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1. For each set Σ, let Pow Σ be the set {𝑆 | 𝑆 ⊆ Σ} of all subsets of Σ. The operation of taking the
union of two subsets and the empty subset together give the structure of a monoid on Pow Σ.
Writing 𝑃 Σ = (Pow Σ, ∪ , ∅) for this monoid, show that Σ ↦→ 𝑃 Σ is the object part of a
functor 𝑃 : Set → Mon.

2. Let 𝐹 : Set → Mon be the freemonoid functor, given by finite lists andmapping over finite lists
(Lecture 10). Show that the operation that sends each finite list to the finite set of elements that
it contains gives a natural transformation 𝜃 : 𝐹 → 𝑃 , where 𝑃 is the functor from question 1.

3. Given small categories C,D, functors 𝐹,𝐺 : C → D and a natural transformation 𝜃 : 𝐹 → 𝐺 ,
show that 𝜃 is an isomorphism in the functor category DC if and only if for all 𝑋 ∈ objC, the
morphism 𝜃𝑋 ∈ D(𝐹 𝑋,𝐺 𝑋 ) is an isomorphism in the category D.

4. In this question you will prove that there is no natural way to choose an element from an
arbitrary non-empty set. Let 𝑃+ : Set → Set be the functor assigning to each set 𝑋 its set
𝑃+𝑋 ≜ {𝑆 ⊆ 𝑋 | 𝑆 ≠ ∅} of non-empty subsets; the action of 𝑃+ on morphisms in Set sends
each function 𝑓 : 𝑋 → 𝑌 to the function 𝑃+ 𝑓 : 𝑃+𝑋 → 𝑃+𝑌 , where for all 𝑆 ∈ 𝑃+𝑋

(𝑃+ 𝑓 )𝑆 ≜ {𝑓 𝑥 | 𝑥 ∈ 𝑆}

(This does indeed make 𝑃+ into a functor.)
Suppose that for each set 𝑋 we are given a function ch𝑋 : 𝑃+𝑋 → 𝑋 with the property that
ch𝑋 (𝑆) ∈ 𝑆 for all 𝑆 ∈ 𝑃+𝑋 . Show that these functions cannot be the components of a natural
transformation 𝑃+ → IdSet from 𝑃+ to the identity functor on the category Set of sets and
functions. [Hint: consider the naturality condition for the function 𝜏 : {0, 1} → {0, 1} with
𝜏 (0) = 1 and 𝜏 (1) = 0.]

5. Suppose we are given categories C,D, E, functors 𝐹,𝐺, 𝐻 : C → D and 𝐼 , 𝐽 , 𝐾 : D → E, and
natural transformations

𝐹
𝛼−→ 𝐺

𝛽
−→ 𝐻 and 𝐼

𝛾
−→ 𝐽

𝛿−→ 𝐾.

(a) Using 𝛼 and 𝐼 , define a natural transformation 𝐼 𝛼 : 𝐼 ◦ 𝐹 → 𝐼 ◦𝐺 .
(b) Using 𝐹 and 𝛾 , define a natural transformation 𝛾𝐹 : 𝐼 ◦ 𝐹 → 𝐽 ◦ 𝐹 .
(c) Using 𝛼 and 𝛽 , define a natural transformation 𝛽 ◦ 𝛼 : 𝐹 → 𝐻 .
(d) Using 𝛼 and 𝛾 , define a natural transformation 𝛾 ∗ 𝛼 : 𝐼 ◦ 𝐹 → 𝐽 ◦𝐺 .
(e) Show that the operations you defined in questions (5c) and (5d) satisfy: (𝛿 ∗ 𝛽) ◦ (𝛾 ∗𝛼) =

(𝛿 ◦𝛾)∗ (𝛽◦𝛼). (This is called the Interchange Law for vertical and horizontal composition
of natural transformations.)

6. Let C 𝐹−→ D
𝐺−→ C and (𝜃𝑋,𝑌 : D(𝐹 𝑋,𝑌 ) � C((𝑋,𝐺 𝑌 ) | 𝑋 ∈ objC, 𝑌 ∈ objD) be an adjunction

between categories C and D.



(a) Use 𝜃 to define natural transformations 𝜂 : IdC → 𝐺 ◦ 𝐹 and 𝜀 : 𝐹 ◦𝐺 → Id𝐷 . (These are
called respectively the unit and counit of the adjunction.)

