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1. A pullback square in a category C is a commutative diagram of the form

𝐵
𝑢 //

𝑞

��

𝐴

𝑝

��
𝑌

𝑓
// 𝑋

𝑝 ◦ 𝑢 = 𝑓 ◦ 𝑞 (1)

with the following universal property:

for all C-objects𝑊 and C-morphisms
𝑌

ℎ←−𝑊 𝑘−→ 𝐴 satisfying 𝑓 ◦ ℎ = 𝑝 ◦ 𝑘 ,
there is a unique C-morphism
ℓ :𝑊 → 𝐵 satisfying 𝑞 ◦ ℓ = ℎ and
𝑢 ◦ ℓ = 𝑘

𝑊

ℓ

  

ℎ

##

𝑘

��
𝐵

𝑢 //

𝑞

��

𝐴

𝑝

��
𝑌

𝑓
// 𝑋

(a) Let C be a category and 𝑓 : 𝑌 → 𝑋 a morphism in C. Show that 𝑓 is a monomorphism
(see Exercise Sheet 1, question 4) if and only if

𝑌
id𝑌 //

id𝑌
��

𝑌

𝑓

��
𝑌

𝑓
// 𝑋

(2)

is a pullback square in C.
(b) If (1) is a pullback square and 𝑝 is a monomorphism, show that 𝑞 is a monomorphism.
(c) If (1) is a pullback square and 𝑝 is a isomorphism, show that 𝑞 is a isomorphism.
(d) Given an example of a pullback square (1) in the category Set of sets and functions, for

which 𝑞 is an isomorphism, but 𝑝 is not a monomorphism. (Recall that in Set, monomor-
phisms and isomorphisms are given by the functions that are respectively injective and
bijective.)

2. (a) Given morphisms 𝑋 ′
𝑓
−→ 𝑋 and 𝑌

𝑔
−→ 𝑌 ′ in a cartesian closed category C, show how to

define a morphism 𝑌𝑋 → (𝑌 ′)𝑋 ′ in C.
(b) Given types 𝐴′, 𝐴, 𝐵 and 𝐵′ in simply typed lambda calculus (STLC), give a term 𝑡 satis-

fying
⋄ ⊢ 𝑡 : (𝐴′ ->𝐴) -> (𝐵 -> 𝐵′) -> (𝐴 -> 𝐵) -> (𝐴′ -> 𝐵′)

If the semantics in a cartesian closed category of𝐴′, 𝐴, 𝐵 and 𝐵′ are the objects 𝑋 ′, 𝑋 , 𝑌
and 𝑌 ′ respectively, what is the semantics of 𝑡?



3. Let C = Setop be the opposite category of the category Set of sets and functions.

(a) State, without proof, what is the product in C of two objects 𝑋 and 𝑌 .
(b) Show by example that there are objects 𝑋 and 𝑌 in C for which there is no exponential

and hence that C is not a cartesian closed category.

4. [In this question I use the notation 𝑋
inl𝑋,𝑌−−−−→ 𝑋 + 𝑌

inr𝑋,𝑌←−−−−− 𝑌 for the coproduct (Lecture 4) of
two object 𝑋 and 𝑌 in a category, since it will be clearer to make explicit the objects 𝑋 and 𝑌
in the notation for the associated coproduct injections, inl𝑋,𝑌 and inr𝑋,𝑌 .]

A category C is distributive if it has all binary products and binary coproducts, and for all

objects 𝑋,𝑌, 𝑍 ∈ C, (using the defining property of the coproduct 𝑋 ×𝑌
inl𝑋×𝑌,𝑋×𝑍−−−−−−−−−→ (𝑋 ×𝑌 ) +

(𝑋 × 𝑍 )
inr𝑋×𝑌,𝑋×𝑍←−−−−−−−−− 𝑋 × 𝑍 ), the unique morphism 𝛿𝑋,𝑌,𝑍 : (𝑋 × 𝑌 ) + (𝑋 × 𝑍 ) → 𝑋 × (𝑌 + 𝑍 )

that makes the following diagram commute

𝑋 × 𝑌
inl𝑋×𝑌,𝑋×𝑍

��

id×inl𝑌,𝑍

**
(𝑋 × 𝑌 ) + (𝑋 × 𝑍 )

𝛿𝑋,𝑌,𝑍 // 𝑋 × (𝑌 + 𝑍 )

𝑋 × 𝑍

inr𝑋×𝑌,𝑋×𝑍

OO

id×inr𝑌,𝑍

44
(3)

is an isomorphism.

