1. A pullback square in a category C is a commutative diagram of the form

$$
\begin{array}{ccc}
B & \xrightarrow{u} & A \\
\downarrow{q} & & \downarrow{p} \\
Y & \xrightarrow{f} & X
\end{array}
$$

with the following universal property:

for all C-objects W and C-morphisms

$$
Y \xrightarrow{\ell} W \xrightarrow{k} A
$$

satisfying $f \circ \ell = p \circ k$, there is a unique C-morphism

$$
\ell : W \rightarrow B
$$

satisfying $q \circ \ell = h$ and

$u \circ \ell = k$

(a) Let C be a category and $f : Y \rightarrow X$ a morphism in C. Show that f is a monomorphism (see Exercise Sheet 1, question 4) if and only if

$$
\begin{array}{ccc}
Y & \xrightarrow{id_Y} & Y \\
\downarrow{id_Y} & & \downarrow{f} \\
Y & \xrightarrow{f} & X
\end{array}
$$

is a pullback square in C.

(b) If (1) is a pullback square and p is a monomorphism, show that q is a monomorphism.

(c) If (1) is a pullback square and p is an isomorphism, show that q is an isomorphism.

(d) Given an example of a pullback square (1) in the category Set of sets and functions, for which q is an isomorphism, but p is not a monomorphism. (Recall that in Set, monomorphisms and isomorphisms are given by the functions that are respectively injective and bijective.)

2. (a) Given morphisms $X' \xrightarrow{f} X$ and $Y \xrightarrow{g} Y'$ in a cartesian closed category C, show how to define a morphism $Y^X \rightarrow (Y')^{X'}$ in C.

(b) Given types A', A, B and B' in simply typed lambda calculus (STLC), give a term t satisfying

$$
\diamondsuit \vdash t : (A' \rightarrow A) \rightarrow (B \rightarrow B') \rightarrow (A \rightarrow B) \rightarrow (A' \rightarrow B')
$$

If the semantics in a cartesian closed category of A', A, B and B' are the objects X', X, Y and Y' respectively, what is the semantics of t?
3. Let \(C = \text{Set}^{\text{op}} \) be the opposite category of the category \(\text{Set} \) of sets and functions.

 (a) State, without proof, what is the product in \(C \) of two objects \(X \) and \(Y \).

 (b) Show by example that there are objects \(X \) and \(Y \) in \(C \) for which there is no exponential and hence that \(C \) is not a cartesian closed category.

4. [In this question I use the notation \(X \) inl \(X, Y \) \(\rightarrow \) \(X + Y \) inr \(X, Y \) \(\rightarrow \) \(Y \) for the coproduct (Lecture 4) of two object \(X \) and \(Y \) in a category, since it will be clearer to make explicit the objects \(X \) and \(Y \) in the notation for the associated coproduct injections, inl \(X, Y \) and inr \(X, Y \).]

A category \(C \) is \textit{distributive} if it has all binary products and binary coproducts, and for all objects \(X, Y, Z \in C \), (using the defining property of the coproduct \(X \times Y \xrightarrow{\text{inl}_{X,Y}} (X \times Y) + (X \times Z) \leftarrow \xrightarrow{\text{inr}_{X,Y,Z}} X \times Z \)), the unique morphism \(\delta_{X,Y,Z} : (X \times Y) + (X \times Z) \rightarrow X \times (Y + Z) \) that makes the following diagram commute

\[
\begin{array}{ccc}
X \times Y & \xrightarrow{\text{id} \times \text{inl}_{Y,Z}} & (X \times Y) + (X \times Z) \\
\downarrow \text{inl}_{X,Y,Z} & & \downarrow \delta_{X,Y,Z} \\
(X \times Y) + (X \times Z) & \xrightarrow{\delta_{X,Y,Z}} & X \times (Y + Z) \\
\downarrow \text{inr}_{X,Y,Z} & & \downarrow \text{id} \times \text{inr}_{Y,Z} \\
X \times Z & & \\
\end{array}
\]

is an isomorphism.

