Exercise 1. Show that the following arithmetic functions are all register machine computable.

(a) First projection function $p \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $p(x, y) \triangleq x$

(b) Constant function with value $n \in \mathbb{N}$, $c \in \mathbb{N} \rightarrow \mathbb{N}$, where $c(x) \triangleq n$

(c) Truncated subtraction function, $_ _ _ _ \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $x _ _ _ _ _ y \triangleq \begin{cases} x - y & \text{if } y \leq x \\ 0 & \text{if } y > x \end{cases}$

(d) Integer division function, $_ _ _ _ _ _ \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $x _ _ _ _ _ _ _ y \triangleq \begin{cases} \text{integer part of } x/y & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases}$

(e) Integer remainder function, $_ _ _ _ _ _ _ _ \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $x _ _ _ _ _ _ _ _ y \triangleq x _ _ _ _ _ _ _ y (x _ _ _ _ _ _ _ y)$

(f) Exponentiation base 2, $e \in \mathbb{N} \rightarrow \mathbb{N}$, where $e(x) \triangleq 2^x$.

(g) Logarithm base 2, $\log_2 \in \mathbb{N} \rightarrow \mathbb{N}$, where $\log_2(x) \triangleq \begin{cases} \text{greatest } y \text{ such that } 2^y \leq x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$

Exercise 2. Let $\phi_e \in \mathbb{N} \rightarrow \mathbb{N}$ denote the unary partial function from numbers to numbers computed by the register machine with code e. Show that for any given register machine computable unary partial function $f \in \mathbb{N} \rightarrow \mathbb{N}$, there are infinitely many numbers e such that $\phi_e = f$. (Two partial functions are equal if they are equal as sets of ordered pairs; which is equivalent to saying that for all numbers $x \in \mathbb{N}$, $\phi_e(x)$ is defined if and only if $f(x)$ is, and in that case they are equal numbers.)

Exercise 3. Consider the list of register machine instructions whose graphical representation is shown below. Assuming that register Z holds 0 initially, describe what happens when the code is executed (both in terms of the effect on registers A and S and whether the code halts by jumping to the label EXIT or HALT).

Exercise 4. Show that there is a register machine computable partial function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that both $\{x \in \mathbb{N} \mid f(x) \downarrow\}$ and $\{y \in \mathbb{N} \mid (\exists x \in \mathbb{N}) f(x) = y\}$ are register machine undecidable.
Exercise 5. Suppose S_1 and S_2 are subsets of \mathbb{N}. Suppose $f \in \mathbb{N} \rightarrow \mathbb{N}$ is register machine computable function satisfying: for all x in \mathbb{N}, x is an element of S_1 if and only if $f(x)$ is an element of S_2. Show that S_1 is register machine decidable if S_2 is.

Exercise 6. Show that the set of codes $\langle e,e' \rangle$ of pairs of numbers e and e' satisfying $\phi_e = \phi_{e'}$ is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine that recognises whether or not a number is the code for a suitable list containing a triple with $\langle e,e', \text{ack} \rangle$. Show how to use that machine to build a machine computing $\langle e,e', \text{ack} \rangle$. (For each e, e', if $\text{ack}(e,e')$ is not zero, then e either is or is not the code of a suitable list containing a triple with $\langle e,e', \text{ack} \rangle$.)

Exercise 8. Show that the following functions are all primitive recursive.

(a) Exponentiation, $\exp \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $\exp(x,y) \triangleq x^y$.

(b) Truncated subtraction, $\text{minus} \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $\text{minus}(x,y) \triangleq \begin{cases} x - y & \text{if } x \geq y \\ 0 & \text{if } x < y \end{cases}$

(c) Conditional branch on zero, $\text{ifzero} \in \mathbb{N}^2 \rightarrow \mathbb{N}$, where $\text{ifzero}(x,y,z) \triangleq \begin{cases} y & \text{if } x = 0 \\ z & \text{if } x > 0 \end{cases}$

(d) Bounded summation: if $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive, then so is $g \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ where

$$g(\vec{x}, x) \triangleq \begin{cases} 0 & \text{if } x = 0 \\ f(\vec{x},0) & \text{if } x = 1 \\ f(\vec{x},0) + \cdots + f(\vec{x},x-1) & \text{if } x > 1. \end{cases}$$

Exercise 9. Recall the definition of Ackermann’s function ack (slide 102). Sketch how to build a register machine M that computes $\text{ack}(x_1, x_2)$ in R0 when started with x_1 in R1 and x_2 in R2 and all other registers zero. [Hint: here’s one way; the next question steers you another way to the computability of ack.] Call a finite list $L = [(x_1,y_1,z_1),(x_2,y_2,z_2),\ldots]$ of triples of numbers suitable if it satisfies

(i) if $(0,y,z) \in L$, then $z = y + 1$

(ii) if $(x+1,0,z) \in L$, then $(x,1,z) \in L$

(iii) if $(x+1,y+1,z) \in L$, then there is some u with $(x+1,y,u) \in L$ and $(x,u,z) \in L$.

The idea is that if $(x,y,z) \in L$ and L is suitable then $z = \text{ack}(x,y)$ and L contains all the triples $(x',y',\text{ack}(x,y))$ needed to calculate $\text{ack}(x,y)$. Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing $\text{ack}(x,y)$ by searching for the code of a suitable list containing a triple with x and y in it’s first two components.

Exercise 10. For each $n \in \mathbb{N}$, let g_n be the function mapping each $y \in \mathbb{N}$ to the value $\text{ack}(n,y)$ of Ackermann’s function at $(n,y) \in \mathbb{N}^2$.

(a) Show for all $(n,y) \in \mathbb{N}^2$ that $g_{n+1}(y) = (g_n)^{(y+1)}(1)$, where $h^{(k)}(z)$ is the result of k repeated applications of the function h to initial argument z.

(b) Deduce that each g_n is a primitive recursive function.

(c) Deduce that Ackermann’s function is total recursive.

Exercise 11. If you are still not fed up with Ackermann’s function $\text{ack} \in \mathbb{N}^2 \rightarrow \mathbb{N}$, show that the λ-term $\text{ack} \equiv \lambda x. x (\lambda f y. y f (f \text{1})) \text{Succ}$ represents ack (where Succ is as on slide 123).

Exercise 12. Let I be the λ-term $\lambda x. x$. Show that $nI =_\beta I$ holds for every Church numeral n.

Now consider

$$B \equiv \lambda f \ g \ x. \ g \ x \ I \ (f \ (g \ x))$$

Assuming the fact about normal order reduction mentioned on slide 115, show that if partial functions $f, g \in \mathbb{N} \rightarrow \mathbb{N}$ are represented by closed λ-terms F and G respectively, then their composition $(f \circ g)(x) \equiv f(g(x))$ is represented by $BF \ G$.