
Complexity Theory

Lecture 3: Complexity classes – The Class P

Tom Gur

http://www.cl.cam.ac.uk/teaching/2324/Complexity



Preface:

Interactive Proofs and Active Learning

1



The story so far

• Goal: understand the complexity of computational problems.

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

• Towards that, we abstract the notion of an algorithm

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

• Towards that, we abstract the notion of an algorithm

• Extended Church-Turing Thesis: the model doesn’t matter

(perhaps, unless it’s quantum...)

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

• Towards that, we abstract the notion of an algorithm

• Extended Church-Turing Thesis: the model doesn’t matter

(perhaps, unless it’s quantum...)

• We will use Turing Machines, as they are relatively simple.

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

• Towards that, we abstract the notion of an algorithm

• Extended Church-Turing Thesis: the model doesn’t matter

(perhaps, unless it’s quantum...)

• We will use Turing Machines, as they are relatively simple.

2



The story so far

• Goal: understand the complexity of computational problems.

• Decidability is necessary, but not enough!

• Upper bound: show one algorithm.

• Lower bounds: argue about all algorithms.

• Towards that, we abstract the notion of an algorithm

• Extended Church-Turing Thesis: the model doesn’t matter

(perhaps, unless it’s quantum...)

• We will use Turing Machines, as they are relatively simple.

Out next goal: characterise efficient computation!

2



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

3



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or

a nondeterministic TM, or a parallel Random Access Machine).

3



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or

a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

3



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or

a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to bound

the amount of resource we can use.

3



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or

a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to bound

the amount of resource we can use.

3



Complexity Classes

We will study the landscape of computational power by group problems

into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or

a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to bound

the amount of resource we can use.

How shall we model efficient computation?

3



The Big Idea:

Efficient = Polynomial Time

3



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

• It serves as our formal definition of what is feasibly computable

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

• It serves as our formal definition of what is feasibly computable

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

• It serves as our formal definition of what is feasibly computable

However, it is not perfect:

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

• It serves as our formal definition of what is feasibly computable

However, it is not perfect: Is runtime θ(n100) feasible?

4



Polynomial Time

P =

∞⋃

k=1

TIME(nk )

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.

• Abstract enough to be robust (Extended Church Turing Thesis).

• Group structure: captures sub-procedures.

• It serves as our formal definition of what is feasibly computable

However, it is not perfect: Is runtime θ(n100) feasible?

The distinction between polynomial and exponential leads to a useful and

elegant theory.

4



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

5



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};

5



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};
2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

5



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};
2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

3. if b is marked, accept else reject.

5



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};
2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

3. if b is marked, accept else reject.

5



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to

b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};
2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

3. if b is marked, accept else reject.

What are the time and space complexities?

5



Analysis

This algorithm requires O(n2) time and O(n) space.

6



Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show that:

Reachability ∈ P

6



Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also

choose a way of representing the input (V ,E , a, b) as a string.

6



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

7



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

What is the naive algorithm?

7



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

What is the naive algorithm? Complexity?

7



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

What is the naive algorithm? Complexity? is it in P?

7



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x , y).

8



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x , y).

2. Repeat until y = 0: x ← x mod y ; Swap x and y

8



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x , y).

2. Repeat until y = 0: x ← x mod y ; Swap x and y

3. If x = 1 then accept else reject.

8



Analysis

The number of repetitions at step 2 of the algorithm is at most O(log x).

why?

9



Analysis

The number of repetitions at step 2 of the algorithm is at most O(log x).

why?

This implies that RelPrime is in P.

9



Analysis

The number of repetitions at step 2 of the algorithm is at most O(log x).

why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a

polynomial time algorithm, as x is not polynomial in the length of the

input.

9



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

10



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

10



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y |x .

requires Ω(
√
x) steps and is therefore not polynomial in the length of the

input.

10



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y |x .

requires Ω(
√
x) steps and is therefore not polynomial in the length of the

input.

10



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y |x .

requires Ω(
√
x) steps and is therefore not polynomial in the length of the

input.

Is Prime ∈ P?

10



Example 4: Boolean Formula Evaluation

11



Example 4: Boolean Formula Evaluation

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

11



Example 4: Boolean Formula Evaluation

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

11



Example 4: Boolean Formula Evaluation

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);
• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ) and

(φ ∨ ψ).

11



Evaluation

If an expression contains no variables, then it can be evaluated to either

true or false.

12



Evaluation

If an expression contains no variables, then it can be evaluated to either

true or false.

Otherwise, it can be evaluated, given a truth assignment to its variables.

12



Evaluation

If an expression contains no variables, then it can be evaluated to either

true or false.

Otherwise, it can be evaluated, given a truth assignment to its variables.

Examples:

(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true

12



Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time O(n2)

whether the expression evaluates to true.

13



Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time O(n2)

whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas according

to the following rules:

13



Rules

• (true ∨ φ)⇒ true

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (φ ∧ true)⇒ φ

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (φ ∧ true)⇒ φ

• (¬true)⇒ false

14



Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (φ ∨ false)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (φ ∧ true)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

14



Analysis

Each scan of the input (O(n) steps) must find at least one subexpression

matching one of the rule patterns.

15



Analysis

Each scan of the input (O(n) steps) must find at least one subexpression

matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the formula.

Thus, there are at most O(n) scans required.

15



Analysis

Each scan of the input (O(n) steps) must find at least one subexpression

matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.

15



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT

of satisfiable expressions.

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT

of satisfiable expressions.

This can be decided by a deterministic Turing machine in time O(n22n).

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT

of satisfiable expressions.

This can be decided by a deterministic Turing machine in time O(n22n).

An expression of length n can contain at most n variables.

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT

of satisfiable expressions.

This can be decided by a deterministic Turing machine in time O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we check

whether it results in a Boolean expression that evaluates to true.

16



Last Problem: Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables which

would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT

of satisfiable expressions.

This can be decided by a deterministic Turing machine in time O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we check

whether it results in a Boolean expression that evaluates to true.

Is SAT ∈ P?

16



Questions?

16


