all* the data to fit your model (if your model is expressive enough to use it)
temp ≈ α + β_1 \sin(2\pi t) + β_2 \cos(2\pi t) + γt + δt^2

Preconceived Beliefs

Open to any explanation

temp ≈ β_1 \sin(2\pi t) + β_2 \cos(2\pi t) + γ_{\text{decade}}

Plot for the function of α, γ and δ without the sinusoid

Oxford data
Q2. Are temperatures increasing at a constant rate?

What about other models for non-linearity?

Wei Chuen Sin
“from climate science, we know that temperature is rising at an exponential rate”

Anant Gupta
Temp $\approx \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma e^{\delta(t-\varepsilon)}$ (needs scipy.optimize.fmin)

Anant Gupta
Temp $\approx \alpha + (\beta_1 + \gamma_1 t) \sin(2\pi t) + (\beta_2 + \gamma_2 t) \cos(2\pi t)$

Paul D’Souza
“What if the periodic part isn’t a pure sinusoid?”
\rightarrow let’s look at yearly averages instead of the full data

Anant Gupta
“The residuals are too low in Jan/Feb/Mar, too high for the rest of the year, so the sinusoid isn’t a great fit.”
How should we compare models?

Joel Robinson

The mean square error, \(n^{-1} \sum_{i=1}^{n} (y_i - \text{pred}_i)^2 \), measures how well a model fits.

“It seemed that our model better fitted weather station readings from the North of the UK; the mean residuals squared value was smaller for Bradford, Tiree and Armagh than for Oxford, Cambridge and Heathrow. This may suggest that the north is experiencing climate change at a faster rate than the south and is therefore more suited to a quadratic model.”

MSE = 2.40 for the no-change model

MSE = 2.10 for the linear-increase model

Paul D’Souza

sklearn.linear_model.LinearRegression.score

This measures \(R^2 \), which is a transformed version of MSE.
Model A:

\[Y_i \sim 1.62 + 0.49 x_i + \text{Normal}(0, 2.39^2) \]

MSE large

dataset of \((x_i, y_i)\) pairs

Model B:

\[Y_i \sim -38.5 + 95.7 x_i - 84.8 x_i^2 + 38.3 x_i^3 - 9.5 x_i^4 + 1.3 x_i^5 - 0.09 x_i^6 + 0.003 x_i^7 + \text{Normal}(0, 0.31^2) \]

MSE small
This model doesn't just predict a value for y. It predicts a distribution Y, at every x.

Model A:

$$Y_i \sim 1.62 + 0.49 \, x_i + \text{Normal}(0, 2.39^2)$$
Model A:
\[Y_i \sim 1.62 + 0.49 x_i + \text{Normal}(0, 2.39^2) \]

Model B:
\[Y_i \sim -38.5 + 95.7 x_i - 84.8 x_i^2 + 38.3 x_i^3 - 9.5 x_i^4 + 1.3 x_i^5 - 0.09 x_i^6 + 0.003 x_i^7 + \text{Normal}(0, 0.31^2) \]

These points are very unlikely to have been generated by this model.

There are several datapoints \(y_i \) where model B says "The likelihood of this \(y_i \) is vanishingly small." But these \(y_i \) did appear in the dataset. So model B is a bad explanation.
After we fit a model, how do we decide if it’s a good fit?

1. Evaluate the mean square error and log likelihood of the dataset.
2. Plot the residuals and log likelihood of each datapoint, and look for systematic patterns.
Q3. How do the results compare across the UK?

We could model the entire dataset as
\[\text{Temp} \approx \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma t \]

 Wei Chuen Sin

(not the entire dataset, but only the subset for which all stations are present!)

It’s a really useful sanity check to show the “disposition” of the entire dataset.
Q3. How do the results compare across the UK?

We could model each station individually:

for s in stations:

 model data from station s as $\text{Temp} \sim \alpha + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma t + N(0, \sigma^2)$

Or, use one-hot coding to extract per-station coefficients:

$\text{Temp} \approx \alpha_{\text{station}} + \beta_1 \sin(2\pi t) + \beta_2 \cos(2\pi t) + \gamma_{\text{station}} t$

IMHO it’s always cleaner to build a single model for your entire dataset.

