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1. Let C be a category with binary products.

(a) For morphisms f € C(X,Y), g1 € C(Y,Z}) and g; € C(Y, Z;), show that
(g1.92) 0 f ={g10f.g20f) € C(X, Zy X Z)
(b) For morphisms f; € C(Xy, Y1) and f, € C(X3, Y2), define
ixXfaz(fiom, from) e C(X; XXy Y XYs)
For any ¢; € C(Z,X;) and g, € C(Z, X;), show that
(i x fa) ©(91.92) = (fio g1 0 g2) € C(Z, Y1 X Y2)
(c) Show that the operation fi, f> — fi X f> defined in part (1b) satisfies

(h1 X hz) o (k1 X k) = (hy 0 k1) X (hy 0 k2)

idx X idy = idXXY

2. Let Cbe a category with binary products _X_and a terminal object 1. Given objects X, Y, Z € C,

construct isomorphisms

axyz XX (YXZ)=(XXY)xZ
Ax 11xX =X
px X X1=X
Txy : XXY=YXX

(
(
(
(

3. A pairing for a monoid (M, -, e) consists of elements py, p, € M and a binary operation (_, _) :

M x M — M satisfying for all x,y,z € M

p1- <x’y> =X
P2 {xy) =y
(p1.p2) =e

xy) - z={(x-zy-2)

(10)
(11)
(12)
(13)

Given such a pairing, show that the monoid, when regarded as a one-object category, has

binary products.

4. A monoid (M, -, enr) is said to be abelian if its multiplication is commutative: (Vx,y € M) x-p

Yy=9y-m*X.



(@) If (M, -p;,en) is an abelian monoid, show that the functions m € Set(Mx, M, M) and
u € Set(1, M) defined by
m(x,y) =x-my (all x,y € M)
u(O) =em
determine morphisms in the catgory Mon of monoids, m € Mon(M X M, M) and u €
Mon(1, M) (where as usual we just write M for the monoid (M, -1, epr) and 1 for the
terminal monoid (1, -1, e;) with 1 a one-element set, {0} say, 0-1 0 = 0 and e; = 0).

Show futher that m and u make the monoid M into a “monoid object in the category
Mon”, in the sense that the following diagrams in Mon commute:

mxid

(MxM)xM 25 MxM2—-M
<ﬂ10ﬂ1’<ﬂ20ﬂ1’ﬂ2>>lE Ejid (associativity) (14)

1x M- M M- M

ﬂzlz Elid (left unit) (15)
M = M

Mx 1% M M " M

mlz ELid (right unit) (16)
M M

id
b) Show that every monoid object in the category Mon (in the above sense) arises as in (4a).
y ) gory
[Hint: if necessary, search the internet for “Eckmann-Hilton argument” ]

5. Let AbMon be the category whose objects are abelian monoids (question 4) and whose mor-
phisms, identity morphisms and composition are as in Mon.

(a) Show that the product in Mon of two abelian monoids gives their product in AbMon.

(b) Given M, N € AbMon define morphisms i € AbMon(M, MxX N) and j € AbMon(N, M X
N) that make M X N into a coproduct in AbMon.

6. The category Set® of ‘sets evolving through discrete time’ is defined as follows:

« Objects are triples (X, (1)*,|_|), where X € Set, (1)* € Set(X,X) and || € Set(X,N)
satisfy for all x € X

IxT| = |x| +1 (17)

[Think of |x| as the instant of time at which x exists and x +— x* as saying how an
element evolves from one instant to the next.]
« Morphisms f : (X, ()%, |]) — (Y, (0", |.]) are functions f € Set(X,Y) satisfying for all
x€X
(fx)" = f(x7) (18)
fxl =1 (19)



« Composition and identities are as in the category Set.
Show that Set® has a terminal object and binary products.

7. Show that the category PreOrd of pre-ordered sets and monotone functions is a cartesian
closed category.
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Question 1

(a) Fori = 1,2 we have 7; o ((91,92) o f) = (mi 0 {g1,g2)) o f =gio f =mo{gi0 f,gz0 f)and
hence by the uniqueness part of the universal property for the product Z; X Z,, it is the case

that (g1,92) o f ={(g1° f,g20 f).