 (a) Using the usual product and coproduct constructs in the category \(\text{Set} \) of sets and functions, show that it is a distributive category.

 (b) Give, with justification, an example of a category with binary products and coproducts that is not distributive.

 (c) If \(C \) is a distributive category and 0 is an initial object in \(C \), prove that for all \(X \in C \), the unique morphism \(0 \rightarrow X \times 0 \) is an isomorphism.

5. A category \(C \) is called \textit{locally finite} if for all \(X, Y \in \text{obj} \ C \), the set of morphisms \(C(X, Y) \) is finite. \(C \) is said to be \textit{finite} if it is both locally finite and \(\text{obj} \ C \) is finite.

 (a) Prove that any finite category with binary products is a pre-order, that is, there is at most one morphism between any pair of objects. [Hint: if \(f, g : X \rightarrow Y \) were distinct, use them to construct too large a number of morphisms from \(X \) to the product \(Y^n \) of \(Y \) with itself \(n \ (>0) \) times, for some suitable some number \(n \).]

 (b) Is every locally finite category with binary products a pre-order? (Either prove it, or give a counterexample.)
Question 1

(a) Suppose (2) is a pullback square. To see that \(f \) is a monomorphism, suppose \(h, k : W \to Y \) satisfy \(f \circ h = f \circ k \); then by the universal property of (2), there is some (unique) \(\ell : W \to Y \) satisfying \(\text{id}_Y \circ \ell = h \) and \(\text{id}_Y \circ \ell = k \), so that \(h = k \). Thus \(f \) is a monomorphism.

Conversely, suppose \(f \) is a monomorphism. Then the pullback property holds for (2). For if \(Y \leftarrow W \to Y \) satisfy \(f \circ h = f \circ k \), then since \(f \) is a monomorphism, we have \(h = k \). Therefore, there is some \(\ell : W \to Y \) with \(\text{id}_Y \circ \ell = h \) and \(\text{id}_Y \circ \ell = k \), namely \(\ell = h = k \); and clearly \(\ell \) is unique with this property.

(b) Suppose \(p \) is a monomorphism in the pullback square (1) and that \(\ell_1, \ell_2 : W \to B \) satisfy \(q \circ \ell_1 = q \circ \ell_2 \). We have to show \(\ell_1 = \ell_2 \). But note that \(p \circ (u \circ \ell_1) = f \circ q \circ \ell_1 = f \circ q \circ \ell_2 = p \circ (u \circ \ell_2) \); and since \(p \) is a monomorphism, this implies that \(u \circ \ell_1 = u \circ \ell_2 \). Therefore, by the uniqueness part of the universal property of the pullback square (1), we do indeed have \(\ell_1 = \ell_2 \).

(c) Suppose \(p \) is a monomorphism in the pullback square (1). Applying the universal property with \(W = Y, h = \text{id}_Y \) and \(k = p^{-1} \circ f \) (for which we do indeed have \(f \circ h = f = p \circ (p^{-1} \circ f) = p \circ k \)), there is a unique \(\ell : Y \to B \) with \(q \circ \ell = \text{id}_Y \) and \(u \circ \ell = p^{-1} \circ f \). To see that \(q \) is an isomorphism it thus suffices to prove that \(\ell \circ q = \text{id}_B \). But \(q \circ (\ell \circ q) = \text{id}_Y \circ q = q \circ \text{id}_B \) and \(u \circ (\ell \circ q) = p^{-1} \circ f \circ q = p^{-1} \circ p \circ u = u = u \circ \text{id}_B \); so by the uniqueness part of the universal property of pullbacks, we do indeed have \(\ell \circ q = \text{id}_B \).