It’s very powerful to be able to extract coefficients and plot them all together.
By using random variables for unknown quantities, we can reason about confidence.

\[
\Theta \sim U[0,1]
\]

\[
X \sim \text{Bin}(n, \Theta)
\]

- probability of heads, unknown
- number of heads from 4 coin tosses

Prior belief: \(\Pr_\Theta(\theta) \)

Posterior belief: \(\Pr_\Theta(\theta | X = x) \)
By using random variables for unknown quantities, we can reason about confidence.

\[\Theta \sim U[0,1] \]

\[X \sim \text{Bin}(n, \Theta) \]

0. First write out our probability model for the data \(\Pr_X(x|\Theta = \theta) \)

1. Write out \(\Pr_\Theta(\theta) \)

2. Use the formula

\[
\Pr_\Theta(\theta|X = x) = \kappa \Pr_\Theta(\theta) \Pr_X(x|\Theta = \theta)
\]

then find \(\kappa \) to make this integrate to 1

This lets us calculate probabilities:

\[
P(\Theta \in \text{range}|X = x) = \int_{\theta \in \text{range}} \Pr_\Theta(\theta|X = x) \, d\theta
\]
Exercise.
Consider the pair of random variables \((\Theta, X)\) where
\[
\Theta \sim U[0, 1], \quad X \sim \text{Bin}(4, \Theta)
\]
Find the distribution of \((\Theta|X = 1)\).

\[
\Pr_\Theta(\theta) = 1 \quad \text{for } \theta \in [0, 1]
\]

\[
\Pr_X(x|\Theta = \theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x} = 4 \theta (1-\theta)^3 \quad \text{for } n=4, x=1
\]

\[
\Pr_\Theta(\theta|X = 1) = \kappa \Pr_\Theta(\theta) \Pr_X(1|\Theta = \theta)
\]

\[
\begin{align*}
\int_{0}^{1} \kappa' \theta (1-\theta)^3 d\theta &= 1 \\
\Rightarrow \kappa' &= \frac{1}{\int_{0}^{1} \theta (1-\theta)^3 d\theta}.
\end{align*}
\]
Exercise.
Consider the pair of random variables \((\Theta, X)\) where
\[\Theta \sim U[0,1], \quad X \sim \text{Bin}(4, \Theta) \]
Find the distribution of \((\Theta|X = 1)\).

\[
\Pr_\Theta(\theta|X = 1) = \kappa \Pr_\Theta(\theta) \Pr_X(1|\Theta = \theta)
= \kappa \Theta (1-\theta)^3 = \frac{k \beta(x-1)}{B(\alpha, \beta)}
\]

so this constant must be 1 (otherwise this pdf wouldn’t integrate to 1 wrt. \(\theta\))

Thus \((\Theta|X=1) \sim \text{Beta}(\alpha=2, \beta=4)\)

What is \(\Pr(\Theta \in [2,3] | X = 1)\)?

\[
D = \text{scipy.stats.beta}(a=2, b=4) \\
D.cdf(.3) - D.cdf(.2)
\]
Exercise 5.2.3 (classification)

In a dataset of MP expense claims, let \(y_i \) be \(\log_{10} \) of the claim amount in record \(i \).

A histogram of the \(y_i \) suggests we use a Gaussian mixture model with two components,

\[
C = \begin{cases}
1 & \text{with prob } p \\
2 & \text{with prob } 1 - p
\end{cases}
\]

\[Y \sim \text{Normal}(\mu_C, \sigma_C^2) \]

Find the probability that a claim amount £5000 belongs to the component \(c = 2 \).

\[
\Pr_Y(y|C = c) =
\]

\[
\Pr_C(c|Y = y) = \kappa \Pr_C(c) \Pr_Y(y|C = c)
\]
By using random variables for unknown quantities, we can reason about confidence.

\[\Theta \sim U[0,1] \]

\[X \sim \text{Bin}(n, \Theta) \]

