University of Cambridge 2022/23 Part II / Part III / MPhil ACS
 Category Theory
 Exercise Sheet 2
 by Andrew Pitts

1. Let C be a category with binary products.
(a) For morphisms $f \in \mathbf{C}(X, Y), g_{1} \in \mathbf{C}\left(Y, Z_{1}\right)$ and $g_{2} \in \mathbf{C}\left(Y, Z_{2}\right)$, show that

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle \circ f=\left\langle g_{1} \circ f, g_{2} \circ f\right\rangle \in \mathrm{C}\left(X, Z_{1} \times Z_{2}\right) \tag{1}
\end{equation*}
$$

(b) For morphisms $f_{1} \in \mathbf{C}\left(X_{1}, Y_{1}\right)$ and $f_{2} \in \mathbf{C}\left(X_{2}, Y_{2}\right)$, define

$$
\begin{equation*}
f_{1} \times f_{2} \triangleq\left\langle f_{1} \circ \pi_{1}, f_{2} \circ \pi_{2}\right\rangle \in \mathbf{C}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right) \tag{2}
\end{equation*}
$$

For any $g_{1} \in \mathbf{C}\left(Z, X_{1}\right)$ and $g_{2} \in \mathbf{C}\left(Z, X_{2}\right)$, show that

$$
\begin{equation*}
\left(f_{1} \times f_{2}\right) \circ\left\langle g_{1}, g_{2}\right\rangle=\left\langle f_{1} \circ g_{1}, f_{2} \circ g_{2}\right\rangle \in \mathbf{C}\left(Z, Y_{1} \times Y_{2}\right) \tag{3}
\end{equation*}
$$

(c) Show that the operation $f_{1}, f_{2} \mapsto f_{1} \times f_{2}$ defined in part (1b) satisfies

$$
\begin{align*}
\left(h_{1} \times h_{2}\right) \circ\left(k_{1} \times k_{2}\right) & =\left(h_{1} \circ k_{1}\right) \times\left(h_{2} \circ k_{2}\right) \tag{4}\\
\operatorname{id}_{X} \times \operatorname{id}_{Y} & =\operatorname{id}_{X \times Y} \tag{5}
\end{align*}
$$

2. Let \mathbf{C} be a category with binary products $\mathrm{X}_{\text {_ }}$ and a terminal object 1 . Given objects $X, Y, Z \in \mathrm{C}$, construct isomorphisms

$$
\begin{align*}
\alpha_{X, Y, Z}: X \times(Y \times Z) & \cong(X \times Y) \times Z \tag{6}\\
\lambda_{X}: 1 \times X & \cong X \tag{7}\\
\rho_{X}: X \times 1 & \cong X \tag{8}\\
\tau_{X, Y}: X \times Y & \cong Y \times X \tag{9}
\end{align*}
$$

3. A pairing for a monoid (M, \cdot, e) consists of elements $p_{1}, p_{2} \in M$ and a binary operation $\langle,,-\rangle$: $M \times M \rightarrow M$ satisfying for all $x, y, z \in M$

$$
\begin{align*}
p_{1} \cdot\langle x, y\rangle & =x \tag{10}\\
p_{2} \cdot\langle x, y\rangle & =y \tag{11}\\
\left\langle p_{1}, p_{2}\right\rangle & =e \tag{12}\\
\langle x, y\rangle \cdot z & =\langle x \cdot z, y \cdot z\rangle \tag{13}
\end{align*}
$$

Given such a pairing, show that the monoid, when regarded as a one-object category, has binary products.
4. A monoid (M, \cdot_{M}, e_{M}) is said to be abelian if its multiplication is commutative: $(\forall x, y \in M) x \cdot M$ $y=y \cdot m$.
(a) If $\left(M, \cdot{ }_{M}, e_{M}\right)$ is an abelian monoid, show that the functions $m \in \operatorname{Set}(M \times, M, M)$ and $u \in \operatorname{Set}(1, M)$ defined by

$$
\begin{aligned}
m(x, y) & =x \cdot{ }_{M} y & (\text { all } x, y \in M) \\
u(0) & =e_{M} &
\end{aligned}
$$

