University of Cambridge 2022/23 Part II / Part III / MPhil ACS
 Category Theory
 Exercise Sheet 3
 by Andrew Pitts

1. Show that for any objects X and Y in a cartesian closed category C , there are functions

$$
\begin{aligned}
f \in \mathrm{C}(X, Y) & \mapsto\ulcorner f\urcorner \in \mathrm{C}\left(1, Y^{X}\right) \\
g \in \mathrm{C}\left(1, Y^{X}\right) & \mapsto \bar{g} \in \mathrm{C}(X, Y)
\end{aligned}
$$

that give a bijection between the set $\mathbf{C}(X, Y)$ of \mathbf{C}-morphisms from X to Y and the set $\mathbf{C}\left(1, Y^{X}\right)$ of C-morphisms from the terminal object 1 to the exponential Y^{X}. [Hint: use the isomorphism (7) from Exercise Sheet 2, question 2.]
2. Show that for any objects X and Y in a cartesian closed category C , the morphism app : $Y^{X} \times X \rightarrow Y$ satisfies cur $(\mathrm{app})=\mathrm{id}_{Y^{X}}$. [Hint: recall from equation (4) on Exercise Sheet 2 that $\left.\operatorname{id}_{Y^{X}} \times i d_{X}=i d_{Y^{X} \times X}.\right]$
3. Suppose $f: Y \times X \rightarrow Z$ and $g: W \rightarrow Y$ are morphisms in a cartesian closed category C. Prove that

$$
\begin{equation*}
\operatorname{cur}\left(f \circ\left(g \times \operatorname{id}_{X}\right)\right)=(\operatorname{cur} f) \circ g \in \mathbf{C}\left(W, Z^{X}\right) \tag{1}
\end{equation*}
$$

[Hint: use Exercise Sheet 2, question 1c.]
4. Let \mathbf{C} be a cartesian closed category. For each \mathbf{C}-object X and \mathbf{C}-morphism $f: Y \rightarrow Z$, define

$$
\begin{equation*}
f^{X} \triangleq \operatorname{cur}\left(Y^{X} \times X \xrightarrow{\text { app }} Y \xrightarrow{f} Z\right) \in \mathrm{C}\left(Y^{X}, Z^{X}\right) \tag{2}
\end{equation*}
$$

(a) Prove that $\left(i d_{Y}\right)^{X}=i d_{Y^{X}}$.
(b) Given $f \in \mathrm{C}(Y \times X, Z)$ and $g \in \mathrm{C}(Z, W)$, prove that

$$
\begin{equation*}
\operatorname{cur}(g \circ f)=g^{X} \circ \operatorname{cur} f \in \mathrm{C}\left(Y, W^{X}\right) \tag{3}
\end{equation*}
$$

(c) Deduce that if $u \in \mathrm{C}(Y, Z)$ and $v \in \mathrm{C}(Z, W)$, then $(v \circ u)^{X}=v^{X} \circ u^{X} \in \mathrm{C}\left(Y^{X}, W^{X}\right)$.
[Hint: for part (4a) use question 2; for part (4b) use Exercise Sheet 2, question 1c.]
5. Let \mathbf{C} be a cartesian closed category. For each \mathbf{C}-object X and \mathbf{C}-morphism $f: Y \rightarrow Z$, define

$$
\begin{equation*}
X^{f} \triangleq \operatorname{cur}\left(X^{Z} \times Y \xrightarrow{\mathrm{id} \times f} X^{Z} \times Z \xrightarrow{\text { app }} X\right) \in \mathrm{C}\left(X^{Z}, X^{Y}\right) \tag{4}
\end{equation*}
$$

(a) Prove that $X^{\mathrm{id}_{Y}}=\mathrm{id}_{X^{Y}}$.
(b) Given $g \in \mathrm{C}(W, X)$ and $f \in \mathrm{C}(Y \times X, Z)$, prove that

$$
\begin{equation*}
\operatorname{cur}\left(f \circ\left(\operatorname{id}_{Y} \times g\right)\right)=Z^{g} \circ \operatorname{cur} f \in \mathbf{C}\left(Y, Z^{W}\right) \tag{5}
\end{equation*}
$$