(b) Prove that the natural transformations defined in part (6a) satisfy 𝜀𝐹 ◦ 𝐹 𝜂 = id𝐹 and
𝐺 𝜀 ◦ 𝜂𝐺 = id𝐺

𝐹
𝐹 𝜂 //

id𝐹 $$

𝐹 ◦𝐺 ◦ 𝐹
𝜀𝐹

��
𝐹

𝐺
𝜂𝐺//

id𝐺 $$

𝐺 ◦ 𝐹 ◦𝐺
𝐺 𝜀
��
𝐺

(1)

where we are using notation as in questions (5a) and (5b). (These are called the triangular
identities for the unit and counit of the adjunction.)

7. Given functors C 𝐹−→ D
𝐺−→ C and natural transformations 𝜂 : IdC → 𝐺 ◦ 𝐹 and 𝜀 : 𝐹 ◦𝐺 → Id𝐷

satisfying the triangular identities (1), show that 𝐹 is left adjoint to 𝐺 .
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Question 1 For each function 𝑓 ∈ Set(Σ, Σ′) there is a function Pow 𝑓 ∈ Set(Pow Σ, Pow Σ′)
defined by

(Pow 𝑓 ) 𝑆 ≜ {𝑓 𝑥 | 𝑥 ∈ 𝑆} (2)

Note that this is a monoid homomorphism (Pow Σ,∪, ∅) → (Pow Σ′,∪, ∅), because

• Pow 𝑓 ∅ = {𝑓 𝑥 | 𝑥 ∈ ∅} = ∅

• Pow 𝑓 (𝑆 ∪ 𝑆 ′) = {𝑓 𝑥 | 𝑥 ∈ 𝑆 ∪ 𝑆 ′} = {𝑓 𝑥 | 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ 𝑆 ′} = {𝑓 𝑥 | 𝑥 ∈ 𝑆} ∪ {𝑓 𝑥 | 𝑥 ∈
𝑆 ′} = (Pow 𝑓 𝑆) ∪ (Pow 𝑓 𝑆 ′).

So we get 𝑃 𝑓 ∈ Mon((Pow Σ,∪, ∅), (Pow Σ′,∪, ∅)). Furthermore

• (Pow idΣ) 𝑆 = {idΣ𝑥 | 𝑥 ∈ 𝑆} = 𝑆 for all 𝑆 ∈ Pow Σ; and hence 𝑃 idΣ = id𝑃 Σ.

• Pow𝑔(Pow 𝑓 𝑆) = {𝑔𝑦 | 𝑦 ∈ Pow 𝑓 𝑆} = {𝑔(𝑓 𝑥) | 𝑥 ∈ 𝑆} = {(𝑔 ◦ 𝑓 )𝑥 | 𝑥 ∈ 𝑆} = Pow(𝑔 ◦ 𝑓 ) 𝑆
for all 𝑆 ∈ Pow Σ; and hence 𝑃 (𝑔 ◦ 𝑓 ) = (𝑃 𝑔) ◦ (𝑃 𝑓 ).

So 𝑃 is a functor Set → Mon.

Question 2 For each set Σ, define 𝜃Σ ∈ Set(List Σ, Pow Σ) by recursion on the length of lists:

𝜃Σ (nil) = ∅
𝜃Σ (𝑎 :: ℓ) = {𝑎} ∪ 𝜃Σ (ℓ)

Then one can prove (∀ℓ, ℓ ′ ∈ List Σ) 𝜃Σ (ℓ @ ℓ ′) = 𝜃Σ (ℓ) ∪ 𝜃Σ (ℓ ′) by induction on the length of ℓ .
So we get that 𝜃Σ is in Mon(𝐹Σ, 𝑃Σ). To show that these morphisms form a natural transformation
𝜃 : 𝐹 → 𝑃 , we have to show for each 𝑓 ∈ Set(Σ, Σ′) that 𝑃 𝑓 ◦ 𝜃Σ = 𝜃Σ′ ◦ 𝐹 𝑓 ; and by definition of 𝐹
and 𝑃 , this means proving (∀ℓ ∈ List Σ) Pow 𝑓 (𝜃Σ (ℓ)) = 𝜃Σ′ (List 𝑓 ℓ), which follows easily from the
definitions of Pow 𝑓 , List 𝑓 and 𝜃Σ, by induction on the length of ℓ .

Here is another proof, which uses the universal property of the free monoid 𝐹Σ instead of recur-
sion/induction on lists.

