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1. For each set 3, let Pow X be the set {S | S € X} of all subsets of X. The operation of taking the
union of two subsets and the empty subset together give the structure of a monoid on Pow 2.
Writing P¥ = (Pow X, _ U , 0) for this monoid, show that ¥ + P is the object part of a
functor P : Set — Mon.

2. Let F : Set — Mon be the free monoid functor, given by finite lists and mapping over finite lists
(Lecture 10). Show that the operation that sends each finite list to the finite set of elements that
it contains gives a natural transformation 6 : F — P, where P is the functor from question 1.

3. Given small categories C, D, functors F,G : C — D and a natural transformation 6 : F — G,
show that 0 is an isomorphism in the functor category D€ if and only if for all X € objC, the
morphism 0y € D(F X, G X) is an isomorphism in the category D.

4. In this question you will prove that there is no natural way to choose an element from an
arbitrary non-empty set. Let P* : Set — Set be the functor assigning to each set X its set
P*X 2 {S C X | S # 0} of non-empty subsets; the action of P* on morphisms in Set sends
each function f : X — Y to the function P*f : P*X — P*Y, where for all S € P*X

(Pf)s={fx|xeS}
(This does indeed make P* into a functor.)

Suppose that for each set X we are given a function chy : P*X — X with the property that
chx (S) € Sfor all S € P*X. Show that these functions cannot be the components of a natural
transformation P* — Idget from P* to the identity functor on the category Set of sets and
functions. [Hint: consider the naturality condition for the function r : {0,1} — {0, 1} with
7(0) =1and 7(1) = 0.]

5. Suppose we are given categories C,D, E, functors F,G,H : C - Dand [, J,K : D — E, and
natural transformations

FS65H and 1575k
(a) Using a and I, define a natural transformation e : [o F — I o G.
(b) Using F and y, define a natural transformation yr: o F — J o F.

)

)
(c) Using a and B, define a natural transformation foa : F — H.
(d) Using o and y, define a natural transformation y x @ : [o F — J o G.
)

(e) Show that the operations you defined in questions (5¢) and (5d) satisfy: (§* f) o (y*a) =
(doy)*(Boa). (This is called the Interchange Law for vertical and horizontal composition
of natural transformations.)

6. Let C 5> DS Cand (Oxy :D(FX,Y) = C((X,GY) | X € 0bjC, Y € objD) be an adjunction
between categories C and D.



(a) Use 6 to define natural transformations 7 : Idc = Go Fand ¢ : F o G — Idp. (These are
called respectively the unit and counit of the adjunction.)

(b) Prove that the natural transformations defined in part (6a) satisfy ep o Fy = idr and

Geong =idg
Fn G
F——=FoGoF G——=GoFoG
1
i lé‘F ido lGe ()
F G

where we are using notation as in questions (5a) and (5b). (These are called the triangular
identities for the unit and counit of the adjunction.)

7. Given functors C - D < C and natural transformations n:ldc > GoFande: FoG — Idp
satisfying the triangular identities (1), show that F is left adjoint to G.
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Question 1 For each function f € Set(Z,%’) there is a function Pow f € Set(Pow X, Pow X’)
defined by

(Pow f)§ = {f x| x € 5} (2)

Note that this is a monoid homomorphism (Pow X, U, 0) — (Pow X', U, 0), because
c PowfO={fx|xe0}=0

e Pow f(SUS) ={fx|xeSUS}={fx|xeS VxeS}t={fx|xeStu{fx]|xe
S’} = (Pow f S) U (Pow f S').

So we get P f € Mon((Pow X, U, 0), (Pow ', U, 0)). Furthermore
o (Powidy)S = {idsgx | x € S} = Sforall S € Pow X; and hence Pidy = idpy.

« Pow g(Pow £S) = {gy | y € Pow £ S} = {g(Fx) | x € S} = {(g o f)x | x € S} = Pow(g o f) §
for all S € Pow X; and hence P(g o ) = (Pg) o (P f).

So P is a functor Set — Mon.

Question 2 For each set %, define 65 € Set(List X, Pow X) by recursion on the length of lists:

B (nil) = 0
Os(a:£) = {a} U b5 (¢)

Then one can prove (V¢, ¢ € ListX) 05(¢ @ ¢') = 05(£) U 05(£") by induction on the length of ¢.
So we get that 05 is in Mon(FZX, PY). To show that these morphisms form a natural transformation
0 : F — P, we have to show for each f € Set(2,%’) that P f o 85 = 05 o F f; and by definition of F
and P, this means proving (V¢ € ListX) Pow f(6x(f)) = 0y (List f £), which follows easily from the
definitions of Pow f, List f and 65, by induction on the length of .

Here is another proof, which uses the universal property of the free monoid F¥ instead of recur-
sion/induction on lists.

For each set 2, let sy € Set(3, Pow X) be the function mapping each x € ¥ to sx(x) = {x} €
Pow X. Using the universal property of the free monoid is : ¥ — List X, there is a unique monoid
homomorphism §3 € Mon(F X, P3) with s3 o iy = sy. We take 05 to be §3 and show that these
functions together give a natural transformation 6 : F — P.