(c) Deduce that if $u \in \mathrm{C}(Y, Z)$ and $v \in \mathrm{C}(Z, W)$, then $X^{(v o u)}=X^{u} \circ X^{v} \in \mathrm{C}\left(X^{W}, X^{Y}\right)$.
[Hint: for part (5a) use question 2; for part (5b) use Exercise Sheet 2, question 1c.]
6. Let C be a cartesian closed category in which every pair of objects X and Y possesses a binary coproduct $X \xrightarrow{\operatorname{inl}_{X, Y}} X+Y \stackrel{\operatorname{inr}_{X, Y}}{\longleftrightarrow} Y$. For all objects $X, Y, Z \in \mathrm{C}$ construct an isomorphism $(Y+Z) \times X \cong(Y \times X)+(Z \times X)$. [Hint: you may find it helpful to use some of the properties from question 4.]
7. Using the natural deduction rules for Intuitionistic Propositional Logic (given in Lecture 6), give proofs of the following judgements. In each case write down a corresponding typing judgement of the Simply Typed Lambda Calculus.
(a) $\diamond, \psi \vdash(\varphi \Rightarrow \psi) \Rightarrow \psi$
(b) $\diamond, \varphi \vdash(\varphi \Rightarrow \psi) \Rightarrow \psi$
(c) $\diamond,((\varphi \Rightarrow \psi) \Rightarrow \psi) \Rightarrow \psi \vdash \varphi \Rightarrow \psi$
8. (a) Given simple types A, B, C, give terms s and t of the Simply Typed Lambda Calculus that satisfy the following typing and $\beta \eta$-equality judgements:

$$
\begin{align*}
& \diamond, x:(A \times B) \rightarrow C \vdash s: A \rightarrow(B \rightarrow C) \tag{6}\\
& \diamond, y: A \rightarrow(B \rightarrow C) \vdash t:(A \times B) \rightarrow C \tag{7}\\
& \diamond, x:(A \times B) \rightarrow C \vdash t[s / y]={ }_{\beta \eta} x:(A \times B) \rightarrow C \tag{8}\\
& \diamond, y: A \rightarrow(B \rightarrow C) \vdash s[t / x]={ }_{\beta \eta} y: A \rightarrow(B \rightarrow C) \tag{9}
\end{align*}
$$

(b) Explain why question (8a) implies that for any three objects X, Y and Z in a cartesian closed category \mathbf{C}, there are morphisms

$$
\begin{align*}
f: Z^{(X \times Y)} & \rightarrow\left(Z^{Y}\right)^{X} \tag{10}\\
g:\left(Z^{Y}\right)^{X} & \rightarrow Z^{(X \times Y)} \tag{11}
\end{align*}
$$

that give an isomorphism $Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$ in C.
9. Make up and solve a question like question 8 ending with an isomorphism $X^{1} \cong X$ for any object X in a cartesian closed category \mathbf{C} (with terminal object 1).

University of Cambridge 2022/23 Part II / Part III / MPhil ACS

Category Theory
Exercise Sheet 3 - Solution Notes by Andrew Pitts

Question 1 Recalling the isomorphism $1 \times X \cong X$ from question 2 on Exercise Sheet 2, define

$$
\begin{aligned}
\ulcorner f\urcorner & =\operatorname{cur}\left(1 \times X \xrightarrow[\cong]{\pi_{2}} X \xrightarrow{f} Y\right) \\
\bar{g} & =X \xrightarrow[\cong]{\left.〔\langle \rangle, i_{X}\right\rangle} 1 \times X \xrightarrow{e \times \text { id }_{X}} Y^{X} \times X \xrightarrow{\text { app }} Y
\end{aligned}
$$

