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1. Let C be a category with binary products.

(a) For morphisms 𝑓 ∈ C(𝑋,𝑌 ), 𝑔1 ∈ C(𝑌, 𝑍1) and 𝑔2 ∈ C(𝑌, 𝑍2), show that

⟨𝑔1, 𝑔2⟩ ◦ 𝑓 = ⟨𝑔1 ◦ 𝑓 , 𝑔2 ◦ 𝑓 ⟩ ∈ C(𝑋,𝑍1 × 𝑍2) (1)

(b) For morphisms 𝑓1 ∈ C(𝑋1, 𝑌1) and 𝑓2 ∈ C(𝑋2, 𝑌2), define

𝑓1 × 𝑓2 ≜ ⟨𝑓1 ◦ 𝜋1, 𝑓2 ◦ 𝜋2⟩ ∈ C(𝑋1 × 𝑋2, 𝑌1 × 𝑌2) (2)

For any 𝑔1 ∈ C(𝑍,𝑋1) and 𝑔2 ∈ C(𝑍,𝑋2), show that

(𝑓1 × 𝑓2) ◦ ⟨𝑔1, 𝑔2⟩ = ⟨𝑓1 ◦ 𝑔1, 𝑓2 ◦ 𝑔2⟩ ∈ C(𝑍,𝑌1 × 𝑌2) (3)

(c) Show that the operation 𝑓1, 𝑓2 ↦→ 𝑓1 × 𝑓2 defined in part (1b) satisfies

(ℎ1 × ℎ2) ◦ (𝑘1 × 𝑘2) = (ℎ1 ◦ 𝑘1) × (ℎ2 ◦ 𝑘2) (4)
id𝑋 × id𝑌 = id𝑋×𝑌 (5)

2. LetC be a categorywith binary products × and a terminal object 1. Given objects𝑋,𝑌, 𝑍 ∈ C,
construct isomorphisms

𝛼𝑋,𝑌,𝑍 : 𝑋 × (𝑌 × 𝑍 ) � (𝑋 × 𝑌 ) × 𝑍 (6)
_𝑋 : 1 × 𝑋 � 𝑋 (7)
𝜌𝑋 : 𝑋 × 1 � 𝑋 (8)

𝜏𝑋,𝑌 : 𝑋 × 𝑌 � 𝑌 × 𝑋 (9)

3. A pairing for a monoid (𝑀, ·, 𝑒) consists of elements 𝑝1, 𝑝2 ∈ 𝑀 and a binary operation ⟨ , ⟩ :
𝑀 ×𝑀 → 𝑀 satisfying for all 𝑥,𝑦, 𝑧 ∈ 𝑀

𝑝1 · ⟨𝑥,𝑦⟩ = 𝑥 (10)
𝑝2 · ⟨𝑥,𝑦⟩ = 𝑦 (11)
⟨𝑝1, 𝑝2⟩ = 𝑒 (12)
⟨𝑥,𝑦⟩ · 𝑧 = ⟨𝑥 · 𝑧,𝑦 · 𝑧⟩ (13)

Given such a pairing, show that the monoid, when regarded as a one-object category, has
binary products.

4. Amonoid (𝑀, ·𝑀 , 𝑒𝑀 ) is said to be abelian if its multiplication is commutative: (∀𝑥,𝑦 ∈ 𝑀) 𝑥 ·𝑀
𝑦 = 𝑦 ·𝑀 𝑥 .



(a) If (𝑀, ·𝑀 , 𝑒𝑀 ) is an abelian monoid, show that the functions 𝑚 ∈ Set(𝑀×, 𝑀,𝑀) and
𝑢 ∈ Set(1, 𝑀) defined by

𝑚(𝑥,𝑦) = 𝑥 ·𝑀 𝑦 (all 𝑥,𝑦 ∈ 𝑀)
𝑢 (0) = 𝑒𝑀

determine morphisms in the catgory Mon of monoids, 𝑚 ∈ Mon(𝑀 × 𝑀,𝑀) and 𝑢 ∈
Mon(1, 𝑀) (where as usual we just write 𝑀 for the monoid (𝑀, ·𝑀 , 𝑒𝑀 ) and 1 for the
terminal monoid (1, ·1, 𝑒1) with 1 a one-element set, {0} say, 0 ·1 0 = 0 and 𝑒1 = 0).
Show futher that 𝑚 and 𝑢 make the monoid 𝑀 into a “monoid object in the category
Mon”, in the sense that the following diagrams inMon commute:

(𝑀 ×𝑀) ×𝑀
⟨𝜋1◦𝜋1,⟨𝜋2◦𝜋1,𝜋2 ⟩⟩ �

��

𝑚×id // 𝑀 ×𝑀 𝑚 // 𝑀

id�

��
𝑀 × (𝑀 ×𝑀)

id×𝑚
// 𝑀 ×𝑀

𝑚
// 𝑀

(associativity) (14)

1 ×𝑀
𝜋2 �
��

𝑢×id // 𝑀 ×𝑀 𝑚 // 𝑀

� id
��

𝑀
id

// 𝑀

(left unit) (15)

𝑀 × 1
𝜋1 �
��

id×𝑢 // 𝑀 ×𝑀 𝑚 // 𝑀

� id
��

𝑀
id

// 𝑀

(right unit) (16)

(b) Show that every monoid object in the categoryMon (in the above sense) arises as in (4a).
[Hint: if necessary, search the internet for “Eckmann-Hilton argument”.]

5. Let AbMon be the category whose objects are abelian monoids (question 4) and whose mor-
phisms, identity morphisms and composition are as inMon.

(a) Show that the product inMon of two abelian monoids gives their product in AbMon.
(b) Given𝑀, 𝑁 ∈ AbMon define morphisms 𝑖 ∈ AbMon(𝑀,𝑀 ×𝑁 ) and 𝑗 ∈ AbMon(𝑁,𝑀 ×

𝑁 ) that make𝑀 × 𝑁 into a coproduct in AbMon.

6. The category Set𝜔 of ‘sets evolving through discrete time’ is defined as follows:

• Objects are triples (𝑋, ( )+, | |), where 𝑋 ∈ Set, ( )+ ∈ Set(𝑋,𝑋 ) and | | ∈ Set(𝑋,N)
satisfy for all 𝑥 ∈ 𝑋

|𝑥+ | = |𝑥 | + 1 (17)
[Think of |𝑥 | as the instant of time at which 𝑥 exists and 𝑥 ↦→ 𝑥+ as saying how an
element evolves from one instant to the next.]

• Morphisms 𝑓 : (𝑋, ( )+, | |) → (𝑌, ( )+, | |) are functions 𝑓 ∈ Set(𝑋,𝑌 ) satisfying for all
𝑥 ∈ 𝑋

(𝑓 𝑥)+ = 𝑓 (𝑥+) (18)
|𝑓 𝑥 | = |𝑥 | (19)



• Composition and identities are as in the category Set.

Show that Set𝜔 has a terminal object and binary products.

7. Show that the category PreOrd of pre-ordered sets and monotone functions is a cartesian
closed category.
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Question 1

(a) For 𝑖 = 1, 2 we have 𝜋𝑖 ◦ (⟨𝑔1, 𝑔2⟩ ◦ 𝑓 ) = (𝜋𝑖 ◦ ⟨𝑔1, 𝑔2⟩) ◦ 𝑓 = 𝑔𝑖 ◦ 𝑓 = 𝜋𝑖 ◦ ⟨𝑔1 ◦ 𝑓 , 𝑔2 ◦ 𝑓 ⟩ and
hence by the uniqueness part of the universal property for the product 𝑍1 × 𝑍2, it is the case
that ⟨𝑔1, 𝑔2⟩ ◦ 𝑓 = ⟨𝑔1 ◦ 𝑓 , 𝑔2 ◦ 𝑓 ⟩.

(b) (𝑓1 × 𝑓2) ◦ ⟨𝑔1, 𝑔2⟩ ≜ ⟨𝑓1 ◦ 𝜋1, 𝑓2 ◦ 𝜋2⟩ ◦ ⟨𝑔1, 𝑔2⟩
= ⟨(𝑓1 ◦ 𝜋1) ◦ ⟨𝑔1, 𝑔2⟩, (𝑓2 ◦ 𝜋2) ◦ ⟨𝑔1, 𝑔2⟩⟩ (by part (a))
= ⟨𝑓1 ◦ (𝜋1 ◦ ⟨𝑔1, 𝑔2⟩), 𝑓2 ◦ (𝜋2 ◦ ⟨𝑔1, 𝑔2⟩)⟩
= ⟨𝑓1 ◦ 𝑔1, 𝑓2 ◦ 𝑔2⟩