(b) (i X f2) ©{g1,92) = (fi © 71, f2 © 72) © (g1, g2)
=((f1 o m) 0 (g1, 92), (f2 0 m2) ©(g1,92)) (by part (a))
= (fio (1 0(g1.92)), f2 © (72 {91, 92)))
=(fio g1 f2092)

() (hi X h) o (ki X kz) = (hy X hy) o (ky o my, k2 0 72)
= (hy o (ki om),hy o (kzom)) (by part (b))
= ((hy o k1) o 71, (hz o ky) o 72)
= (h1o k1) X (h2 o k2)
For the second identity, note that idx X idy = (idx o 7y, idy o 7mp) = (71, 72). Since 7; 0 idxxy =
7; = m; o {71, 72), by the uniqueness part of the universal property for the product X X Y, we
have idxxy = (711, m2). Therefore idx X idy = (711, 1) = idx«y.

Question 2 Define

ax,y,z £ (idx X my, m 0 ) axly z £ (m o m, m X idz)
Ax 2 m, A2 (Ox.idx)
px = m px- 2 (idx, (x)
Xy = {72, 1) T)_(,ly £ (o, 1)

Then we have:

axy.z o aylyy % (idx X 1, my 0 m3) 0 (my © 7y, My X idz)

= ((idx X 7r1) o {7y 0 71, 719 X idz), 79 © 7 © {711 © 7T, 73 X idz)) by (1)
= ({my o my, my 0 (m X idy)), my © 72 © (111 © M1, T2 X id2)) by (3)
= ({m o my, mp © 71, 7T2) by (2)

= ({71, 72} © 71, 72) by (1)



and since {7y, 1) = id (see the proof of question 1c), we get axy z © a)_(lyz = (idxxy o 7m1, M) =
id(xxv)xz. Similar tedious calculations using the properties from question 1 give

altoa=1id

AoA l=id
A lold=id
popt=id
p_lop:id
ror '=id

rlor=id

Question 3 Regarding M as a category with a single object, * say, it suffices to show that * i

« 2 ovisa product in M, that is: for all x,y € M, there is a unique z € M with p; - z = x
and p, - z = y. But (x,y) is such a z; and it is unique since if p; - z = x and p; - z = y,then
z=e-z=(p1.p2) - z2=(p1-Z P2 2) = (XY).

Question 4

(a) Recall that the product monoid (M, -pr, epr) X (M, -p1, ep) is (M X M, -, (ep, ep)) where the
binary operation _- _: (M X M) X (M X M) — (M X M) is given by:

(e y) - (" y)=(xmx'\y-my)
Thus for all x,x’, y,y’ € M we have

m((x,y) - (x,y") =m(x-mx",y-my")

2 (xmx’) M (Y -m y')

=x-pm((x"mMmy) my) since -js is associative
=x-pm((ymx) my) since -); is commutative
=(xmy) M my) since - is associative

= m(x,y) -mm(x',y’)
m(em, em) = em "M em
=eym since ey is a unit for -y,

so m is a monoid morphism; and u is one too because u(0 - 0) = u(0) = ey = ey ‘M ey =
u(0) -» u(0).

To see that m and u make M into a monoid object in Mon, just note that diagram (14) commutes
because (Vx,y,z € M) x-p (y-m2) = (x-mYy)-m2, (15) commutes because (Vx € M) epr-px = x
and (16) commutes because (Vx € M) x -y ey = x.

(b) Suppose we are given monoid morphisms m € Mon(M x M, M) and u € Mon(1, M) that make
(14)—(16) commute. Since u is a monoid morphism we have u(0) = ey and therefore from the
commutation of (15) and (16) we deduce that for all x € M

m(ep, x) = x = m(x, en) (20)



Now by definition of the monoid multiplication operation for the product monoid (M, -y, ear) X
(M, - p, epr) we have

(x,em) - (emy) = (x memem my) = (x,y) = (em M x,y mem) = (em, y) - (x, em)

Therefore since m is a monoid homomorphism, we have

m(x, en) -m m(em, y) = m((x, em) - (e, y)) = m(x,y) =

m((emy) - (em, X)) = m(em y) -m m(x, ey)

and hence from (20) we get x - y = m(x,y) = y - x. Therefore (M, -y, epr) is abelian and the
monoid object ((M, -u, ep), m, 1) in Mon coincides with the one from part (a).

Question 5
(a) If M and N are both abelian monoids, then the product operation of the monoid M X N satisfies
forall x,x’ e Mandy,y’ € N
(ry) - (x.y) = (x-x'y-y)
=" xy -y since M and N are abelian
= (x/’y/) ' (x> y)

so that M X N is also abelian. Therefore the universal property of M & MxN 2 NinMon
restricts to give the correct universal property for a product in AbMon.