For each set Σ, let 𝑠Σ ∈ Set(Σ, Pow Σ) be the function mapping each 𝑥 ∈ Σ to 𝑠Σ (𝑥) ≜ {𝑥} ∈
Pow Σ. Using the universal property of the free monoid 𝑖Σ : Σ → List Σ, there is a unique monoid
homomorphism 𝑠Σ ∈ Mon(𝐹 Σ, 𝑃 Σ) with 𝑠Σ ◦ 𝑖Σ = 𝑠Σ. We take 𝜃Σ to be 𝑠Σ and show that these
functions together give a natural transformation 𝜃 : 𝐹 → 𝑃 .

So we have to show for each 𝑓 ∈ Set(Σ, Σ′) that 𝜃Σ′ ◦ 𝐹 𝑓 = 𝑃 𝑓 ◦ 𝜃Σ ∈ Mon(𝐹Σ, 𝑃Σ′). By the
uniqueness part of the universal property of the free monoid 𝑖Σ : Σ′ → List Σ, for this it suffices to
show that the two monoid homomorphisms 𝜃Σ′ ◦𝐹 𝑓 and 𝑃 𝑓 ◦𝜃Σ, when composed with the function
𝑖Σ, give equal functions in Set(Σ, Pow Σ′). But

(𝑃 𝑓 ◦ 𝜃Σ) ◦ 𝑖Σ ≜ ((Pow 𝑓 ) ◦ 𝑠Σ) ◦ 𝑖Σ = (Pow 𝑓 ) ◦ (𝑠Σ ◦ 𝑖Σ)
= (Pow 𝑓 ) ◦ 𝑠Σ by definition of 𝑠Σ



whereas

(𝜃Σ′ ◦ 𝐹 𝑓 ) ◦ 𝑖Σ ≜ (𝑠Σ′ ◦ 𝐹 𝑓 ) ◦ 𝑖Σ = 𝑠Σ′ ◦ (𝐹 𝑓 ◦ 𝑖Σ)
= 𝑠Σ′ ◦ (𝑖Σ′ ◦ 𝑓 ) since 𝑖 is a natural transformation
= (𝑠Σ′ ◦ 𝑖Σ′) ◦ 𝑓
= 𝑠Σ′ ◦ 𝑓 by definition of 𝑠Σ′

So it suffices to prove that (Pow 𝑓 ) ◦ 𝑠Σ = 𝑠Σ′ ◦ 𝑓 ∈ Set(Σ, Pow Σ′). But for all 𝑥 ∈ Σ, we have
((Pow 𝑓 ) ◦ 𝑠Σ) 𝑥 = Pow 𝑓 (𝑠Σ 𝑥) = Pow 𝑓 {𝑥} = {𝑓 𝑦 | 𝑦 ∈ {𝑥}} = {𝑓 𝑥} = 𝑠Σ′ (𝑓 𝑥) = (𝑠Σ′ ◦ 𝑓 ) 𝑥 .

Question 3 If 𝜃 ∈ DC(𝐹,𝐺) is an isomorphism, then there is a natural transformation 𝜃−1 ∈
DC(𝐺, 𝐹 ) with 𝜃−1 ◦ 𝜃 = id𝐹 and 𝜃 ◦ 𝜃−1 = id𝐺 . By definition of identity and composition for natural
transformations, that means that for all 𝑋 ∈ objC we have (𝜃−1)𝑋 ◦ 𝜃𝑋 = id𝐹 𝑋 and 𝜃𝑋 ◦ (𝜃−1)𝑋 =

id𝐺 𝑋 . Therefore each 𝜃𝑋 ∈ D(𝐹 𝑋,𝐺 𝑋 ) is an isomorphism in D with inverse (𝜃−1)𝑋 .
Conversely, if each𝜃𝑋 ∈ D(𝐹 𝑋,𝐺 𝑋 ) is an isomorphism inD, then the inversemorphisms (𝜃𝑋 )−1

are natural in 𝑋 because for any 𝑓 ∈ C(𝑋,𝑌 ) we have

𝐹 𝑓 ◦ (𝜃𝑋 )−1 = (𝜃𝑌 )−1 ◦ 𝜃𝑌 ◦ 𝐹 𝑓 ◦ (𝜃𝑋 )−1 because (𝜃𝑌 )−1 ◦ 𝜃𝑌 = id𝐹 𝑌
= (𝜃𝑌 )−1 ◦𝐺 𝑓 ◦ 𝜃𝑋 ◦ (𝜃𝑋 )−1 because 𝜃𝑋 is natural in 𝑋
= (𝜃𝑌 )−1 ◦𝐺 𝑓 because 𝜃𝑋 ◦ (𝜃𝑋 )−1 = id𝐺 𝑋