Thus

$$
\begin{aligned}
\ulcorner\bar{g}\urcorner & =\operatorname{cur}\left(\operatorname{app} \circ\left(g \times i d_{X}\right) \circ\left\langle\langle \rangle, i d_{X}\right\rangle \circ \pi_{2}\right) \\
& =\operatorname{cur}\left(\operatorname{app} \circ\left(g \times i d_{X}\right)\right) \quad \text { since } \pi_{2}: 1 \times X \rightarrow X \text { is an iso with inverse }\left\langle\left\rangle, i d_{X}\right\rangle\right. \\
& =g \quad \text { by the uniqueness part of the universal property of exponentials }
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\ulcorner f\urcorner} & =\operatorname{app} \circ\left(\operatorname{cur}\left(f \circ \pi_{2}\right) \times \mathrm{id}_{X}\right) \circ\left\langle\langle \rangle, \mathrm{id}_{X}\right\rangle \\
& =f \circ \pi_{2} \circ\left\langle\langle \rangle, \mathrm{id} \mathrm{~d}_{X}\right\rangle \quad \text { by definition of } \operatorname{cur}\left(f \circ \pi_{2}\right) \\
& =f \quad \text { since } \pi_{2}: 1 \times X \rightarrow X \text { is an iso with inverse }\langle\rangle, \text { id } X\rangle
\end{aligned}
$$

Question 2 By definition, cur(app) is the unique morphism $f \in \mathrm{C}\left(Y^{X}, Y^{X}\right)$ satisfying app $\circ(f \times$ $\left.i d_{X}\right)=$ app. But from Exercise Sheet 2 question 1c, we have $\operatorname{id}_{Y^{X}} \times \mathrm{id}_{X}=\operatorname{id}_{Y^{X} \times X}$ and hence $\operatorname{app} \circ\left(f \times i d_{X}\right)=\operatorname{app}$ also holds when $f=i d_{Y^{X}}$. Therefore $\operatorname{id}_{Y^{X}}=\operatorname{cur}(\operatorname{app})$.

Question 3 Note that

$$
\begin{aligned}
\operatorname{app} \circ\left(((\operatorname{cur} f) \circ g) \times \operatorname{id}_{X}\right) & =\operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id}_{X}\right) \circ\left(g \times \mathrm{id}_{X}\right) & & \text { by Ex. Sh. 2, question } 1 \mathrm{c} \\
& =f \circ\left(g \times \mathrm{id}_{X}\right) & & \text { by definition of cur } f
\end{aligned}
$$

and therefore $(\operatorname{cur} f) \circ g=\operatorname{cur}\left(f \circ\left(g \times i d_{X}\right)\right)$, by the uniqueness part of the universal property of exponentials.

Question 4

(a) $\left(\mathrm{id}_{Y}\right)^{X} \triangleq \operatorname{cur}\left(\mathrm{id}_{Y} \circ \mathrm{app}\right)=\operatorname{cur}(\mathrm{app})=\mathrm{id}_{Y^{X}}$, by question 2 .
(b) $\operatorname{app} \circ\left(\left(g^{X} \circ \operatorname{cur} f\right) \times \operatorname{id}_{X}\right)=\operatorname{app} \circ\left(g^{X} \times \operatorname{id}_{X}\right) \circ\left(\operatorname{cur} f \times \mathrm{id}_{X}\right)$ by Ex. Sh. 2, question 1 c

$$
\begin{array}{ll}
=g \circ \operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id}_{X}\right) & \text { by definition of } g^{X} \\
=g \circ f & \\
\text { by definition of } \operatorname{cur} f
\end{array}
$$

and therefore $g^{X} \circ \operatorname{cur} f=\operatorname{cur}(g \circ f)$, by the uniqueness part of the universal property of exponentials.
(c) $g^{X} \circ f^{X}=g^{X} \circ \operatorname{cur}(f \circ$ app $) \quad$ by definition of f^{X}

$$
\begin{aligned}
& =\operatorname{cur}(g \circ f \circ \text { app }) \quad \text { by part }(\mathrm{b}) \\
& \triangleq(g \circ f)^{X}
\end{aligned}
$$

Question 5

(a) $X^{\mathrm{id}_{Y}} \triangleq \operatorname{cur}\left(\operatorname{app} \circ\left(\mathrm{id}_{X^{Y}} \times i d_{Y}\right)\right)=\operatorname{cur}\left(\operatorname{app}^{\circ} \circ \mathrm{id}_{X^{Y} \times Y}\right)=\operatorname{cur}(\operatorname{app})=i d_{X^{Y}}$, by question 2 .
(b) $\operatorname{app} \circ\left(\left(Z^{g} \circ \operatorname{cur} f\right) \times \mathrm{id}_{W}\right)=\operatorname{app} \circ\left(Z^{g} \times \mathrm{id}_{W}\right) \circ\left(\operatorname{cur} f \times \mathrm{id}_{W}\right) \quad$ by Ex.Sh. 2, question 1c