(c) (ℎ1 × ℎ2) ◦ (𝑘1 × 𝑘2) ≜ (ℎ1 × ℎ2) ◦ ⟨𝑘1 ◦ 𝜋1, 𝑘2 ◦ 𝜋2⟩
= ⟨ℎ1 ◦ (𝑘1 ◦ 𝜋1), ℎ2 ◦ (𝑘2 ◦ 𝜋2)⟩ (by part (b))
= ⟨(ℎ1 ◦ 𝑘1) ◦ 𝜋1, (ℎ2 ◦ 𝑘2) ◦ 𝜋2⟩
≜ (ℎ1 ◦ 𝑘1) × (ℎ2 ◦ 𝑘2)

For the second identity, note that id𝑋 × id𝑌 ≜ ⟨id𝑋 ◦𝜋1, id𝑌 ◦𝜋2⟩ = ⟨𝜋1, 𝜋2⟩. Since 𝜋𝑖 ◦ id𝑋×𝑌 =

𝜋𝑖 = 𝜋𝑖 ◦ ⟨𝜋1, 𝜋2⟩, by the uniqueness part of the universal property for the product 𝑋 × 𝑌 , we
have id𝑋×𝑌 = ⟨𝜋1, 𝜋2⟩. Therefore id𝑋 × id𝑌 = ⟨𝜋1, 𝜋2⟩ = id𝑋×𝑌 .

Question 2 Define

𝛼𝑋,𝑌,𝑍 ≜ ⟨id𝑋 × 𝜋1, 𝜋2 ◦ 𝜋2⟩ 𝛼−1𝑋,𝑌,𝑍 ≜ ⟨𝜋1 ◦ 𝜋1, 𝜋2 × id𝑍 ⟩
_𝑋 ≜ 𝜋2 _−1𝑋 ≜ ⟨⟨⟩𝑋 , id𝑋 ⟩
𝜌𝑋 ≜ 𝜋1 𝜌−1𝑋 ≜ ⟨id𝑋 , ⟨⟩𝑋 ⟩

𝜏𝑋,𝑌 ≜ ⟨𝜋2, 𝜋1⟩ 𝜏−1𝑋,𝑌 ≜ ⟨𝜋2, 𝜋1⟩

Then we have:

𝛼𝑋,𝑌,𝑍 ◦ 𝛼−1𝑋,𝑌,𝑍 ≜ ⟨id𝑋 × 𝜋1, 𝜋2 ◦ 𝜋2⟩ ◦ ⟨𝜋1 ◦ 𝜋1, 𝜋2 × id𝑍 ⟩
= ⟨(id𝑋 × 𝜋1) ◦ ⟨𝜋1 ◦ 𝜋1, 𝜋2 × id𝑍 ⟩, 𝜋2 ◦ 𝜋2 ◦ ⟨𝜋1 ◦ 𝜋1, 𝜋2 × id𝑍 ⟩⟩ by (1)
= ⟨⟨𝜋1 ◦ 𝜋1, 𝜋1 ◦ (𝜋2 × id𝑍 )⟩, 𝜋2 ◦ 𝜋2 ◦ ⟨𝜋1 ◦ 𝜋1, 𝜋2 × id𝑍 ⟩⟩ by (3)
= ⟨⟨𝜋1 ◦ 𝜋1, 𝜋2 ◦ 𝜋1⟩, 𝜋2⟩ by (2)
= ⟨⟨𝜋1, 𝜋2⟩ ◦ 𝜋1, 𝜋2⟩ by (1)



and since ⟨𝜋1, 𝜋2⟩ = id (see the proof of question 1c), we get 𝛼𝑋,𝑌,𝑍 ◦ 𝛼−1𝑋,𝑌,𝑍
= ⟨id𝑋×𝑌 ◦ 𝜋1, 𝜋2⟩ =

id(𝑋×𝑌 )×𝑍 . Similar tedious calculations using the properties from question 1 give

𝛼−1 ◦ 𝛼 = id
_ ◦ _−1 = id
_−1 ◦ _ = id
𝜌 ◦ 𝜌−1 = id
𝜌−1 ◦ 𝜌 = id
𝜏 ◦ 𝜏−1 = id
𝜏−1 ◦ 𝜏 = id

Question 3 Regarding 𝑀 as a category with a single object, ∗ say, it suffices to show that ∗
𝑝1←−

∗
𝑝2−→ ∗ is a product in 𝑀 , that is: for all 𝑥,𝑦 ∈ 𝑀 , there is a unique 𝑧 ∈ 𝑀 with 𝑝1 · 𝑧 = 𝑥

and 𝑝2 · 𝑧 = 𝑦. But ⟨𝑥,𝑦⟩ is such a 𝑧; and it is unique since if 𝑝1 · 𝑧 = 𝑥 and 𝑝2 · 𝑧 = 𝑦,then
𝑧 = 𝑒 · 𝑧 = ⟨𝑝1, 𝑝2⟩ · 𝑧 = ⟨𝑝1 · 𝑧, 𝑝2 · 𝑧⟩ = ⟨𝑥,𝑦⟩.