and so determine a natural transformation 𝜃 ∈ DC(𝐺, 𝐹 ) with (𝜃−1)𝑋 ≜ (𝜃𝑋 )−1 for each 𝑋 ∈ objC.
This gives an inverse for 𝜃 . For (𝜃−1 ◦ 𝜃 )𝑋 = (𝜃−1)𝑋 ◦ 𝜃𝑋 = (𝜃𝑋 )−1 ◦ 𝜃𝑋 = id𝐹 𝑋 = (id𝐹 )𝑋 , so that
𝜃−1 ◦ 𝜃 = id𝐹 ; and similarly, 𝜃 ◦ 𝜃−1 = id𝐺 .

Question 4 If ch𝑋 were natural in 𝑋 , then taking 𝑋 = 2 = {0, 1} and letting 𝜏 be as in the hint,
there would be a commutative square in Set:

𝑃+2 ch2 //

𝑃+𝜏
��

2
𝜏

��
𝑃+2

ch2
// 2

(3)

Consider {0, 1} ∈ 𝑃+2. We have

𝑃+𝜏 {0, 1} = {𝜏 0, 𝜏 1} = {1, 0} = {0, 1} (4)

Since ch2({0, 1}) ∈ {0, 1}, either ch2({0, 1}) = 0, or ch2({0, 1}) = 1. In the first case we get

1 = 𝜏 0 = 𝜏 (ch2{0, 1}) = ch2(𝑃+𝜏 {0, 1}) by (3)
= ch2{0, 1} by (4)
= 0 by assumption

which is a contradiction; and in the second case we get a similar contradiction. So (3) cannot com-
mute and in particular ch𝑋 cannot be natural in 𝑋 .



Question 5

(a) Define (𝐼 𝛼)𝑋 ≜ 𝐼 (𝛼𝑋 ) : 𝐼 (𝐹 𝑋 ) → 𝐼 (𝐺 𝑋 ). Since 𝛼𝑋 is natural in𝑋 ∈ objC, we have𝐺 𝑓 ◦𝛼𝑋 =

𝛼𝑌 ◦ 𝐹 𝑓 ; and then since 𝐼 is a functor, we get 𝐼 (𝐺 𝑓 ) ◦ 𝐼 (𝛼𝑋 ) = 𝐼 (𝛼𝑌 ) ◦ 𝐼 (𝐹 𝑓 ). So (𝐼 𝛼)𝑋 is
natural in 𝑋 .

(b) Define (𝛾𝐹 )𝑋 ≜ 𝛾 (𝐹 𝑋 ) : 𝐼 (𝐹 𝑋 ) → 𝐽 (𝐹 𝑋 ). Since 𝛾𝑌 is natural in 𝑌 ∈ objD, (𝛾𝐹 )𝑋 is natural in
𝑋 ∈ objC.

(c) Define (𝛽 ◦ 𝛼)𝑋 ≜ 𝛽𝑋 ◦ 𝛼𝑋 : 𝐹 𝑋 → 𝐻 𝑋 . Since 𝛼𝑋 and 𝛽𝑋 are natural in 𝑋 ∈ objC, so is
(𝛽 ◦ 𝛼)𝑋 .

(d) Define (𝛾 ∗ 𝛼)𝑋 ≜ 𝛾𝐺 𝑋 ◦ 𝐼 (𝛼𝑋 ) : 𝐼 (𝐹 𝑋 ) → 𝐽 (𝐺 𝑋 ). This is natural in 𝑋 , because for any
𝑓 ∈ C(𝑋,𝑌 )