determine morphisms in the catgory Mon of monoids, $m \in \operatorname{Mon}(M \times M, M)$ and $u \in$ $\operatorname{Mon}(1, M)$ (where as usual we just write M for the monoid ($M,{ }_{M}, e_{M}$) and 1 for the terminal monoid ($1, \cdot{ }_{1}, e_{1}$) with 1 a one-element set, $\{0\}$ say, $0 \cdot{ }_{1} 0=0$ and $e_{1}=0$).
Show futher that m and u make the monoid M into a "monoid object in the category Mon", in the sense that the following diagrams in Mon commute:

$$
\begin{align*}
& \begin{aligned}
&(M \times M) \times M \xrightarrow{m \times \text { id }} M \times M \xrightarrow{m} M \\
&\left\langle\pi_{1} \circ \pi_{1},\left\langle\pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle\right\rangle \mid \cong \\
& M \times(M \times M) \xrightarrow[\text { id } \times m]{\longrightarrow} M \times M \xrightarrow[m]{\cong} \xlongequal{\longrightarrow} M
\end{aligned} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{rlr}
M \times 1 \xrightarrow{\text { id } \times u} M \times M \xrightarrow{m} M \\
\pi_{1} \mid \cong & \\
\downarrow & \cong{ }_{\text {id }} & \text { (right unit) } \\
M \xrightarrow[\text { id }]{ } & M
\end{array} \tag{16}
\end{align*}
$$

(b) Show that every monoid object in the category Mon (in the above sense) arises as in (4a). [Hint: if necessary, search the internet for "Eckmann-Hilton argument".]
5. Let AbMon be the category whose objects are abelian monoids (question 4) and whose morphisms, identity morphisms and composition are as in Mon.
(a) Show that the product in Mon of two abelian monoids gives their product in AbMon.
(b) Given $M, N \in \operatorname{AbMon}$ define morphisms $i \in \operatorname{AbMon}(M, M \times N)$ and $j \in \operatorname{AbMon}(N, M \times$ N) that make $M \times N$ into a coproduct in AbMon.
6. The category Set ${ }^{\omega}$ of 'sets evolving through discrete time' is defined as follows:

- Objects are triples $\left(X,()^{+},\left.\right|_{-}\right)$, where $X \in \operatorname{Set},\left({ }_{-}\right)^{+} \in \operatorname{Set}(X, X)$ and $\left.\right|_{-} \mid \in \operatorname{Set}(X, \mathbb{N})$ satisfy for all $x \in X$

$$
\begin{equation*}
\left|x^{+}\right|=|x|+1 \tag{17}
\end{equation*}
$$

[Think of $|x|$ as the instant of time at which x exists and $x \mapsto x^{+}$as saying how an element evolves from one instant to the next.]

- Morphisms $f:\left(X,()^{+},\left.\right|_{-} \mid\right) \rightarrow\left(Y,()^{+},\left.\right|_{-} \mid\right)$are functions $f \in \operatorname{Set}(X, Y)$ satisfying for all $x \in X$

$$
\begin{gather*}
(f x)^{+}=f\left(x^{+}\right) \tag{18}\\
|f x|=|x| \tag{19}
\end{gather*}
$$

- Composition and identities are as in the category Set.

Show that Set ${ }^{\omega}$ has a terminal object and binary products.
7. Show that the category PreOrd of pre-ordered sets and monotone functions is a cartesian closed category.

University of Cambridge 2022/23 Part II / Part III / MPhil ACS Category Theory Exercise Sheet 2 - Solution Notes by Andrew Pitts

Question 1

(a) For $i=1$, 2 we have $\pi_{i} \circ\left(\left\langle g_{1}, g_{2}\right\rangle \circ f\right)=\left(\pi_{i} \circ\left\langle g_{1}, g_{2}\right\rangle\right) \circ f=g_{i} \circ f=\pi_{i} \circ\left\langle g_{1} \circ f, g_{2} \circ f\right\rangle$ and hence by the uniqueness part of the universal property for the product $Z_{1} \times Z_{2}$, it is the case that $\left\langle g_{1}, g_{2}\right\rangle \circ f=\left\langle g_{1} \circ f, g_{2} \circ f\right\rangle$.
(b) $\left(f_{1} \times f_{2}\right) \circ\left\langle g_{1}, g_{2}\right\rangle \triangleq\left\langle f_{1} \circ \pi_{1}, f_{2} \circ \pi_{2}\right\rangle \circ\left\langle g_{1}, g_{2}\right\rangle$