Question 4

(a) Recall that the product monoid (𝑀, ·𝑀 , 𝑒𝑀 ) × (𝑀, ·𝑀 , 𝑒𝑀 ) is (𝑀 × 𝑀, ·, (𝑒𝑀 , 𝑒𝑀 )) where the
binary operation · : (𝑀 ×𝑀) × (𝑀 ×𝑀) → (𝑀 ×𝑀) is given by:

(𝑥,𝑦) · (𝑥 ′, 𝑦′) = (𝑥 ·𝑀 𝑥 ′, 𝑦 ·𝑀 𝑦′)

Thus for all 𝑥, 𝑥 ′, 𝑦,𝑦′ ∈ 𝑀 we have

𝑚((𝑥,𝑦) · (𝑥 ′, 𝑦′)) =𝑚(𝑥 ·𝑀 𝑥 ′, 𝑦 ·𝑀 𝑦′)
≜ (𝑥 ·𝑀 𝑥 ′) ·𝑀 (𝑦 ·𝑀 𝑦′)
= 𝑥 ·𝑀 ((𝑥 ′ ·𝑀 𝑦) ·𝑀 𝑦′) since ·𝑀 is associative
= 𝑥 ·𝑀 ((𝑦 ·𝑀 𝑥 ′) ·𝑀 𝑦′) since ·𝑀 is commutative
= (𝑥 ·𝑀 𝑦) ·𝑀 (𝑥 ′ ·𝑀 𝑦′) since ·𝑀 is associative
≜ 𝑚(𝑥,𝑦) ·𝑀 𝑚(𝑥 ′, 𝑦′)

𝑚(𝑒𝑀 , 𝑒𝑀 ) ≜ 𝑒𝑀 ·𝑀 𝑒𝑀

= 𝑒𝑀 since 𝑒𝑀 is a unit for ·𝑀

so 𝑚 is a monoid morphism; and 𝑢 is one too because 𝑢 (0 · 0) = 𝑢 (0) = 𝑒𝑀 = 𝑒𝑀 ·𝑀 𝑒𝑀 =

𝑢 (0) ·𝑀 𝑢 (0).
To see that𝑚 and𝑢 make𝑀 into amonoid object inMon, just note that diagram (14) commutes
because (∀𝑥,𝑦, 𝑧 ∈ 𝑀) 𝑥 ·𝑀 (𝑦 ·𝑀 𝑧) = (𝑥 ·𝑀𝑦) ·𝑀 𝑧, (15) commutes because (∀𝑥 ∈ 𝑀) 𝑒𝑀 ·𝑀𝑥 = 𝑥

and (16) commutes because (∀𝑥 ∈ 𝑀) 𝑥 ·𝑀 𝑒𝑀 = 𝑥 .

(b) Suppose we are given monoid morphisms𝑚 ∈ Mon(𝑀 ×𝑀,𝑀) and𝑢 ∈ Mon(1, 𝑀) that make
(14)–(16) commute. Since 𝑢 is a monoid morphism we have 𝑢 (0) = 𝑒𝑀 and therefore from the
commutation of (15) and (16) we deduce that for all 𝑥 ∈ 𝑀

𝑚(𝑒𝑀 , 𝑥) = 𝑥 =𝑚(𝑥, 𝑒𝑀 ) (20)



Now by definition of themonoidmultiplication operation for the product monoid (𝑀, ·𝑀 , 𝑒𝑀 )×
(𝑀, ·𝑀 , 𝑒𝑀 ) we have

(𝑥, 𝑒𝑀 ) · (𝑒𝑀 , 𝑦) = (𝑥 ·𝑀 𝑒𝑀 , 𝑒𝑀 ·𝑀 𝑦) = (𝑥,𝑦) = (𝑒𝑀 ·𝑀 𝑥,𝑦 ·𝑀 𝑒𝑀 ) = (𝑒𝑀 , 𝑦) · (𝑥, 𝑒𝑀 )