$$
\begin{array}{ll}
=\operatorname{app} \circ\left(\operatorname{id}_{Y} \times g\right) \circ\left(\operatorname{cur} f \times \mathrm{id}_{W}\right) & \\
\text { by definition of } Z^{g} \\
=\operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id}_{X}\right) \circ\left(\operatorname{id}_{Y} \times g\right) & \\
=f \circ\left(\operatorname{ld}_{Y} \times g\right) &
\end{array}
$$

and therefore $Z^{g} \circ \operatorname{cur} f=\operatorname{cur}\left(f \circ\left(\operatorname{id}_{Y} \times g\right)\right)$, by the uniqueness part of the universal property of exponentials.
(c) $X^{u} \circ X^{v}=X^{u} \circ \operatorname{cur}(\operatorname{app} \circ(\mathrm{id} \times v)) \quad$ by definition of X^{v}
$=\operatorname{cur}(\operatorname{app} \circ(\mathrm{id} \times v) \circ(\mathrm{id} \times u)) \quad$ by part (b)
$=\operatorname{cur}(\operatorname{app} \circ(\mathrm{id} \times(v \circ u))) \quad$ by Ex.Sh. 2, question 1c
$\triangleq X^{(v o u)}$

Question 6 The universal property of the coproduct $X+Y$ says that for all $f \in \mathbf{C}(X, Z)$ and $g \in \mathbf{C}(Y, Z)$ there is a unique morphism $[f, g] \in \mathbf{C}(X+Y, Z)$ with $[f, g] \circ \operatorname{inl}_{X, Y}=f$ and $[f, g] \circ$ $\operatorname{inr}_{X, Y}=g$. Given objects $X, Y, Z \in \mathbf{C}$, from

$$
\begin{aligned}
& \operatorname{cur}\left(\operatorname{inl}_{Y \times X, Z \times X}\right): Y \rightarrow((Y \times X)+(Z \times X))^{X} \\
& \operatorname{cur}\left(\operatorname{inr}_{Y \times X, Z \times X}\right): Z \rightarrow((Y \times X)+(Z \times X))^{X}
\end{aligned}
$$

we get

$$
\left[\operatorname{cur}\left(\operatorname{inl}_{Y \times X, Z \times X}\right), \operatorname{cur}\left(\operatorname{inr}_{Y \times X, Z \times X}\right)\right]: Y+Z \rightarrow((Y \times X)+(Z \times X))^{X}
$$

and hence

$$
i \triangleq \operatorname{app} \circ\left(\left[\operatorname{cur}\left(\operatorname{inl}_{Y \times X, Z \times X}\right), \operatorname{cur}\left(\operatorname{inr}_{Y \times X, Z \times X}\right)\right] \times \operatorname{id}_{X}\right) \in \mathbf{C}((Y+Z) \times X,(Y \times X)+(Z \times X))
$$

In the other direction, define

$$
j \triangleq\left[\operatorname{inl}_{Y, Z} \times \operatorname{id}_{X}, \operatorname{inr}_{Y, Z} \times \operatorname{id}_{X}\right] \in \mathbf{C}((Y \times X)+(Z \times X),(Y+Z) \times X)
$$

To see that $i \circ j=i d$, note that

$$
\begin{aligned}
i \circ j \circ \mathrm{inl} & =i \circ(\mathrm{inl} \times \mathrm{id}) & & \text { by definition of } j \\
& =\operatorname{app} \circ([\text { cur inl, cur inr }] \times i d) \circ(\operatorname{inl} \times \mathrm{id}) & & \text { by definition of } i \\
& =\operatorname{app} \circ(([\text { cur inl }, \text { cur inr }] \circ i n l) \times i d) & & \text { by Ex.Sh. 2, question 1c } \\
& =\operatorname{app} \circ(\text { cur inl } \times i d) & & \text { by definition of }[,-] \\
& =i n l & & \text { by definition of cur } \\
& =i d \circ i n l & &
\end{aligned}
$$