(a) Using the usual product and coproduct constructs in the category Set of sets and func-
tions, show that it is a distributive category.

(b) Give, with justification, an example of a category with binary products and coproducts
that is not distributive.

(c) If C is a distributive category and 0 is an initial object in C, prove that for all 𝑋 ∈ C, the
unique morphism 0→ 𝑋 × 0 is an isomorphism.

5. A category C is called locally finite if for all 𝑋,𝑌 ∈ objC, the set of morphisms C(𝑋,𝑌 ) is
finite. C is said to be finite if it is both locally finite and objC is finite.

(a) Prove that any finite category with binary products is a pre-order, that is, there is at most
one morphism between any pair of objects. [Hint: if 𝑓 , 𝑔 : 𝑋 → 𝑌 were distinct, use them
to construct too large a number of morphisms from 𝑋 to the product 𝑌𝑛 of 𝑌 with itself
𝑛 ( > 0) times, for some suitable some number 𝑛.]

(b) Is every locally finite category with binary products a pre-order? (Either prove it, or give
a counterexample.)
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Question 1

(a) Suppose (2) is a pullback square. To see that 𝑓 is a monomorphism, suppose ℎ, 𝑘 : 𝑊 → 𝑌

satisfy 𝑓 ◦ ℎ = 𝑓 ◦ 𝑘 ; then by the universal property of (2), there is some (unique) ℓ :𝑊 → 𝑌

satisfying id𝑌 ◦ ℓ = ℎ and id𝑌 ◦ ℓ = 𝑘 , so that ℎ = ℓ = 𝑘 . Thus 𝑓 is a monomorphism.

Conversely, suppose 𝑓 is a monomorphism. Then the pullback property holds for (2). For if
𝑌

ℎ←−𝑊 𝑘−→ 𝑌 satisfy 𝑓 ◦ℎ = 𝑓 ◦ 𝑘 , then since 𝑓 is a monomorphism, we have ℎ = 𝑘 . Therefore,
there is some ℓ :𝑊 → 𝑌 with id𝑌 ◦ ℓ = ℎ and id𝑌 ◦ ℓ = 𝑘 , namely ℓ = ℎ = 𝑘 ; and clearly ℓ is
unique with this property.

(b) Suppose 𝑝 is a monomorphism in the pullback square (1) and that ℓ1, ℓ2 : 𝑊 → 𝐵 satisfy
𝑞 ◦ ℓ1 = 𝑞 ◦ ℓ2. We have to show ℓ1 = ℓ2. But note that 𝑝 ◦ (𝑢 ◦ ℓ1) = 𝑓 ◦𝑞 ◦ ℓ1 = 𝑓 ◦𝑞 ◦ ℓ2 = 𝑝 ◦ (𝑢 ◦ ℓ2);
and since 𝑝 is a monomorphism, this implies that 𝑢 ◦ ℓ1 = 𝑢 ◦ ℓ2. Therefore, by the uniqueness
part of the universal property of the pullback square (1), we do indeed have ℓ1 = ℓ2.

(c) Suppose 𝑝 is a isomorphism in the pullback square (1). Applying the universal property with
𝑊 = 𝑌 , ℎ = id𝑌 and 𝑘 = 𝑝−1 ◦ 𝑓 (for which we do indeed have 𝑓 ◦ℎ = 𝑓 = 𝑝 ◦ (𝑝−1 ◦ 𝑓 ) = 𝑝 ◦𝑘),
there is a unique ℓ : 𝑌 → 𝐵 with 𝑞 ◦ ℓ = id𝑌 and 𝑢 ◦ ℓ = 𝑝−1 ◦ 𝑓 . To see that 𝑞 is an
isomorphism it thus suffices to prove that ℓ ◦ 𝑞 = id𝐵 . But 𝑞 ◦ (ℓ ◦ 𝑞) = 𝑖𝑑𝑌 ◦ 𝑞 = 𝑞 ◦ id𝐵 and
𝑢 ◦ (ℓ ◦ 𝑞) = 𝑝−1 ◦ 𝑓 ◦ 𝑞 = 𝑝−1 ◦ 𝑝 ◦ 𝑢 = 𝑢 = 𝑢 ◦ id𝐵 ; so by the uniqueness part of the universal
property of pullbacks, we do indeed have ℓ ◦ 𝑞 = id𝐵 .