$$
\begin{aligned}
& =\left\langle\left(f_{1} \circ \pi_{1}\right) \circ\left\langle g_{1}, g_{2}\right\rangle,\left(f_{2} \circ \pi_{2}\right) \circ\left\langle g_{1}, g_{2}\right\rangle\right\rangle \quad(\text { by part }(\mathrm{a})) \\
& =\left\langle f_{1} \circ\left(\pi_{1} \circ\left\langle g_{1}, g_{2}\right\rangle\right), f_{2} \circ\left(\pi_{2} \circ\left\langle g_{1}, g_{2}\right\rangle\right)\right\rangle \\
& =\left\langle f_{1} \circ g_{1}, f_{2} \circ g_{2}\right\rangle
\end{aligned}
$$

(c) $\left(h_{1} \times h_{2}\right) \circ\left(k_{1} \times k_{2}\right) \triangleq\left(h_{1} \times h_{2}\right) \circ\left\langle k_{1} \circ \pi_{1}, k_{2} \circ \pi_{2}\right\rangle$

$$
\begin{aligned}
& =\left\langle h_{1} \circ\left(k_{1} \circ \pi_{1}\right), h_{2} \circ\left(k_{2} \circ \pi_{2}\right)\right\rangle \quad(\text { by part }(\mathrm{b})) \\
& =\left\langle\left(h_{1} \circ k_{1}\right) \circ \pi_{1},\left(h_{2} \circ k_{2}\right) \circ \pi_{2}\right\rangle \\
& \triangleq\left(h_{1} \circ k_{1}\right) \times\left(h_{2} \circ k_{2}\right)
\end{aligned}
$$

For the second identity, note that $\operatorname{id}_{X} \times \mathrm{id}_{Y} \triangleq\left\langle\mathrm{id}_{X} \circ \pi_{1}, \operatorname{id}_{Y} \circ \pi_{2}\right\rangle=\left\langle\pi_{1}, \pi_{2}\right\rangle$. Since $\pi_{i} \circ \operatorname{id}_{X \times Y}=$ $\pi_{i}=\pi_{i} \circ\left\langle\pi_{1}, \pi_{2}\right\rangle$, by the uniqueness part of the universal property for the product $X \times Y$, we have $\mathrm{id}_{X \times Y}=\left\langle\pi_{1}, \pi_{2}\right\rangle$. Therefore $\mathrm{id}_{X} \times \mathrm{id}_{Y}=\left\langle\pi_{1}, \pi_{2}\right\rangle=\operatorname{id}_{X \times Y}$.

Question 2 Define

$$
\begin{aligned}
\alpha_{X, Y, Z} & \triangleq\left\langle\mathrm{id}_{X} \times \pi_{1}, \pi_{2} \circ \pi_{2}\right\rangle & \alpha_{X, Y, Z}^{-1} \triangleq\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \times \mathrm{id}_{Z}\right\rangle \\
\lambda_{X} & \triangleq \pi_{2} & \lambda_{X}^{-1} \triangleq\left\langle\langle \rangle_{X}, \mathrm{id}_{X}\right\rangle \\
\rho_{X} & \triangleq \pi_{1} & \rho_{X}^{-1} \triangleq\left\langle\mathrm{id}_{X},\langle \rangle_{X}\right\rangle \\
\tau_{X, Y} & \triangleq\left\langle\pi_{2}, \pi_{1}\right\rangle & \tau_{X, Y}^{-1} \triangleq\left\langle\pi_{2}, \pi_{1}\right\rangle
\end{aligned}
$$

