Complexity Theory

Lecture 10

http://www.cl.cam.ac.uk/teaching/2324 /Complexity

One Way Functions

A function £ is called a if it satisfies the following
conditions:

1. f is one-to-one.

2. for each x, for some

3. f is computable in polynomial time.

4, is computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at
the same time proving

It is strongly believed that the function:

is a one-way function.

UP One-way Functions

We have

It seems unlikely that there are any NP-complete problems in

One-way functions exist

P # UP Implies One-Way Functions Exist

Suppose that L is a language that is in but not in P. Let U be an
machine that accepts

Define the function f;; by
if x is a string that encodes an accepting computation of U,
then where y is the input string accepted by this
computation.
otherwise.

We can prove that 7, is a one-way function.

Space Complexity

We've already seen the definition : the languages accepted by
a machine which uses tape cells on inputs of length

is the class of languages accepted by a
Turing machine using at most work space.

As we are only counting work space, it makes sense to consider bounding
functions 7 that are less than linear.

Classes

The class of languages decidable in polynomial space.

Also, define:
— the languages whose complements are in

— the languages whose complements are in

Inclusions

We have the following inclusions:

where

Moreover,

Padding arguments

We can scale up relations between complexity classes. For example:

Proof: Let S € EXP.

Then §' = {xOlzwk : x€eS}eP.

Hence, S’ € L.

Given x € S, we can generate xOlzmk € S’ in polynomial space.

Thus S € PSPACE.

Constructible Functions

A complexity class such as can be very unnatural, if f is.

We restrict our bounding functions f to be proper functions:

Definition
A function is if:

e is non-decreasing, i.e. for all n; and

e there is a deterministic machine \/ which, on any input of length n,
replaces the input with the string , and M runs in time
and uses

All of the following functions are constructible:

If ¥ and g are constructible functions, then so are
and (this last, provided that)-

10

Using Constructible Functions

NTIME(f) can be defined as the class of those languages | accepted by
a nondeterministic Turing machine M, such that for every x € [, there is
an accepting computation of / on x of length at most O(f(n)).

If f is a constructible function then any language in NTIME(f) is
accepted by a machine for which all computations are of length at most
O(f(n)).

Also, given a Turing machine \/ and a constructible function 7, we can
define a machine that simulates // for 7(n) steps.

11

Establishing Inclusions

To establish the known inclusions between the main complexity classes,
we prove the following, for any constructible

The first two are straightforward from definitions.
The third is an easy simulation.

The last requires some more work.

12

Reachability

Recall the problem: given a graph and
two nodes , determine whether there is a path from a to b in

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

2. while S is not empty, choose node / in S: remove / from S and for

all j such that there is an edge and / is unmarked, mark / and
add j to S;

3. if b is marked, accept else reject.

13

We can use the O(n?) algorithm for Reachability to show that:
NSPACE(f(n)) C TIME(k'ogm+(n)

for some constant k.

Let M be a nondeterministic machine working in space bounds ().

For any input x of length n, there is a constant ¢ (depending on the

number of states and alphabet of /) such that the total number of

possible configurations of // within space bounds () is bounded by
. cf(n)

n-ctn,

f(n)

Here, c"\") represents the number of different possible contents

of the work space, and n different head positions on the input.

14