So we have to show for each f € Set(X,%") that s o Ff = P f o 65 € Mon(FZX, PY’). By the
uniqueness part of the universal property of the free monoid iy : ¥’ — List X, for this it suffices to
show that the two monoid homomorphisms 05/ o F f and P f o 05, when composed with the function
iy, give equal functions in Set(3, Pow X’). But

(Pfobs)ois = ((Pow f) os5) oix = (Pow f) o (55 0 i5)
= (Pow f) o sy by definition of §3



whereas

(O oFf)ois = (5 oFf)oig =5y o(Ffoiy)

=5y o (iyr o f) since i is a natural transformation
=Sy oiy)of
=ssof by definition of 55

So it suffices to prove that (Pow f) o sy = sy» o f € Set(2,PowX’). But for all x € X, we have

((Pow f) o s5) x = Pow f (ss x) = Pow f {x} = {fy |y € {x}} = {f x} = s (f %) = (s 0 f) x.

Question 3 If 0 € D¢ (F,G) is an isomorphism, then there is a natural transformation 91 e
DC(G,F) with 7' 00 = idr and 0 0 07! = id;. By definition of identity and composition for natural
transformations, that means that for all X € objC we have (87 !)x o 0x = idpx and 0x o (07 1)x =
idG x. Therefore each 0x € D(F X, G X) is an isomorphism in D with inverse (0~ 1)x.

Conversely, ifeach x € D(F X, G X) is an isomorphism in D, then the inverse morphisms (6x) !
are natural in X because for any f € C(X,Y) we have

Ff o (Qx)_l = (ey)_l o GY o Ff (@) (ex)_l because (Qy)_l o GY = idFY
=(0y) toGfobxo(6x)™! because Ox is natural in X
=(0y) oG f because 0x o (0x) ! =idgx

and so determine a natural transformation 6 € D¢(G, F) with (8~')x 2 (6x)~! for each X € objC.
This gives an inverse for 6. For (87! 0 0)x = (071)x 0 0x = (0x) ™! 0 Ox = idrx = (idF)x, so that
07! 0 0 = idF; and similarly, 0 o 07! = idg.

Question 4 If chy were natural in X, then taking X = 2 = {0, 1} and letting 7 be as in the hint,
there would be a commutative square in Set:

P*2 2
p+fl l )
Pt2——=2
Chz
Consider {0,1} € P*2. We have
P*r{0,1} = {r0,71} = {1,0} = {0, 1} (4)

Since ch,({0,1}) € {0, 1}, either chy ({0, 1}) = 0, or ch,({0,1}) = 1. In the first case we get

1=170=1(chy{0,1}) = chy(P*r{0,1}) by (3)
= Ch2{0> 1} by (4)
=0 by assumption

which is a contradiction; and in the second case we get a similar contradiction. So (3) cannot com-
mute and in particular chyx cannot be natural in X.



Question 5

(a) Define (I a)x = I(ax) : I(F X) — I(G X). Since ax is natural in X € objC, we have G foax =
ay o F f; and then since I is a functor, we get I(G f) o I(ax) = I(ay) o I(F f). So (Ia@)x is
natural in X.

(b) Define (yr)x = y(rx) : I(FX) — J(FX). Since yy is natural in Y € objD, (yr)x is natural in
X € objC.

(c) Define (foa)x = fx oax : FX — HX. Since ax and fx are natural in X € objC, so is

(Boa)x.

(d) Define (y * a)x = yox © I(ax) : I(FX) — J(GX). This is natural in X, because for any
feCXY)

J(Gfo(y*a)x =J(G[)oyex ol(ax)

=J(Gf)oJ(ax)oyrx by natuality for y
=J(Gfoax)oyrx by functoriality for J
=J(ayoFf)oyrx by natuality for
=J(ay) o J(F f) oyrx by functoriality for J
=J(ay) oyry o I(F f) by natuality for y
=Yycy o I(ay) o I(F f) by natuality for y

= (y*xa)y o I(F f)

@ ((6xpo(y*a))x = (6*f)x o (y*a)x
= dux o J(Px) o yox o I(ax)
=duxoyax ol(fx)olI(ax) by naturality fory
= (6oy)ux o I(Px) o I(ax)
=(Soy)gxol(fx o ax) by functoriality for I
= (Boy)uxol((foa)x)
= ((6oy)* (foa)x

Question 6

(a) We use the notation g = 0x y(g) and f = 0% y(f) from Lecture 13.

Define nx = idpx € C(X, G(F X)). This is natural in X € obj C, because using naturality for
0 (twice) we have

G(Ff)onx =G(Ff)oidpx =F foidpx =idpyoF f =idpyo f = nyo f

Dually, define ey = idgy € D(F(GY),Y) and prove it is natural in Y € objD by a similar
calculation.



(b) (eroFn)x = (ep)x o (Fn)x
£ erx o F(nx)

= idG(rx) © F(nx)

= m by naturality of 0

=7x

£ idrx

=idrx since 6 is an isomorphism
= (idp)x

The proof that (G € o 5g)y = (idg)y is dual to the one above.

Question 7 This is a standard result; see for example Proposition 10.1 on page 254 of Awodey’s
Category Theory book.