Then we have:

$$
\begin{array}{rlrl}
\alpha_{X, Y, Z} \circ \alpha_{X, Y, Z}^{-1} & \triangleq\left\langle\operatorname{id}_{X} \times \pi_{1}, \pi_{2} \circ \pi_{2}\right\rangle \circ\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \times \mathrm{id}_{Z}\right\rangle & \\
& =\left\langle\left(\operatorname{id}_{X} \times \pi_{1}\right) \circ\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \times \mathrm{id}_{Z}\right\rangle, \pi_{2} \circ \pi_{2} \circ\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \times \mathrm{id}_{Z}\right\rangle\right\rangle & & \text { by (1) } \\
& =\left\langle\left\langle\pi_{1} \circ \pi_{1}, \pi_{1} \circ\left(\pi_{2} \times \operatorname{id}_{Z}\right)\right\rangle, \pi_{2} \circ \pi_{2} \circ\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \times \mathrm{id}_{Z}\right\rangle\right\rangle & & \text { by (3) } \\
& =\left\langle\left\langle\pi_{1} \circ \pi_{1}, \pi_{2} \circ \pi_{1}\right\rangle, \pi_{2}\right\rangle & & \text { by (2) } \\
& =\left\langle\left\langle\pi_{1}, \pi_{2}\right\rangle \circ \pi_{1}, \pi_{2}\right\rangle & & \text { by (1) }
\end{array}
$$

and since $\left\langle\pi_{1}, \pi_{2}\right\rangle=\mathrm{id}$ (see the proof of question 1c), we get $\alpha_{X, Y, Z} \circ \alpha_{X, Y, Z}^{-1}=\left\langle\mathrm{id}_{X \times Y} \circ \pi_{1}, \pi_{2}\right\rangle=$ $\operatorname{id}_{(X \times Y) \times Z}$. Similar tedious calculations using the properties from question 1 give

$$
\begin{aligned}
& \alpha^{-1} \circ \alpha=\mathrm{id} \\
& \lambda \circ \lambda^{-1}=\mathrm{id} \\
& \lambda^{-1} \circ \lambda=\mathrm{id} \\
& \rho \circ \rho^{-1}=\mathrm{id} \\
& \rho^{-1} \circ \rho=\mathrm{id} \\
& \tau \circ \tau^{-1}=\mathrm{id} \\
& \tau^{-1} \circ \tau=\mathrm{id}
\end{aligned}
$$

Question 3 Regarding M as a category with a single object, $*$ say, it suffices to show that $*{ }^{p_{1}}$ $* \xrightarrow{p_{2}} *$ is a product in M, that is: for all $x, y \in M$, there is a unique $z \in M$ with $p_{1} \cdot z=x$ and $p_{2} \cdot z=y$. But $\langle x, y\rangle$ is such a z; and it is unique since if $p_{1} \cdot z=x$ and $p_{2} \cdot z=y$,then $z=e \cdot z=\left\langle p_{1}, p_{2}\right\rangle \cdot z=\left\langle p_{1} \cdot z, p_{2} \cdot z\right\rangle=\langle x, y\rangle$.

Question 4

(a) Recall that the product monoid $\left(M,{ }_{M}, e_{M}\right) \times\left(M, \cdot_{M}, e_{M}\right)$ is $\left(M \times M, \cdot,\left(e_{M}, e_{M}\right)\right)$ where the binary operation $\cdot_{-}:(M \times M) \times(M \times M) \rightarrow(M \times M)$ is given by:

$$
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x \cdot{ }_{M} x^{\prime}, y \cdot{ }_{M} y^{\prime}\right)
$$

Thus for all $x, x^{\prime}, y, y^{\prime} \in M$ we have

$$
\begin{aligned}
m\left((x, y) \cdot\left(x^{\prime}, y^{\prime}\right)\right) & =m\left(x \cdot_{M} x^{\prime}, y{ }_{M} y^{\prime}\right) & & \\
& \triangleq\left(x \cdot_{M} x^{\prime}\right) \cdot{ }_{M}\left(y \cdot{ }_{M} y^{\prime}\right) & & \\
& =x \cdot{ }_{M}\left(\left(x^{\prime} \cdot{ }_{M} y\right) \cdot{ }_{M} y^{\prime}\right) & & \text { since } \cdot_{M} \text { is associative } \\
& =x \cdot{ }_{M}\left(\left(y \cdot{ }_{M} x^{\prime}\right) \cdot{ }_{M} y^{\prime}\right) & & \text { since } \cdot_{M} \text { is commutative } \\
& =(x \cdot M y) \cdot M\left(x^{\prime} \cdot{ }_{M} y^{\prime}\right) & & \text { since } \cdot_{M} \text { is associative } \\
& \triangleq m(x, y) \cdot{ }_{M} m\left(x^{\prime}, y^{\prime}\right) & & \\
m\left(e_{M}, e_{M}\right) & \triangleq e_{M} \cdot M e_{M} & & \\
& =e_{M} & & \text { since } e_{M} \text { is a unit for } \cdot_{M}
\end{aligned}
$$

