Complexity Theory

Lecture 9

http://www.cl.cam.ac.uk/teaching/2324/Complexity
In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

$$(x - a)^p \equiv (x^p - a) \pmod{p}$$

if, and only if, p is a prime.

Checking this equivalence would take too long. Instead, the equivalence is checked \textit{modulo} a polynomial $x^r - 1$, for “suitable” r.

The existence of suitable small r relies on deep results in number theory.
Consider the language **Factor**

\[\{(x, k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\} \]

Factor \in NP \cap co-NP

Certificate of membership—a factor of \(x\) less than \(k\).

Certificate of disqualification—the prime factorisation of \(x\).
Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a bijection

$$\iota : V_1 \rightarrow V_2$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \text{ if, and only if, } (\iota(u), \iota(v)) \in E_2.$$
Graph Isomorphism is

- in \text{NP}
- not known to be in \text{P}
- not known to be in \text{co-NP}
- not known (or \textit{expected}) to be \text{NP}-complete
- shown to be in \textit{quasi-polynomial time}, i.e. in \text{TIME}(n^{(\log n)^k})

for a constant k.

Alice wishes to communicate with Bob without Eve eavesdropping.
In a private key system, there are two secret keys

\(e \) – the encryption key
\(d \) – the decryption key

and two functions \(D \) and \(E \) such that:

\[D(E(x, e), d) = x. \]

For instance, taking \(d = e \) and both \(D \) and \(E \) as exclusive or, we have the one time pad:

\[(x \oplus e) \oplus e = x \]
One Time Pad

The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.

If the original message x and the encrypted message y are known, then so is the key:

$$e = x \oplus y$$
In public key cryptography, the encryption key e is public, and the decryption key d is private.

We still have,

\[D(E(x, e), d) = x \]

If E is polynomial time computable (and it must be if communication is not to be painfully slow), then the following language is in NP:

\[\{(y, z) \mid y = E(x, e) \text{ for some } x \text{ with } x \leq_{\text{lex}} z\} \]

Thus, public key cryptography is not \textit{provably secure} in the way that the one time pad is. It relies on the assumption that $\mathbf{P} \neq \mathbf{NP}$.
One Way Functions

A function f is called a *one way function* if it satisfies the following conditions:

1. f is one-to-one.
2. for each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.
3. f is computable in polynomial time.
4. f^{-1} is *not* computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
Though one cannot hope to prove that the RSA function is one-way without separating P and NP, we might hope to make it as secure as a proof of NP-completeness.

Definition
A nondeterministic machine is *unambiguous* if, for any input x, there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.
Equivalently, \textbf{UP} is the class of languages of the form

\[\{ x \mid \exists y R(x, y) \} \]

Where \(R \) is polynomial time computable, polynomially balanced, \textit{and} for each \(x \), there is \textit{at most one} \(y \) such that \(R(x, y) \).
We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]

It seems unlikely that there are any \text{NP}-complete problems in \text{UP}.

One-way functions exist \textit{if, and only if}, \(P \neq \text{UP} \).
Suppose f is a \textit{one-way function}.

Define the language L_f by

$$L_f = \{(x, y) \mid \exists z (z \leq x \text{ and } f(z) = y)\}.$$

We can show that L_f is in UP but not in P.