Complexity Theory

Lecture 11: The Space Complexity Analogue of P vs NP

Tom Gur

http://www.cl.cam.ac.uk/teaching/2324/Complexity

The key players:

```
\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{N}\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXP}\subseteq\mathsf{N}\mathsf{EXP}
```

The key players:

```
\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{N}\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXP}\subseteq\mathsf{N}\mathsf{EXP}
```

You should also know coNP, coNL, UP, R, RE, BQP (Quantum P)

The key players:

```
\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{N}\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXP}\subseteq\mathsf{N}\mathsf{EXP}
```

You should also know coNP, coNL, UP, R, RE, BQP (Quantum P)

Bonus contemporary classes: IP, SZK, BPP, FP, FNP, PCP, QMA

Scaling up complexity results

We can scale up relations between complexity classes. For example:

 $\mathsf{L}=\mathsf{P}\implies\mathsf{PSPACE}=\mathsf{EXP}$

We can scale up relations between complexity classes. For example:

 $\mathsf{L}=\mathsf{P}\implies\mathsf{PSPACE}=\mathsf{EXP}$

Proof: Let $S \in EXP$.

We can scale up relations between complexity classes. For example:

 $L = P \implies PSPACE = EXP$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in \mathsf{P}.$

We can scale up relations between complexity classes. For example:

 $L = P \implies PSPACE = EXP$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in \mathsf{P}.$

Hence, $S' \in L$; denote the algorithm by A.

We can scale up relations between complexity classes. For example:

 $L = P \implies PSPACE = EXP$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in \mathsf{P}.$

Hence, $S' \in L$; denote the algorithm by A.

Given $x \in S$, we can emulate $\mathcal{A}(x01^{2^{|x|^{k}}})$ in polynomial space.

We can scale up relations between complexity classes. For example:

 $L = P \implies PSPACE = EXP$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in \mathsf{P}.$

Hence, $S' \in L$; denote the algorithm by A.

Given $x \in S$, we can emulate $\mathcal{A}(x01^{2^{|x|^k}})$ in polynomial space. Thus $S \in \mathsf{PSPACE}$. We can scale up relations between complexity classes. For example:

 $L = P \implies PSPACE = EXP$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in \mathsf{P}.$

Hence, $S' \in L$; denote the algorithm by A.

Given $x \in S$, we can emulate $\mathcal{A}(x01^{2^{|x|^k}})$ in polynomial space. Thus $S \in \mathsf{PSPACE}$.

A similar argument shows that if P = NP, then EXP = NEXP.

ST-Conn and NL

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t.

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

A simple search algorithm (BFS) solves it:

mark node s, leaving other nodes unmarked, and initialise set S to {s};

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

A simple search algorithm (BFS) solves it:

- mark node s, leaving other nodes unmarked, and initialise set S to {s};
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

A simple search algorithm (BFS) solves it:

- mark node s, leaving other nodes unmarked, and initialise set S to {s};
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if t is marked, accept else reject.

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

A simple search algorithm (BFS) solves it:

- mark node s, leaving other nodes unmarked, and initialise set S to {s};
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if t is marked, accept else reject.

Recall the st-Connectivity problem: given a *directed* graph G = (V, E) and two nodes $s, t \in V$, determine whether there is a path from s to t. Algorithm?

A simple search algorithm (BFS) solves it:

- mark node s, leaving other nodes unmarked, and initialise set S to {s};
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if t is marked, accept else reject.

Complexity: $O(n^2)$ time, O(n) space.

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\mathsf{st-Conn}}$ is in NL:

We can construct a (DFS-based) algorithm to show that the st-Conn is in NL:

1. write the index of node *s* in the work space;

We can construct a (DFS-based) algorithm to show that the st-Conn is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\text{st-Conn}}$ is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if i = t then accept, else guess an index j (log n bits) and write it on the work space.

