
Complexity Theory

Lecture 10

http://www.cl.cam.ac.uk/teaching/2324/Complexity

One Way Functions

A function f is called a one way function if it satisfies the following

conditions:

1. f is one-to-one.

2. for each x , |x |1/k ≤ |f (x)| ≤ |x |k for some k .

3. f is computable in polynomial time.

4. f −1 is not computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at

the same time proving P 6= NP.

It is strongly believed that the RSA function:

f (x , e, p, q) = (xe mod pq, pq, e)

is a one-way function.

2

UP One-way Functions

We have

P ⊆ UP ⊆ NP

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist if, and only if, P 6= UP.

3

P 6= UP Implies One-Way Functions Exist

Suppose that L is a language that is in UP but not in P. Let U be an

unambiguous machine that accepts L.

Define the function fU by

if x is a string that encodes an accepting computation of U ,

then fU(x) = 1y where y is the input string accepted by this

computation.

fU(x) = 0x otherwise.

We can prove that fU is a one-way function.

4

Space Complexity

We’ve already seen the definition SPACE(f): the languages accepted by

a machine which uses O(f (n)) tape cells on inputs of length n. Counting

only work space.

NSPACE(f) is the class of languages accepted by a nondeterministic

Turing machine using at most O(f (n)) work space.

As we are only counting work space, it makes sense to consider bounding

functions f that are less than linear.

5

Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
⋃

∞

k=1
SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃

∞

k=1
NSPACE(nk)

Also, define:

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.

6

Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃

∞

k=1
TIME(2n

k

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

7

Padding arguments

We can scale up relations between complexity classes. For example:

L = P =⇒ PSPACE = EXP

Proof: Let S ∈ EXP.

Then S ′ = {x012
|x|k

: x ∈ S} ∈ P.

Hence, S ′ ∈ L.

Given x ∈ S , we can generate x012
|x|k

∈ S ′ in polynomial space.

Thus S ∈ PSPACE.

8

Constructible Functions

A complexity class such as TIME(f) can be very unnatural, if f is.

We restrict our bounding functions f to be proper functions:

Definition

A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f (n + 1) ≥ f (n) for all n; and

• there is a deterministic machine M which, on any input of length n,

replaces the input with the string 0f (n), and M runs in time

O(n + f (n)) and uses O(f (n)) work space.

9

Examples

All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are

f + g , f · g , 2f and f (g) (this last, provided that f (n) > n).

10

Using Constructible Functions

NTIME(f) can be defined as the class of those languages L accepted by

a nondeterministic Turing machine M , such that for every x ∈ L, there is

an accepting computation of M on x of length at most O(f (n)).

If f is a constructible function then any language in NTIME(f) is

accepted by a machine for which all computations are of length at most

O(f (n)).

Also, given a Turing machine M and a constructible function f , we can

define a machine that simulates M for f (n) steps.

11

Establishing Inclusions

To establish the known inclusions between the main complexity classes,

we prove the following, for any constructible f .

• SPACE(f (n)) ⊆ NSPACE(f (n));

• TIME(f (n)) ⊆ NTIME(f (n));

• NTIME(f (n)) ⊆ SPACE(f (n));

• NSPACE(f (n)) ⊆ TIME(k log n+f (n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

12

Reachability

Recall the Reachability problem: given a directed graph G = (V ,E) and

two nodes a, b ∈ V , determine whether there is a path from a to b in G .

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};

2. while S is not empty, choose node i in S : remove i from S and for

all j such that there is an edge (i , j) and j is unmarked, mark j and

add j to S ;

3. if b is marked, accept else reject.

13

We can use the O(n2) algorithm for Reachability to show that:

NSPACE(f (n)) ⊆ TIME(k log n+f (n))

for some constant k .

Let M be a nondeterministic machine working in space bounds f (n).

For any input x of length n, there is a constant c (depending on the

number of states and alphabet of M) such that the total number of

possible configurations of M within space bounds f (n) is bounded by

n · c f (n).

Here, c f (n) represents the number of different possible contents

of the work space, and n different head positions on the input.

14