(d) In the category of sets, monomorphisms are injective functions (see Exercise Sheet 1, question
4(d)); and isomorphisms are bijections (see Lecture 2). Take 𝐴 = {0, 1}, 𝐵 = ∅, 𝑋 = {0}
and 𝑌 = ∅. The functions 𝑓 , 𝑝, 𝑞,𝑢 are uniquely determined and 𝑓 ◦ 𝑞 = 𝑝 ◦ 𝑢. Note that
𝑝 : {0, 1} → {0} is not injective and hence not a monomorphism; and 𝑞 : ∅ → ∅ is trivially
a bijection, hence an isomorphism. The square is a pullback, since given and𝑊,ℎ, 𝑘 as in the
universal property, since ℎ is a function from𝑊 to ∅, it must be the case that𝑊 = ∅, from
which the unique existence of ℓ :𝑊 → 𝐵 satisfying 𝑞 ◦ ℓ = ℎ and 𝑢 ◦ ℓ = 𝑘 follows trivially.

Question 2

(a) One can define 𝑔𝑓 : 𝑌𝑋 → (𝑌 ′)𝑋 ′ by

𝑔𝑓 ≜ cur
(
𝑌𝑋 × 𝑋 ′

𝑖𝑑
𝑌𝑋 ×𝑓
−−−−−−→ 𝑌𝑋 × 𝑋

app
−−→ 𝑌

𝑔
−→ 𝑌 ′

)
(b) 𝑡 ≜ _𝑓 : 𝐴′ ->𝐴. _𝑔 : 𝐵 -> 𝐵′. _ℎ : 𝐴 -> 𝐵. _𝑥 ′ : 𝐴′. 𝑔(ℎ(𝑓 𝑥 ′))

J⋄ ⊢ 𝑡 : (𝐴′ ->𝐴) -> (𝐵 -> 𝐵′) -> (𝐴 -> 𝐵) -> (𝐴′ -> 𝐵′)K =
cur(cur(cur(cur(app⟨𝜋2 ◦ 𝜋1 ◦ 𝜋1 , app⟨𝜋2 ◦ 𝜋1 , app⟨𝜋2 ◦ 𝜋1 ◦ 𝜋1 ◦ 𝜋1 , 𝜋2⟩⟩⟩



Question 3

(a) The product of 𝑋 and 𝑌 in C is their coproduct in Set, which is the disjoint union

𝑋 ⊎ 𝑌 = {(0, 𝑥) | 𝑥 ∈ 𝑋 } ∪ {(1, 𝑦) | 𝑦 ∈ 𝑌 }

together with the functions inl ∈ Set(𝑋,𝑋 ⊎𝑌 ) and inr ∈ Set(𝑌,𝑋 ⊎𝑌 ) that respectively map
𝑥 ∈ 𝑋 to (0, 𝑥) ∈ 𝑋 ⊎ 𝑌 and 𝑦 ∈ 𝑌 to (1, 𝑦) ∈ 𝑋 ⊎ 𝑌 .

(b) Consider the one-element set 1 = {0} as an object of C. If the exponential 11 existed in C,
there would be a bijection C(1 × 1, 1) � C(1, 11). But from part (a)

C(1 × 1, 1) ≜ Set(1, 1 ⊎ 1)

is a two-element set, whereas
C(1, 11) ≜ Set(11, 1)

has exactly one element no matter what set 11 is. Thus for any set 𝑋 , the sets C(1 × 1, 1) and
C(1, 𝑋 ) cannot be in bijection and therefore the exponential 11 of 1 and 1 in C cannot exist.

Question 4

(a) Product in Set is given by Cartesian product (x) of sets and coproduct by disjoint union (⊎) of
sets. Thus given𝑋,𝑌, 𝑍 ∈ Set, 𝛿𝑋,𝑌,𝑍 is the function (𝑋 x𝑌 ) ⊎ (𝑋 x𝑍 ) → 𝑋 x (𝑌 ⊎𝑍 ) satisfying
for all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍

𝛿𝑋,𝑌,𝑍 (0, (𝑥,𝑦)) = (𝑥, (0, 𝑦))
𝛿𝑋,𝑌,𝑍 (1, (𝑥, 𝑧)) = (𝑥, (1, 𝑧))

and clearly this has a two-sided inverse 𝛿−1
𝑋,𝑌,𝑍

: 𝑋 x (𝑌 ⊎ 𝑍 ) → (𝑋 x 𝑌 ) ⊎ (𝑋 x 𝑍 ) given by:

𝛿−1𝑋,𝑌,𝑍 (𝑥, (0, 𝑦)) = (0, (𝑥,𝑦))
𝛿−1𝑋,𝑌,𝑍 (𝑥, (1, 𝑧)) = (1, (𝑥, 𝑧))

Alternative proof: use the fact that Set is a cartesian closed category and then appeal to Exer-
cise Sheet 3 question 6.

