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Summary: A Complexity Zoo

The key players:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

You should also know coNP, coNL, UP, R, RE, BQP (Quantum P)

Bonus contemporary classes: IP, SZK, BPP, FP, FNP, PCP, QMA
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Padding arguments

We can scale up relations between complexity classes. For example:

L = P =⇒ PSPACE = EXP

Proof: Let S ∈ EXP.

Then S ′ = {x012
|x|k

: x ∈ S} ∈ P.

Hence, S ′ ∈ L; denote the algorithm by A.

Given x ∈ S , we can emulate A(x012
|x|k

) in polynomial space.

Thus S ∈ PSPACE.

A similar argument shows that if P = NP, then EXP = NEXP.
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st-Connectivity

Recall the st-Connectivity problem: given a directed graph G = (V ,E )

and two nodes s, t ∈ V , determine whether there is a path from s to t.

Algorithm?

A simple search algorithm (BFS) solves it:

1. mark node s, leaving other nodes unmarked, and initialise set S to

{s};

2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

3. if t is marked, accept else reject.

Complexity: O(n2) time, O(n) space.
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We can construct a (DFS-based) algorithm to show that the st-Conn is

in NL:

1. write the index of node s in the work space;

2. for i , the index currently written on the work space:

2.1 if i = t then accept, else

guess an index j (log n bits) and write it on the work space.

2.2 if (i , j) is not an edge, reject, else replace i by j and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel.

For edges (i,j), the computation can continue.

If there is a path from s to s, there will be a computation that visits all

the nodes on that path.
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st-conn is NL-complete

The problem st-conn is in NL. Is it also NL-complete?

Definition (Logspace Reductions)
We write

A ≤L B

if there is a reduction f of A to B that is computable by a deterministic

Turing machine using O(log n) workspace

We saw last lecture an outline for the proof that st-Conn is in NL:

• Start with an NL machine.

• Construct its configuration graph.

• Run an st-Conn algorithm and accept iff it accepted.
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L vs NL

The problem st-Conn is NL-complete. Can we solve it deterministically?

Theorem (Savitch’s Theorem)
st-Conn can be solved by a deterministic algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether there

is a path from a to b of length at most i .
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Savitch’s Theorem

An O((log n)2) space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

1. if (a, b) is an edge or a = b accept

2. else reject

else (if i > 1), for each vertex v , check:

1. Path(a, v , ⌊i/2⌋)

2. Path(v , b, ⌈i/2⌉)

if such an v is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of

information kept at each stage is 3 log n.
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Savitch’s Theorem
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NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.
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Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration

graph of a nondeterministic machine shows:

NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show that

nondeterministic space classes are closed under complementation:

If f (n) ≥ log n, then

NSPACE(f ) = co-NSPACE(f )

In particular

NL = co-NL.
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Bonus: Zero-Knowledge Proofs
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