(b) The functions

i(x) = (x,e)
i(y) = (e, y)

clearly give morphisms M L MxN & N in AbMon. We show that it is a coproduct diagram.

Given any morphisms M L PELNin AbMon, consider the function h : M X N — P defined
by

h(x,y) = (fx) - (9y)
It is a morphism in AbMon(M X N, P) because h(e,e) = (fe)-(ge) =e-e=eand

h((xy) - (', y") = f(x-x")-g(y-y)

=(fx-fx")-(gy-9gy’) since f and g are morphisms
=fx-(fx"-g9y)-gvy associativity
=fx-(gy-fx')-gy since P is abelian
=(fx-gy)-(fx" -g9vy) associativity

= h(x,y) - h(x', ")

Furthermore, since h(ix) = h(x,e) = fx-ge=fx-e= fxand h(jy) = h(e,y) = fe-gy =
e- gy = gy, we have that

N<_N

N2

M



commutes. Finally, h is the unique such morphism, since if i € AbMon(M XN, P) also satisfies
h oi=fandh’ oj=g,then
W(x,y) =h((xe)- (ey) =h'(x.e) W (ey)=h'(ix)-h'(jy) = fx-gy = h(x,y).

so that ' = h.

Question 6
o Terminal object is (N, (1)*,|_|), where for all n € N, n* £ n+ 1 and |n| £ n, which trivially
have the required property (17). For each object (X, (_)*,|_|) € Set®, the unique morphism
X 1D = N ()7, 1) is given by |-|.

« Binary product of (X, (1)*,|-]) and (Y, ()", |]) is (X, ()%, |-)) &= (P, ()% 1)) = (Y, ()% 1),
where

P={(xy) eXxY||x]=lyl}
(xy)* = (" y")
e y)| = [x|(=lyl)
m(x,y) = x

m(xy) =y

Given morphisms (X, (0)%, ) i Z, ()% 1) g, (Y, ()% 1), the unique morphism (f, g) :
(Z, ()% 1) = (P, ()*,|-]) with 7y o (f,g) = f and 7, o (f, g) = g maps each z € Z to

(fropz=(fzg2)

(which does lie in P because |f z| = |z| = |g z]).

Question 7 I do not give the proof that a one-element poset is terminal in PreOrd, or that the
binary product of (P, <) and (Q, <) in PreOrd is given by the cartesian product of underlying sets
together with the partial order

(Pl,q1) < (pz,qz) z P1<p2Nq1 Zq2 for all p1.p2 € P and q1,92 € Q

Let us show that the exponential of (P, <) and (Q, <) is given by:

P-Q2{feQ”|(Vpp)p<p €P = fp<fp €Q} (21)
f<feP-Q2(VpeP)fp<f'p (22)
app(f.p) = fp (23)

Two things need checking (that we don’t do here):
« (22) does define a partial order on the set (21), and

« (23) does give a monotone function.



So we have a morphism app : (P - Q, <) X (P, <) — (Q, <) in PreOrd and we need to see that it
has the universal property of the exponential of (P, <) and (Q, <).

Given f : (R, <) X (P,<) — (Q, <) in PreOrd, since f € Set(R X P, Q) we have the function
cur f € Set(R, QF), where as usual, cur fr p = f(r, p) for all r € R and p € P. Note that

p<p eP=(rp) <(r,p')EeRXP
=cur frp=f(rp) < f(r,p)=curfrp’ since f is monotone

so that for each r € R, we have cur fr € P — Q. In other words, cur f € Set(R, P — Q). Furthermore
cur f is a monotone function, because

r<r'eR= (VpeP)(r,p) <(r',p) eRXP
= (VpeP)curfrp=f(r,p) < f(r',p)=curfr'p since f is monotone

Note that app o(cur f X idp) = f € PreOrd((R, <) X (P, <), (Q, <)), because for all (r,p) € R X P

(app o(cur f xidp))(r, p) = app((cur f X idp)(r, p)) = app(cur fr.p) = cur frp = f(r,p)

Finally, cur f is the only element g € PreOrd((R, <), (P — Q, <)) satisfying app o(gxidp) = f, since
the latter equation implies that gr p = (app o(gxidp))(r,p) = f(r,p) = cur f r p for all (r, p) € RXP.
Hence for any r € R, gr and cur f r are equal functions from P to Q; and therefore g = cur f.