(d) In the category of sets, monomorphisms are injective functions (see Exercise Sheet 1, question 4(d)); and isomorphisms are bijections (see Lecture 2). Take \(A = \{0, 1\}, B = \emptyset, X = \emptyset \) and \(Y = \emptyset \). The functions \(f, p, q, u \) are uniquely determined and \(f \circ q = p \circ u \). Note that \(p : \{0, 1\} \to \{0\} \) is not injective and hence not a monomorphism; and \(q : \emptyset \to \emptyset \) is trivially a bijection, hence an isomorphism. The square is a pullback, since given and \(W, h, k \) as in the universal property, since \(h \) is a function from \(W \) to \(\emptyset \), it must be the case that \(W = \emptyset \), from which the unique existence of \(\ell : W \to B \) satisfying \(q \circ \ell = h \) and \(u \circ \ell = k \) follows trivially.

Question 2

(a) One can define \(g^f : Y^X \to (Y')^X \) by

\[
g^f \triangleq \text{cur} \left(Y^X \times Y' \xrightarrow{\text{id}_X \times f} Y^X \times X \xrightarrow{\text{app}} Y \xrightarrow{g} Y' \right)
\]

(b) \(t \triangleq \lambda f : A' \to A. \lambda g : B \to B'. \lambda h : A \to B. \lambda x' : A'. g(h(f x')) \)

\[
\llbracket t \rrbracket : (A' \Rightarrow A) \to (B \Rightarrow B') \Rightarrow (A \Rightarrow B) \Rightarrow (A' \Rightarrow B') =
\]

\[
\text{cur}(\text{cur}(\text{cur}(\text{app}(\pi_2 \circ \pi_1 \circ \pi_1), \text{app}(\pi_2 \circ \pi_1), \text{app}(\pi_2 \circ \pi_1 \circ \pi_1 \circ \pi_2))))
\]
Question 3

(a) The product of X and Y in C is their coproduct in Set, which is the disjoint union

$$X \sqcup Y = \{(0, x) \mid x \in X\} \cup \{(1, y) \mid y \in Y\}$$

together with the functions $\text{inl} \in \text{Set}(X, X \sqcup Y)$ and $\text{inr} \in \text{Set}(Y, X \sqcup Y)$ that respectively map $x \in X$ to $(0, x) \in X \sqcup Y$ and $y \in Y$ to $(1, y) \in X \sqcup Y$.

(b) Consider the one-element set $1 = \{0\}$ as an object of C. If the exponential 1^1 existed in C, there would be a bijection $C(1 \times 1, 1) \cong C(1, 1^1)$. But from part (a)

$$C(1 \times 1, 1) \cong \text{Set}(1, 1 \sqcup 1)$$

is a two-element set, whereas

$$C(1, 1^1) \cong \text{Set}(1^1, 1)$$

has exactly one element no matter what set 1^1 is. Thus for any set X, the sets $C(1 \times 1, 1)$ and $C(1, X)$ cannot be in bijection and therefore the exponential 1^1 of 1 and 1 in C cannot exist.

Question 4

(a) Product in Set is given by Cartesian product (\times) of sets and coproduct by disjoint union (\sqcup) of sets. Thus given $X, Y, Z \in \text{Set}$, $\delta_{X,Y,Z}$ is the function $(X \times Y) \sqcup (X \times Z) \rightarrow X \times (Y \sqcup Z)$ satisfying for all $x \in X$, $y \in Y$ and $z \in Z$

$$\delta_{X,Y,Z}(0, (x, y)) = (x, (0, y))$$
$$\delta_{X,Y,Z}(1, (x, z)) = (x, (1, z))$$

and clearly this has a two-sided inverse $\delta^{-1}_{X,Y,Z} : X \times (Y \sqcup Z) \rightarrow (X \times Y) \sqcup (X \times Z)$ given by:

$$\delta^{-1}_{X,Y,Z}(x, (0, y)) = (0, (x, y))$$
$$\delta^{-1}_{X,Y,Z}(x, (1, z)) = (1, (x, z))$$

Alternative proof: use the fact that Set is a cartesian closed category and then appeal to Exercise Sheet 3 question 6.