and similarly, $i \circ j \circ i n r=i d \circ i n r$; therefore by the uniqueness part of the universal property for coproducts we have $i \circ j=i d$. To see that $j \circ i=i d$, note that

```
cur (j\circi)= j}\mp@subsup{j}{}{X}\circ\operatorname{cur}
    = j
    = [j j
    = [cur( }j\circinl),\operatorname{cur}(j\circinr)] by (3
    = [cur(inl }\times\mathrm{ id), cur(inr }\times\mathrm{ id) ] by definition of j
    = [(curid)\circinl,(curid)\circinr] by (1)
    =(cur id) [[inl,inr] by the dual of property (1) for products from Ex.Sh. 2
    =(curid)\circid by uniqueness part of univ. property of coproducts
    = cur id
```

by (3)
by definition of i
by the dual of property (1) for products from Ex.Sh. 2
by (3)
by definition of j
by the dual of property (1) for products from Ex.Sh. 2
by uniqueness part of univ. property of coproducts
and hence $j \circ i=\operatorname{app}(\operatorname{cur}(j \circ i) \times i d)=\operatorname{app}(\operatorname{cur} i d \times i d)=i d$.

Question 7

(a) IPL proof tree

$$
\frac{\frac{{ }_{2}}{\diamond, \psi \vdash \psi}(\mathrm{Ax})}{\diamond, \psi, \varphi \Rightarrow \psi \vdash \psi}(\mathrm{wK})
$$

STLC typing judgement $\diamond, y: \psi \vdash \lambda f: \varphi \Rightarrow \psi \cdot y:(\varphi \Rightarrow \psi) \Rightarrow \psi$
(b) IPL proof tree

STLC typing judgement $\diamond, y: \psi \vdash \lambda f: \varphi \Rightarrow \psi \cdot f x:(\varphi \Rightarrow \psi) \Rightarrow \psi$
(c) IPL proof tree, where $\theta \triangleq((\varphi \Rightarrow \psi) \Rightarrow \psi) \Rightarrow \psi$

STLC typing judgement $\diamond, f: \theta \vdash \lambda x: \varphi \cdot f(\lambda g: \varphi \Rightarrow \psi \cdot g x): \varphi \Rightarrow \psi$

Question 8

(a) $s \triangleq \lambda a: A \cdot \lambda b: B \cdot x(a, b)$
$t \triangleq \lambda c: A \times B . y(\mathrm{fst} c)(\operatorname{snd} c)$
Proof of (6), where $\Gamma \triangleq \diamond, x:(A \times B) \rightarrow C, a: A, b: B$:

$$
\begin{aligned}
& \frac{\frac{\ldots}{\cdots}(\mathrm{VAR})}{\Gamma \vdash x: A \times B \rightarrow C}\left(\mathrm{VAR}^{\prime}\right) \\
& \\
& \frac{\Gamma \vdash x(a, b): C}{} \frac{\frac{\ldots}{\Gamma \vdash a: A}(\mathrm{VAR})}{\Gamma \vdash(a, b): A \times B} \overline{\Gamma \vdash b: B}(\mathrm{VAR}) \\
& \diamond, x:(A \times B) \rightarrow C \vdash s: A \rightarrow(B \rightarrow C)
\end{aligned}\left(\lambda^{2}\right)
$$

Proof of (7), where $\Gamma^{\prime} \triangleq \diamond, y: A \rightarrow(B \rightarrow C), c: A \times B$:

Proof of (8) (not laid out as a tree):

$$
\begin{aligned}
t[s / y] & \triangleq \lambda c: A \times B \cdot(\lambda a: A \cdot \lambda b: B \cdot x(a, b))(\mathrm{fst} c)(\mathrm{snd} c) & & \\
& ={ }_{\beta \eta} \lambda c: A \times B \cdot x(\mathrm{fst} c, \text { snd } c) & & \beta \text {-conversion, twice } \\
& ={ }_{\beta \eta} \lambda c: A \times B \cdot x c & & \eta \text {-conv. at type } A \times B \\
& ={ }_{\beta \eta} x & & \eta \text {-conv. at type }(A \times B) \rightarrow C
\end{aligned}
$$