(b) Since Set has binary products and coproducts, by duality, Setop has binary coproducts and
products. It is not distributive because, for example, if we take 𝑋 = 𝑌 = 𝑍 = 1 = {0} then
(𝑋×𝑌 )+(𝑋×𝑍 ) in Setop is given by a set (1⊎1)x (1⊎1) with four elements, whereas𝑋×(𝑌 +𝑍 )
in Setop is given by a set 1⊎(1x1) with only two elements; these cannot be isomorphic in Setop
because isomorphism is a self-dual concept and we know that isomorphism in Set is given by
bijection.

(c) Write 𝑖 for the unique morphism 0→ 𝑋 × 0. We will show that 𝜋2 : 𝑋 × 0→ 0 is its two-sided
inverse. It is certainly the case that 𝜋2 ◦ 𝑖 = 𝑖𝑑 : 0 → 0, because 0 is initial. So it just remains
to show that 𝑖 ◦ 𝜋2 = 𝑖𝑑 : 𝑋 × 0→ 𝑋 × 0.
Consider the unique morphism [id, 𝑖 ◦ 𝜋2] : (𝑋 × 0) + (𝑋 × 0) → 𝑋 × 0 whose compositions
with inl𝑋×0,𝑋×0 and inr𝑋×0,𝑋×0 are id and 𝑖 ◦ 𝜋2 respectively. If suffices to prove

inl𝑋×0,𝑋×0 = inr𝑋×0,𝑋×0 (4)



since then id = [id, 𝑖 ◦𝜋2] ◦ inl𝑋×0,𝑋×0 = [id, 𝑖 ◦𝜋2] ◦ inr𝑋×0,𝑋×0 = 𝑖 ◦𝜋2. To see (4), take𝑌 = 𝑍 = 0
in (3) to deduce that

inl𝑋×0,𝑋×0 = (id × inl0,0) ◦ 𝛿−1𝑋,0,0

inr𝑋×0,𝑋×0 = (id × inr0,0) ◦ 𝛿−1𝑋,0,0

But since 0 is initial we have inl0,0 = inr0,0 : 0→ 0 + 0 and therefore inl𝑋×0,𝑋×0 = inr𝑋×0,𝑋×0.

Question 5

(a) Given any 𝑌 ∈ objC, for each natural number 𝑛 > 0, by iterating the binary product we can
form the product of 𝑛 copies of 𝑌 ; this is an object 𝑌𝑛 together with morphisms 𝜋𝑛

𝑖 : 𝑌𝑛 → 𝑌

(𝑖 = 1, . . . , 𝑛) that have the universal property that for each 𝑛-tuple of morphisms (𝑓𝑖 : 𝑌 →
𝑌 | 𝑖 = 1, . . . , 𝑛), there is a unique morphism ℎ : 𝑌 → 𝑌𝑛 satisfying ∀𝑗 = 1, . . . , 𝑛, 𝜋𝑛

𝑗
◦ ℎ = 𝑓𝑗 .

Therefore given any 𝑓 , 𝑔 : 𝑋 → 𝑌 in C, for each 𝑛 > 0 there are morphisms ℎ𝑛𝑖 : 𝑋 → 𝑌𝑛

(𝑖 = 1, . . . , 𝑛) where for each 𝑗 = 1, . . . , 𝑛

𝜋𝑛
𝑗
◦ ℎ𝑛𝑖 =

{
𝑓 if 𝑖 = 𝑗

𝑔 if 𝑖 ≠ 𝑗

Since C is finite, we can pick 𝑛 sufficiently large that for some 𝑖 ≠ 𝑗 we have ℎ𝑛𝑖 = ℎ𝑛𝑗 ; and then
𝑓 = 𝜋𝑛

𝑗
◦ ℎ𝑛𝑗 = 𝜋𝑛

𝑗
◦ ℎ𝑛𝑖 = 𝑔. So C is a pre-order.

(b) Clearly the category whose objects are finite sets and whose morphisms are functions (with
composition and identities as for Set) is locally finite (there are only finitely many diferent
functions from one finite set to another), but is not a pre-order. It has binary products, given
as in Set by Cartesian product of sets.