so m is a monoid morphism; and u is one too because $u(0 \cdot 0)=u(0)=e_{M}=e_{M} \cdot{ }_{M} e_{M}=$ $u(0) \cdot{ }_{M} u(0)$.
To see that m and u make M into a monoid object in Mon, just note that diagram (14) commutes because $(\forall x, y, z \in M) x \cdot{ }_{M}\left(y \cdot{ }_{M} z\right)=\left(x \cdot{ }_{M} y\right) \cdot{ }_{M} z$, (15) commutes because $(\forall x \in M) e_{M} \cdot{ }_{M} x=x$ and (16) commutes because $(\forall x \in M) x \cdot{ }_{M} e_{M}=x$.
(b) Suppose we are given monoid morphisms $m \in \operatorname{Mon}(M \times M, M)$ and $u \in \operatorname{Mon}(1, M)$ that make (14)-(16) commute. Since u is a monoid morphism we have $u(0)=e_{M}$ and therefore from the commutation of (15) and (16) we deduce that for all $x \in M$

$$
\begin{equation*}
m\left(e_{M}, x\right)=x=m\left(x, e_{M}\right) \tag{20}
\end{equation*}
$$

Now by definition of the monoid multiplication operation for the product monoid $\left(M,{ }_{M}, e_{M}\right) \times$ ($M,{ }_{M}, e_{M}$) we have

$$
\left(x, e_{M}\right) \cdot\left(e_{M}, y\right)=\left(x \cdot M e_{M}, e_{M} \cdot M y\right)=(x, y)=\left(e_{M} \cdot{ }_{M} x, y \cdot{ }_{M} e_{M}\right)=\left(e_{M}, y\right) \cdot\left(x, e_{M}\right)
$$

Therefore since m is a monoid homomorphism, we have

$$
\begin{aligned}
m\left(x, e_{M}\right) \cdot{ }_{M} m\left(e_{M}, y\right)=m\left(\left(x, e_{M}\right) \cdot\left(e_{M}, y\right)\right)= & m(x, y)= \\
& m\left(\left(e_{M}, y\right) \cdot\left(e_{M}, x\right)\right)=m\left(e_{M}, y\right) \cdot{ }_{M} m\left(x, e_{M}\right)
\end{aligned}
$$

and hence from (20) we get $x \cdot y=m(x, y)=y \cdot x$. Therefore $\left(M,{ }_{M}, e_{M}\right)$ is abelian and the monoid object $\left(\left(M, \cdot_{M}, e_{M}\right), m, u\right)$ in Mon coincides with the one from part (a).

Question 5

(a) If M and N are both abelian monoids, then the product operation of the monoid $M \times N$ satisfies for all $x, x^{\prime} \in M$ and $y, y^{\prime} \in N$

$$
\begin{aligned}
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right) & \triangleq\left(x \cdot x^{\prime}, y \cdot y^{\prime}\right) \\
& =\left(x^{\prime} \cdot x, y^{\prime} \cdot y\right) \quad \text { since } M \text { and } N \text { are abelian } \\
& \triangleq\left(x^{\prime}, y^{\prime}\right) \cdot(x, y)
\end{aligned}
$$

so that $M \times N$ is also abelian. Therefore the universal property of $M \stackrel{\pi_{1}}{\longleftarrow} M \times N \xrightarrow{\pi_{2}} N$ in Mon restricts to give the correct universal property for a product in AbMon.
(b) The functions

$$
\begin{aligned}
& i(x) \triangleq(x, e) \\
& j(y) \triangleq(e, y)
\end{aligned}
$$

clearly give morphisms $M \stackrel{i}{\rightarrow} M \times N \stackrel{j}{\leftarrow} N$ in AbMon. We show that it is a coproduct diagram. Given any morphisms $M \stackrel{f}{\rightarrow} P \stackrel{g}{\leftarrow} N$ in AbMon, consider the function $h: M \times N \rightarrow P$ defined by