𝐽 (𝐺 𝑓 ) ◦ (𝛾 ∗ 𝛼)𝑋 ≜ 𝐽 (𝐺 𝑓 ) ◦ 𝛾𝐺 𝑋 ◦ 𝐼 (𝛼𝑋 )
= 𝐽 (𝐺 𝑓 ) ◦ 𝐽 (𝛼𝑋 ) ◦ 𝛾𝐹 𝑋 by natuality for 𝛾
= 𝐽 (𝐺 𝑓 ◦ 𝛼𝑋 ) ◦ 𝛾𝐹 𝑋 by functoriality for 𝐽
= 𝐽 (𝛼𝑌 ◦ 𝐹 𝑓 ) ◦ 𝛾𝐹 𝑋 by natuality for 𝛼
= 𝐽 (𝛼𝑌 ) ◦ 𝐽 (𝐹 𝑓 ) ◦ 𝛾𝐹 𝑋 by functoriality for 𝐽
= 𝐽 (𝛼𝑌 ) ◦ 𝛾𝐹 𝑌 ◦ 𝐼 (𝐹 𝑓 ) by natuality for 𝛾
= 𝛾𝐺 𝑌 ◦ 𝐼 (𝛼𝑌 ) ◦ 𝐼 (𝐹 𝑓 ) by natuality for 𝛾
≜ (𝛾 ∗ 𝛼)𝑌 ◦ 𝐼 (𝐹 𝑓 )

(e) ((𝛿 ∗ 𝛽) ◦ (𝛾 ∗ 𝛼))𝑋 ≜ (𝛿 ∗ 𝛽)𝑋 ◦ (𝛾 ∗ 𝛼)𝑋
≜ 𝛿𝐻 𝑋 ◦ 𝐽 (𝛽𝑋 ) ◦ 𝛾𝐺 𝑋 ◦ 𝐼 (𝛼𝑋 )
= 𝛿𝐻 𝑋 ◦ 𝛾𝐻 𝑋 ◦ 𝐼 (𝛽𝑋 ) ◦ 𝐼 (𝛼𝑋 ) by naturality for 𝛾
≜ (𝛿 ◦ 𝛾)𝐻 𝑋 ◦ 𝐼 (𝛽𝑋 ) ◦ 𝐼 (𝛼𝑋 )
= (𝛿 ◦ 𝛾)𝐻 𝑋 ◦ 𝐼 (𝛽𝑋 ◦ 𝛼𝑋 ) by functoriality for 𝐼
≜ (𝛿 ◦ 𝛾)𝐻 𝑋 ◦ 𝐼 ((𝛽 ◦ 𝛼)𝑋 )
≜ ((𝛿 ◦ 𝛾) ∗ (𝛽 ◦ 𝛼))𝑋

Question 6

(a) We use the notation 𝑔 ≜ 𝜃𝑋,𝑌 (𝑔) and 𝑓 ≜ 𝜃−1𝑋,𝑌
(𝑓 ) from Lecture 13.

Define 𝜂𝑋 ≜ id𝐹 𝑋 ∈ C(𝑋,𝐺 (𝐹 𝑋 )). This is natural in 𝑋 ∈ objC, because using naturality for
𝜃 (twice) we have

𝐺 (𝐹 𝑓 ) ◦ 𝜂𝑋 ≜ 𝐺 (𝐹 𝑓 ) ◦ id𝐹 𝑋 = 𝐹 𝑓 ◦ id𝐹 𝑋 = id𝐹 𝑌 ◦ 𝐹 𝑓 = id𝐹 𝑌 ◦ 𝑓 ≜ 𝜂𝑌 ◦ 𝑓

Dually, define 𝜀𝑌 ≜ id𝐺 𝑌 ∈ D(𝐹 (𝐺 𝑌 ), 𝑌 ) and prove it is natural in 𝑌 ∈ objD by a similar
calculation.



(b) (𝜀𝐹 ◦ 𝐹 𝜂)𝑋 ≜ (𝜀𝐹 )𝑋 ◦ (𝐹 𝜂)𝑋
≜ 𝜀𝐹 𝑋 ◦ 𝐹 (𝜂𝑋 )
≜ id𝐺 (𝐹 𝑋 ) ◦ 𝐹 (𝜂𝑋 )
= id𝐺 (𝐹 𝑋 ) ◦ 𝜂𝑋 by naturality of 𝜃
= 𝜂𝑋

≜ 𝑖𝑑𝐹 𝑋

= id𝐹 𝑋 since 𝜃 is an isomorphism
≜ (id𝐹 )𝑋

The proof that (𝐺 𝜀 ◦ 𝜂𝐺 )𝑌 = (id𝐺 )𝑌 is dual to the one above.

Question 7 This is a standard result; see for example Proposition 10.1 on page 254 of Awodey’s
Category Theory book.


