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Recap

PRIME is in coNP (trivially), NP (non-trivially), and P
(highly-non-trivially).

Cliffhanger: Why can’t we break RSA using unary encodings?
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Factors

Consider the language Factor

{(x , k) | x has a factor y with 1 < y < k}

What is the relation to the search version?

In what complexity classes can we place Factor?

Factor ∈ NP ∩ co-NP

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of x .

Factor ∈ BQP
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Graph Isomorphism

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), is there a bijection

ι : V1 → V2

such that for every u, v ∈ V1,

(u, v) ∈ E1 if, and only if, (ι(u), ι(v)) ∈ E2.
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Graph Isomorphism

Graph Isomorphism is

• in NP
• not known to be in P
• not known to be in co-NP
• not known (or expected) to be NP-complete
• shown to be in quasi-polynomial time, i.e. in

TIME(n(log n)k
)

for a constant k.
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Cryptography
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Cryptography

Alice wishes to communicate with Bob without Eve eavesdropping.
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Private Key

In a private key system, there are two secret keys

e – the encryption key
d – the decryption key

and two functions D and E such that:
for any x,

D(E (x , e), d) = x .

For instance, taking d = e and both D and E as exclusive or, we have
the one time pad:

(x ⊕ e)⊕ e = x
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One Time Pad

The one time pad is provably secure, in that the only way Eve can
decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then
so is the key:

e = x ⊕ y
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Public Key

Is it possible to exchange a message without a secret key?
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Public Key

In public key cryptography, the encryption key e is public, and the
decryption key d is private.

We still have,

for any x,
D(E (x , e), d) = x

D and E are polynomial time computable, hence decoding is in NP
(why?)

The key e is public. Given y , a certificate is x such that y = E (x , e).
(Is that precise?)

Thus, public key cryptography is not provably secure in the way that the
one time pad is. It relies on the assumption that P ̸= NP.
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Abstracting chests and locks with
computational hardness
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One Way Functions

A function f is called a one way function if it satisfies the following
conditions:

1. f is one-to-one.
2. for each x , |x |1/k ≤ |f (x)| ≤ |x |k for some k.
3. f is computable in polynomial time.
4. f −1 is not computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at
the same time proving P ̸= NP.

It is strongly believed that the RSA function:

f (x , e, p, q) = (x e mod pq, pq, e)

is a one-way function.
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UP

Though one cannot hope to prove that the RSA function is one-way
without separating P and NP, we might hope to make it as secure as a
proof of NP-completeness.

Definition
A nondeterministic machine is unambiguous if, for any input x , there is
at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in
polynomial time.
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UP

Equivalently, UP is the class of languages of the form

{x | ∃yR(x , y)}

Where R is polynomial time computable, polynomially balanced, and for
each x , there is at most one y such that R(x , y).
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UP One-way Functions

We have
P ⊆ UP ⊆ NP

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P ̸= UP.
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Bonus: randomisation and BPP
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