Proof of (9) (not laid out as a tree):

$$
\begin{aligned}
s[t / x] & \triangleq \lambda a: A \cdot \lambda b: B \cdot(\lambda c: A \times B \cdot y(\mathrm{fst} c)(\operatorname{snd} c))(a, b) & & \\
& ={ }_{\beta \eta} \lambda a: A \cdot \lambda b: B \cdot y(\mathrm{fst}(a, b))(\operatorname{snd}(a, b)) & & \beta \text {-conversion, } \\
& ={ }_{\beta \eta} \lambda a: A \cdot \lambda b: B \cdot y a b & & \beta \text {-conversion, twice } \\
& ={ }_{\beta \eta} \lambda a: A \cdot y a & & \eta \text {-conv. at type } B \rightarrow C \\
& ={ }_{\beta \eta} y & & \eta \text {-conv. at type } A \rightarrow(B \rightarrow C)
\end{aligned}
$$

(b) In part (8a), if we take A, B, C to be ground types that are interpreted in C by the objects X, Y, Z, then the interpretations of (6) and (7) give morphisms

$$
\begin{aligned}
& f \triangleq\left(Z^{X \times Y} \cong 1 \times Z^{X \times Y} \xrightarrow{M \llbracket \diamond, x:(A \times B) \rightarrow C \vdash s: A \rightarrow(B \rightarrow C) \rrbracket}\left(Z^{Y}\right)^{X}\right) \\
& g \triangleq\left(\left(Z^{Y}\right)^{X} \cong 1 \times\left(Z^{Y}\right)^{X} \xrightarrow{M \llbracket \curvearrowright, y: A \rightarrow(B \rightarrow C) \vdash t:(A \times B) \rightarrow C \rrbracket} Z^{X \times Y}\right)
\end{aligned}
$$

with the required domains and codomains. Furthermore, by the semantics of substitution and the Soundness Theorem for STLC, (8) implies

$$
\begin{aligned}
g \circ f & =\left(Z^{X \times Y} \cong 1 \times Z^{X \times Y} \xrightarrow{M \llbracket \curvearrowright, x:(A \times B) \rightarrow C \vdash t[s / y]:(A \times B) \rightarrow C \rrbracket} Z^{X \times Y}\right) \\
& =\left(Z^{X \times Y} \cong 1 \times Z^{X \times Y} \xrightarrow{M \llbracket \curvearrowright, x:(A \times B) \rightarrow C \vdash x:(A \times B) \rightarrow C \rrbracket} Z^{X \times Y}\right) \\
& =\left(Z^{X \times Y} \cong 1 \times Z^{X \times Y} \xrightarrow{\pi_{2}} Z^{X \times Y}\right) \\
& =\operatorname{id}_{Z^{(X \times Y)}}
\end{aligned}
$$

and similarly (9) implies $f \circ g=\operatorname{id}_{\left(Z^{Y}\right)^{X}}$.
For the record, f and g can be described using the structure of a cartesian closed category as follows:

$$
\begin{aligned}
& f \triangleq \operatorname{cur}\left(\operatorname{cur}\left(\left(Z^{(X \times Y)} \times X\right) \times Y \xrightarrow{\left\langle\pi_{1} \circ \pi_{1},\left\langle\pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle\right\rangle} Z^{(X \times Y)} \times(X \times Y) \xrightarrow{\text { app }} Z\right)\right) \\
& g \triangleq \operatorname{cur}\left(\left(Z^{Y}\right)^{X} \times(X \times Y) \xrightarrow{\left\langle\left\langle\pi_{1}, \pi_{1} \circ \pi_{2}\right\rangle, \pi_{2} \circ \pi_{2}\right\rangle}\left(\left(Z^{Y}\right)^{X} \times X\right) \times Y \xrightarrow{\text { app } \times \text { id }}{ }^{Y} Z^{Y} \times Y \xrightarrow{\text { app }} Z\right)
\end{aligned}
$$

However, it is quite tedious to use these descriptions to verify that f and g are mutually inverse.

Question 9 The STLC terms you need to use are

$$
\begin{aligned}
\diamond, x: \text { unit } & \rightarrow A \vdash x(): A \\
\diamond, y: A & \vdash \lambda z: \text { unit. } y: \text { unit } \rightarrow A
\end{aligned}
$$