$$
h(x, y) \triangleq(f x) \cdot(g y)
$$

It is a morphism in $\operatorname{AbMon}(M \times N, P)$ because $h(e, e)=(f e) \cdot(g e)=e \cdot e=e$ and

$$
\begin{aligned}
h\left((x, y) \cdot\left(x^{\prime}, y^{\prime}\right)\right) & \triangleq f\left(x \cdot x^{\prime}\right) \cdot g\left(y \cdot y^{\prime}\right) & & \\
& =\left(f x \cdot f x^{\prime}\right) \cdot\left(g y \cdot g y^{\prime}\right) & & \text { since } f \text { and } g \text { are morphisms } \\
& =f x \cdot\left(f x^{\prime} \cdot g y\right) \cdot g y^{\prime} & & \text { associativity } \\
& =f x \cdot\left(g y \cdot f x^{\prime}\right) \cdot g y^{\prime} & & \text { since } P \text { is abelian } \\
& =(f x \cdot g y) \cdot\left(f x^{\prime} \cdot g y^{\prime}\right) & & \text { associativity } \\
& \triangleq h(x, y) \cdot h\left(x^{\prime}, y^{\prime}\right) & &
\end{aligned}
$$

Furthermore, since $h(i x)=h(x, e)=f x \cdot g e=f x \cdot e=f x$ and $h(j y)=h(e, y)=f e \cdot g y=$ $e \cdot g y=g y$, we have that

commutes. Finally, h is the unique such morphism, since if $h^{\prime} \in \operatorname{AbMon}(M \times N, P)$ also satisfies $h^{\prime} \circ i=f$ and $h^{\prime} \circ j=g$, then

$$
h^{\prime}(x, y)=h^{\prime}((x, e) \cdot(e, y))=h^{\prime}(x, e) \cdot h^{\prime}(e, y)=h^{\prime}(i x) \cdot h^{\prime}(j y)=f x \cdot g y \triangleq h(x, y)
$$

so that $h^{\prime}=h$.

Question 6

- Terminal object is $\left(\mathbb{N},(-)^{+},|-|\right)$, where for all $n \in \mathbb{N}, n^{+} \triangleq n+1$ and $|n| \triangleq n$, which trivially have the required property (17). For each object $\left(X,()^{+},|-|\right) \in \operatorname{Set}^{\omega}$, the unique morphism $\left(X,()^{+},\left.\right|_{-}\right) \rightarrow\left(\mathbb{N},()^{+},\left.\right|_{-}\right)$is given by $\left.\right|_{-} \mid$.
- Binary product of $\left(X,(-)^{+},\left.\right|_{-} \mid\right)$and $\left.\left(Y,()_{-}\right)^{+},\left.\right|_{-}\right)$is $\left.\left(X,\left(_{-}\right)^{+},\left.\right|_{-} \mid\right) \stackrel{\pi_{1}}{\leftarrow}\left(P,(-)^{+},\left.\right|_{-} \mid\right) \xrightarrow{\pi_{2}}\left(Y,()_{-}\right)^{+},|-|\right)$, where

$$
\begin{aligned}
& P \triangleq\{(x, y) \in X \times Y| | x|=|y|\} \\
&(x, y)^{+} \triangleq\left(x^{+}, y^{+}\right) \\
&|(x, y)| \triangleq|x|(=|y|) \\
& \pi_{1}(x, y) \triangleq x \\
& \pi_{2}(x, y) \triangleq y
\end{aligned}
$$

Given morphisms $\left(X,()_{-}^{+},\left.\right|_{-} \mid\right) \stackrel{f}{\leftarrow}\left(Z,()_{-}^{+},|-|\right) \xrightarrow{g}\left(Y,\left({ }_{-}\right)^{+},\left.\right|_{-} \mid\right)$, the unique morphism $\langle f, g\rangle$: $\left(Z,()^{+},|-|\right) \rightarrow\left(P,()^{+},|-|\right)$with $\pi_{1} \circ\langle f, g\rangle=f$ and $\pi_{2} \circ\langle f, g\rangle=g$ maps each $z \in Z$ to

$$
\langle f, g\rangle z \triangleq(f z, g z)
$$

(which does lie in P because $|f z|=|z|=|g z|$).

