
Concurrent and Distributed Systems - 2023/24

Examples Sheet CS1 (DJ Greaves) (Rev A)

Q1 LL/SC FSM Diagram
How might you show compare-and-swap or LL/SC interactions using an abstract FSM view?
Draw diagram for one thread. Two threads attempt to acquire a lock using LL/SC: using a few
words, describe features you would observe in the product.

Q2 Philosophers FSM
Draw out the state space for 2 or 3 dining philosophers. Do you see any dead states?

Q3 Semaphore Unblocking Order
Sketch a small piece of code that will report on the queuing discipline for threads blocked on
a mutex or semaphore. The ‘discipline’ is a constraint on the relative ordering of blocking and
unblocking of threads. Possible disciplines include FIFO, LIFO and random. The code might print
’in order’, ’reverse order’ or ’random’ or something like that at the end of its run. What would we
expect if the threads had differing priorities?

Q4 Recursive Locks
Part of a recent Tripos question discussed what happens if one thread tries to acquire the same
lock twice without releasing it. What might happen in a simple system without special support
for this?

Harder: what support might be added and why might this be useful?

Q5 Producer/Consumer Relaxation
Can we modify the generalized P-C solution, as lectured (page 18/77), to allow concurrent access
by 1 producer and 1 consumer by adding one further semaphore? A friend thinks you need a
single lock, as originally presented, and comments ‘Surely, you should never have a producer and
a consumer active at the same time?’ Are they making a valid point?

Q6 Monitors
(a) What is the primary invariant ensured in a monitor?

(b) How can a thread block itself inside a monitor while still allowing other threads to come in?
Why might it want to do this?

(c) Does a condition variable hold a value? If not, why do we have them and how many do
we need? Why shouldn’t a thread just repeatedly test a normal shared variable to poll for a
condition?

1



(d) A scheduller resumes a thread when it is ready to run. Would it be helpful if a user could
give the sheduller an arbitrary predicate that says whether a thread is ready? What could go
wrong? What is commonly made available?

Q7 MRSW Monitor
Sketch an MRSW monitor implementation (L04, slide 24). This monitor is used to provide a lock
around a shared resource that enables either one writer or multiple readers to have access. Hint:
because monitors cannot have multiple readers concurrently running inside them, your monitor
is likely to need separate pre read() and post read() methods that the user code will use to
bracket its operations on the shared resource.

(Beginners will find this a very hard exercise. But it is well worthwhile, so I have not put an
asterisk.)

Where multiple writers contend, does your solution offer preference to (is fair to) readers and if so
does this tend to mean that readers are more often handed out-of-date information? Is this good
or bad?

2



Optional Questions. The remainder of this sheet contains starred questions.

* Star denotes optional/advanced exercise. You are recommended to not attempt the starred ex-
ercises unless you are sure you have time. Just quickly read through them and discuss with your
supervisor any points that pique you.

Q8 Co-Routines (*)
(a) * Concurrency can be provided without a sophisticated scheduller using a co-routine package.

A set of co-routines time-share on a voluntary basis by calling yield() which blocks the current
thread that will resume again (by returning from yield()) after all other threads have been
run. There is no pre-emption. The other essential API call provided by a co-routine package
is a create thread(void (*f)(void)) which is passed the address of a C routine (that normally
contains an infinite loop whose body contains calls to yield()). [The syntax for passing a
function to a function in C is a little off-putting, but should eventually be familiar to those
reading the C course.] Sketch or describe the code for a co-routine package, being clear about
the central datastructure needed and how the stack pointer should be handled. If you want
to do a full C implementation, you should first be familiar with longjump. This exercise should
be easier after reading Ib Compiler Construction.

(b) * As mentioned on the previous sheet, early versions of Windows provided co-routines as the
only concurrency mechanism. What problems did this lead to? For what application scenario
might it be common to use co-routines today?

Q9 LL/SC Behaviour on Context Switch (*)
* Consider why an on operating system based over the LL/SC mechanism should issue an instruc-
tion during a context switch to clear any pending LL that has not been cleared by an SC.

Q10 Threading primitives (*)
(a) * Can several threads be running the same piece of code on a given computer if they are written

in a language that has no intrinsic support for parallel programming? Describe various ways
how.

(b) * Alice says the C language does not have any threading primitives, but Bob says the volatile
keyword demonstrates threading support. Prof Mycroft says that thread-local statics can be
found in recent versions of C++. Who is correct? [Thread-local statics were not lectured in
Concurrent Systems but perhaps in C++.]

(c) * For discussion with supervisor: Can language-level support for concurrent programming
make code more adaptable to running on platforms with varying numbers of cores and highly
non-uniform memory access time?

©2019-23 - DJ Greaves.

3