(b) Since Set has binary products and coproducts, by duality, Set^{op} has binary co-products and products. It is not distributive because, for example, if we take $X = Y = Z = 1 = \{0\}$ then $(X \times Y) + (X \times Z)$ in Set^{op} is given by a set $\{1 \cup 1\} \times \{1 \cup 1\}$ with four elements, whereas $X \times (Y + Z)$ in Set^{op} is given by a set $\{1 \cup 1\} \times \{1 \times 1\}$ with only two elements; these cannot be isomorphic in Set^{op} because isomorphism is a self-dual concept and we know that isomorphism in Set is given by bijection.

(c) Write i for the unique morphism $0 \rightarrow X \times 0$. We will show that $\pi_2 : X \times 0 \rightarrow 0$ is its two-sided inverse. It is certainly the case that $\pi_2 \circ i = \text{id} : 0 \rightarrow 0$, because 0 is initial. So it just remains to show that $i \circ \pi_2 = \text{id} : X \times 0 \rightarrow X \times 0$.

Consider the unique morphism $[\text{id}, i \circ \pi_2] : (X \times 0) + (X \times 0) \rightarrow X \times 0$ whose compositions with $\text{inl}_{X \times 0, X \times 0}$ and $\text{inr}_{X \times 0, X \times 0}$ are id and $i \circ \pi_2$ respectively. If suffices to prove

$$\text{inl}_{X \times 0, X \times 0} = \text{inr}_{X \times 0, X \times 0}$$

(4)
since then \(\text{id} = [\text{id}, i \circ \pi_2] \circ \text{inl}_{X \times 0, X \times 0} = [\text{id}, i \circ \pi_2] \circ \text{inr}_{X \times 0, X \times 0} = i \circ \pi_2 \). To see (4), take \(Y = Z = 0 \) in (3) to deduce that

\[
\text{inl}_{X \times 0, X \times 0} = (\text{id} \times \text{inl}_{0,0}) \circ \delta^{-1}_{X,0,0} \\
\text{inr}_{X \times 0, X \times 0} = (\text{id} \times \text{inr}_{0,0}) \circ \delta^{-1}_{X,0,0}
\]

But since 0 is initial we have \(\text{inl}_{0,0} = \text{inr}_{0,0} : 0 \to 0 + 0 \) and therefore \(\text{inl}_{X \times 0, X \times 0} = \text{inr}_{X \times 0, X \times 0} \).

Question 5

(a) Given any \(Y \in \text{obj} \, C \), for each natural number \(n > 0 \), by iterating the binary product we can form the product of \(n \) copies of \(Y \); this is an object \(Y^n \) together with morphisms \(\pi_i^n : Y^n \to Y \) \((i = 1, \ldots, n) \) that have the universal property that for each \(n \)-tuple of morphisms \((f_i : Y \to Y \mid i = 1, \ldots, n) \), there is a unique morphism \(h : Y \to Y^n \) satisfying \(\forall j = 1, \ldots, n, \pi_j^n \circ h = f_j \). Therefore given any \(f, g : X \to Y \) in \(C \), for each \(n > 0 \) there are morphisms \(h_i^n : X \to Y^n \) \((i = 1, \ldots, n) \) where for each \(j = 1, \ldots, n \)

\[
\pi_j^n \circ h_i^n = \begin{cases} f & \text{if } i = j \\ g & \text{if } i \neq j \end{cases}
\]

Since \(C \) is finite, we can pick \(n \) sufficiently large that for some \(i \neq j \) we have \(h_i^n = h_j^n \); and then \(f = \pi_j^n \circ h_i^n = \pi_i^n \circ h_j^n = g \). So \(C \) is a pre-order.

(b) Clearly the category whose objects are *finite* sets and whose morphisms are functions (with composition and identities as for \(\text{Set} \)) is locally finite (there are only finitely many different functions from one finite set to another), but is not a pre-order. It has binary products, given as in \(\text{Set} \) by Cartesian product of sets.