Question 7 I do not give the proof that a one-element poset is terminal in PreOrd, or that the binary product of (P, \leq) and (Q, \leq) in PreOrd is given by the cartesian product of underlying sets together with the partial order

$$
\left(p_{1}, q_{1}\right) \leq\left(p_{2}, q_{2}\right) \triangleq p_{1} \leq p_{2} \wedge q_{1} \leq q_{2} \quad \text { for all } p_{1}, p_{2} \in P \text { and } q_{1}, q_{2} \in Q .
$$

Let us show that the exponential of (P, \leq) and (Q, \leq) is given by:

$$
\begin{align*}
& P \rightarrow Q \triangleq\left\{f \in Q^{P} \mid\left(\forall p, p^{\prime}\right) p \leq p^{\prime} \in P \Rightarrow f p \leq f p^{\prime} \in Q\right\} \tag{21}\\
& f \leq f^{\prime} \in P \rightarrow Q \triangleq(\forall p \in P) f p \leq f^{\prime} p \tag{22}\\
& \operatorname{app}(f, p) \triangleq f p \tag{23}
\end{align*}
$$

Two things need checking (that we don't do here):

- (22) does define a partial order on the set (21), and
- (23) does give a monotone function.

So we have a morphism app : $(P \rightarrow Q, \leq) \times(P, \leq) \rightarrow(Q, \leq)$ in PreOrd and we need to see that it has the universal property of the exponential of (P, \leq) and (Q, \leq).

Given $f:(R, \leq) \times(P, \leq) \rightarrow(Q, \leq)$ in PreOrd, since $f \in \operatorname{Set}(R \times P, Q)$ we have the function $\operatorname{cur} f \in \operatorname{Set}\left(R, Q^{P}\right)$, where as usual, cur $f r p=f(r, p)$ for all $r \in R$ and $p \in P$. Note that

$$
\begin{aligned}
p \leq p^{\prime} \in P & \Rightarrow(r, p) \leq\left(r, p^{\prime}\right) \in R \times P \\
& \Rightarrow \operatorname{cur} f r p=f(r, p) \leq f\left(r, p^{\prime}\right)=\operatorname{cur} f r p^{\prime} \quad \text { since } f \text { is monotone }
\end{aligned}
$$

so that for each $r \in R$, we have cur $f r \in P \rightarrow Q$. In other words, $\operatorname{cur} f \in \operatorname{Set}(R, P \rightarrow Q)$. Furthermore $\operatorname{cur} f$ is a monotone function, because

$$
\begin{aligned}
r \leq r^{\prime} \in R & \Rightarrow(\forall p \in P)(r, p) \leq\left(r^{\prime}, p\right) \in R \times P \\
& \Rightarrow(\forall p \in P) \text { cur } f r p=f(r, p) \leq f\left(r^{\prime}, p\right)=\operatorname{cur} f r^{\prime} p \quad \text { since } f \text { is monotone }
\end{aligned}
$$

Note that app $\circ\left(\operatorname{cur} f \times \operatorname{id}_{P}\right)=f \in \operatorname{PreOrd}((R, \leq) \times(P, \leq),(Q, \leq))$, because for all $(r, p) \in R \times P$

$$
\left(\operatorname{app} \circ\left(\operatorname{cur} f \times \operatorname{id}_{p}\right)\right)(r, p)=\operatorname{app}\left(\left(\operatorname{cur} f \times \operatorname{id}_{P}\right)(r, p)\right)=\operatorname{app}(\operatorname{cur} f r, p)=\operatorname{cur} f r p=f(r, p)
$$

Finally, cur f is the only element $g \in \operatorname{PreOrd}((R, \leq),(P \rightarrow Q, \leq))$ satisfying app $\circ\left(g \times \operatorname{id}_{P}\right)=f$, since the latter equation implies that $g r p=\left(\operatorname{app} \circ\left(g \times \operatorname{id}_{P}\right)\right)(r, p)=f(r, p)=\operatorname{cur} f r p$ for all $(r, p) \in R \times P$. Hence for any $r \in R, g r$ and cur $f r$ are equal functions from P to Q; and therefore $g=\operatorname{cur} f$.

