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We've already seen the definition : the languages accepted by
a machine which uses tape cells on inputs of length

is the class of languages accepted by a
Turing machine using at most work space.

As we are only counting work space, it makes sense to consider bounding
functions f that are less than linear.
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Space Complexity Zoo

EXPSPACE

EXPTIME

PSPACE = NPSPACE = IP
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and

Moreover,

It would be easier to prove a more general statement!
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To prove more general inclusion, we restrict our attention to reasonable
time functions.

A complexity class such as can be very unnatural, if f is.

We restrict our bounding functions 7 to be proper functions:

Definition
A function is if:

. is non-decreasing, i.e. for all n; and

= there is a deterministic machine // which, on any input of length 7,
replaces the input with the string , and M runs in time
and uses
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All of the following functions are constructible:

If £ and g are constructible functions, then so are
and (this last, provided that ).
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Using Constructible Functions

can be defined as the class of those languages | accepted by
a Turing machine /M, such that for every x, there is an
accepting computation of M on x of length at most

If f is a constructible function then any language in is
accepted by a machine for which all computations are of length at most

Also, given a Turing machine M and a constructible function f, we can
define a machine that simulates / for steps.
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To establish the known inclusions between the main complexity classes,
we prove the following, for any constructible

The first two are straightforward from definitions.
The third is an easy simulation.

The last requires some more work.
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st-Connectivity

Recall the st-Connectivity problem: given a directed graph G = (V. E)
and two nodes s, ¢t € V/, determine whether there is a path from s to .
Algorithm?

A simple search algorithm solves it:

1. mark node s, leaving other nodes unmarked, and initialise set S to
M5l
|

2. while S is not empty, choose node / in S: remove / from S and for
all j such that there is an edge (/. /) and j is unmarked, mark j and
add j to S;

3. if ¢ is marked, accept else reject.
Complexity?

Bonus: Can you do it in NL?
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Nondeterministic space vs deterministic time

We can use the O(n?) time algorithm for st-Connectivity to show that:
NSPACE(f(n)) C TIME(k'°&+f(n)

for some constant k.

Let M be a nondeterministic machine working in space bounds 7 ().

For any input x of length n, there is a constant ¢ (depending on the
number of states and alphabet of /) such that the total number of
possible configurations of // within space bounds 7 (1) is bounded by

n-cfn,

Here, c"\") represents the number of different possible contents
of the work space, and n different head positions on the input.
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Configuration Graph

Define the of to be the graph whose nodes are
the possible configurations, and there is an edge from / to j if, and only
if,

Then, M accepts x if, and only if, some accepting configuration is
reachable from the starting configuration in the
configuration graph of
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operating in time
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Using the algorithm for , We get that —the
language accepted by /—can be decided by a deterministic machine

operating in time

In particular, this establishes that and
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Padding arguments

We can scale up relations between complexity classes. For example:

Proof: Let S € EXP.

Then S’ = {x012wk : x€eS}eP.

Hence, S’ € L; denote the algorithm by A.

Given x € S, we can emulate A(x012‘xlk) in polynomial space.

Thus S € PSPACE.

A similar argument shows that if P = NP, then EXP = NEXP.
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Bonus: Interactive Proofs (IP) and PCPs