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\text{st-Conn}}$ is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if *i* = *t* then accept, else guess an index *j* (log *n* bits) and write it on the work space.
2.2 if (*i*, *j*) is not an edge, reject, else replace *i* by *j* and return to (2).

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\text{st-Conn}}$ is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if *i* = *t* then accept, else guess an index *j* (log *n* bits) and write it on the work space.
2.2 if (*i*, *j*) is not an edge, reject, else replace *i* by *j* and return to (2).

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\mathsf{st-Conn}}$ is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if *i* = *t* then accept, else guess an index *j* (log *n* bits) and write it on the work space.
2.2 if (*i*, *j*) is not an edge, reject, else replace *i* by *j* and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel.

We can construct a (DFS-based) algorithm to show that the $\ensuremath{\mbox{st-Conn}}$ is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if *i* = *t* then accept, else guess an index *j* (log *n* bits) and write it on the work space.
2.2 if (*i*, *j*) is not an edge, reject, else replace *i* by *j* and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel. For edges (i,j), the computation can continue.

We can construct a (DFS-based) algorithm to show that the st-Conn is in NL:

- 1. write the index of node *s* in the work space;
- 2. for *i*, the index currently written on the work space:

2.1 if *i* = *t* then accept, else guess an index *j* (log *n* bits) and write it on the work space.
2.2 if (*i*, *j*) is not an edge, reject, else replace *i* by *j* and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel. For edges (i,j), the computation can continue.

If there is a path from s to s, there will be a computation that visits all the nodes on that path.

st-conn is NL-complete

The problem st-conn is in NL. Is it also NL-complete?

Definition (Logspace Reductions) We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

Definition (Logspace Reductions) We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

Definition (Logspace Reductions) We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

We saw last lecture an outline for the proof that st-Conn is in NL:

• Start with an NL machine.

Definition (Logspace Reductions) We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

We saw last lecture an outline for the proof that st-Conn is in NL:

- Start with an NL machine.
- Construct its configuration graph.

Definition (Logspace Reductions) We write

$A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

We saw last lecture an outline for the proof that st-Conn is in NL:

- Start with an NL machine.
- Construct its configuration graph.
- Run an st-Conn algorithm and accept iff it accepted.

L vs NL

Theorem (Savitch's Theorem) st-Conn can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Theorem (Savitch's Theorem) st-Conn can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Theorem (Savitch's Theorem) *st-Conn* can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

1. if (a, b) is an edge or a = b accept

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

- if i = 1:
 - 1. if (a, b) is an edge or a = b accept
 - 2. else reject

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

- if i = 1:
 - 1. if (a, b) is an edge or a = b accept
 - 2. else reject

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

1. Path($a, v, \lfloor i/2 \rfloor$)

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

- 1. Path($a, v, \lfloor i/2 \rfloor$)
- 2. Path($v, b, \lceil i/2 \rceil$)

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

- 1. Path($a, v, \lfloor i/2 \rfloor$)
- 2. Path($v, b, \lceil i/2 \rceil$)

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

- 1. Path($a, v, \lfloor i/2 \rfloor$)
- 2. Path($v, b, \lceil i/2 \rceil$)

if such an v is found, then accept, else reject.

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

- 1. if (a, b) is an edge or a = b accept
- 2. else reject

else (if i > 1), for each vertex v, check:

- 1. Path($a, v, \lfloor i/2 \rfloor$)
- 2. Path($v, b, \lceil i/2 \rceil$)

if such an v is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

 $\mathsf{NSPACE}(f) \subseteq \mathsf{SPACE}(f^2)$

for $f(n) \ge \log n$.

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

 $\mathsf{NSPACE}(f) \subseteq \mathsf{SPACE}(f^2)$

for $f(n) \ge \log n$.

This yields

PSPACE = NPSPACE = co-NPSPACE.

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \ge \log n$, then

NSPACE(f) = co-NSPACE(f)

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \ge \log n$, then

NSPACE(f) = co-NSPACE(f)

In particular

NL = co-NL.

Bonus: Zero-Knowledge Proofs