0. First write out our probability model for the data \(\Pr_X(x|\Theta = \theta) \)

1. Write out \(\Pr_\Theta(\theta) \)

2. Use the formula
 \[\Pr_\Theta(\theta|X = x) = \kappa \Pr_\Theta(\theta) \Pr_X(x|\Theta = \theta) \]
 then find \(\kappa \) to make this integrate to 1

This lets us calculate probabilities:

\[\mathbb{P}(\Theta \in \text{range}|X = x) = \int_{\theta \in \text{range}} \Pr_\Theta(\theta|X = x) \, d\theta \]

... but these are usually intractable
Let X be the location of a randomly thrown dart, and let x_1, \ldots, x_n be some throws.

The probability of hitting A is

$$\mathbb{P}(X \in A) \approx \frac{1}{n} \sum_{i=1}^{n} 1_{x_i \in A}$$

What's the chance that a randomly thrown dart will hit the mystery object A?

Let $X \sim N(\mu = 1, \sigma = 3)$. What is $\mathbb{P}(X > 5)$?

```python
1  # Let X ~ N(mu = 1, sigma = 3). What is P(X > 5)?
2  x = np.random.normal(loc=1, scale=3, size=10000)
3  i = (x > 5)  # 10,000 Booleans
4  np.mean(i)  # typeset back to int.
```
Expectation
For a real-valued random variable X

$$\mathbb{E}X = \begin{cases}
\sum_x x \Pr_X(x), & \text{if } X \text{ is discrete} \\
\int_x x \Pr_X(x) \, dx, & \text{if } X \text{ is continuous}
\end{cases}$$
Law of the Unconscious Statistician

For a random variable X and a real-valued function h

$$\mathbb{E}h(X) = \begin{cases} \sum_x h(x) \Pr_X(x), & \text{if } X \text{ is discrete} \\ \int_x h(x) \Pr_X(x) \, dx, & \text{if } X \text{ is continuous} \end{cases}$$

If we want to know the average properties of a rich random variable (random images, random texts), we have to use real-valued property readout functions $h(X)$ so that we can take averages.

Monte Carlo integration

$$\mathbb{E}h(X) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

where x_1, \ldots, x_n is a sample drawn from X
Let $h(x) = 1_{x \in A}$.

By Monte Carlo,

$$E h(X) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

Let $Y = h(X)$.

$$E Y = 0 \times P(Y = 0) + 1 \times P(Y = 1)$$

$$= P(Y = 1)$$

$$= P(h(X) = 1)$$

$$= P(1_{x \in A} = 1)$$

$$= P(X \in A)$$

Let X be the location of a randomly thrown dart, and let x_1, \ldots, x_n be some throws.

The probability of hitting A is

$$P(X \in A) \approx \frac{1}{n} \sum_{i=1}^{n} 1_{x_i \in A}$$
Monte Carlo integration

\[
\int_{x=a}^{b} h(x) \, dx \approx \sum_{i=1}^{n} h(x_i) \frac{b - a}{n}
\]

where \(x_i \) is the midpoint of interval \(i \)

Let’s instead approximate this integral using Monte Carlo. Let \(X \sim U[a, b] \).

By Monte Carlo,

\[
\mathbb{E} h(X) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i) \quad \text{where } x_1, \ldots, x_n \text{ sampled from } X
\]

\[
\int_{x=a}^{b} h(x) \, \text{Pr}_X(x) \, dx = \int_{x=a}^{b} h(x) \frac{1}{b - a} \, dx
\]

Thus,

\[
\int_{x=a}^{b} h(x) \, dx \approx \frac{b - a}{n} \sum_{i=1}^{n} h(x_i)
\]
If we want $\mathbb{E} h(X)$ but the maths is too complicated, we can approximate it using x_1, \ldots, x_n sampled from X

The approximation for $\mathbb{E} h(X)$ also tells us how to estimate probabilities, since $\mathbb{P}(X \in A) = \mathbb{E} 1_{X \in A}$

For computational Bayes, we need something a bit fancier: weighted samples