Therefore since𝑚 is a monoid homomorphism, we have

𝑚(𝑥, 𝑒𝑀 ) ·𝑀 𝑚(𝑒𝑀 , 𝑦) =𝑚((𝑥, 𝑒𝑀 ) · (𝑒𝑀 , 𝑦)) =𝑚(𝑥,𝑦) =
𝑚((𝑒𝑀 , 𝑦) · (𝑒𝑀 , 𝑥)) =𝑚(𝑒𝑀 , 𝑦) ·𝑀 𝑚(𝑥, 𝑒𝑀 )

and hence from (20) we get 𝑥 · 𝑦 = 𝑚(𝑥,𝑦) = 𝑦 · 𝑥 . Therefore (𝑀, ·𝑀 , 𝑒𝑀 ) is abelian and the
monoid object ((𝑀, ·𝑀 , 𝑒𝑀 ),𝑚,𝑢) inMon coincides with the one from part (a).

Question 5

(a) If𝑀 and 𝑁 are both abelian monoids, then the product operation of the monoid𝑀×𝑁 satisfies
for all 𝑥, 𝑥 ′ ∈ 𝑀 and 𝑦,𝑦′ ∈ 𝑁

(𝑥,𝑦) · (𝑥 ′, 𝑦′) ≜ (𝑥 · 𝑥 ′, 𝑦 · 𝑦′)
= (𝑥 ′ · 𝑥,𝑦′ · 𝑦) since𝑀 and 𝑁 are abelian
≜ (𝑥 ′, 𝑦′) · (𝑥,𝑦)

so that𝑀 ×𝑁 is also abelian. Therefore the universal property of𝑀 𝜋1←−− 𝑀 ×𝑁 𝜋2−−→ 𝑁 inMon
restricts to give the correct universal property for a product in AbMon.

(b) The functions

𝑖 (𝑥) ≜ (𝑥, 𝑒)
𝑗 (𝑦) ≜ (𝑒,𝑦)

clearly give morphisms𝑀 𝑖−→ 𝑀 ×𝑁
𝑗
←− 𝑁 in AbMon. We show that it is a coproduct diagram.

Given any morphisms𝑀
𝑓
−→ 𝑃

𝑔
←− 𝑁 in AbMon, consider the function ℎ : 𝑀 × 𝑁 → 𝑃 defined

by
ℎ(𝑥,𝑦) ≜ (𝑓 𝑥) · (𝑔𝑦)

It is a morphism in AbMon(𝑀 × 𝑁, 𝑃) because ℎ(𝑒, 𝑒) = (𝑓 𝑒) · (𝑔 𝑒) = 𝑒 · 𝑒 = 𝑒 and

ℎ((𝑥,𝑦) · (𝑥 ′, 𝑦′)) ≜ 𝑓 (𝑥 · 𝑥 ′) · 𝑔(𝑦 · 𝑦′)
= (𝑓 𝑥 · 𝑓 𝑥 ′) · (𝑔𝑦 · 𝑔𝑦′) since 𝑓 and 𝑔 are morphisms
= 𝑓 𝑥 · (𝑓 𝑥 ′ · 𝑔𝑦) · 𝑔𝑦′ associativity
= 𝑓 𝑥 · (𝑔𝑦 · 𝑓 𝑥 ′) · 𝑔𝑦′ since 𝑃 is abelian
= (𝑓 𝑥 · 𝑔𝑦) · (𝑓 𝑥 ′ · 𝑔𝑦′) associativity
≜ ℎ(𝑥,𝑦) · ℎ(𝑥 ′, 𝑦′)

Furthermore, since ℎ(𝑖 𝑥) = ℎ(𝑥, 𝑒) = 𝑓 𝑥 · 𝑔 𝑒 = 𝑓 𝑥 · 𝑒 = 𝑓 𝑥 and ℎ( 𝑗 𝑦) = ℎ(𝑒,𝑦) = 𝑓 𝑒 · 𝑔𝑦 =

𝑒 · 𝑔𝑦 = 𝑔𝑦, we have that
𝑀

𝑖 //

𝑓 ##

𝑀 × 𝑁
ℎ
��

𝑁
𝑗oo

𝑔
{{

𝑃



commutes. Finally,ℎ is the unique suchmorphism, since ifℎ′ ∈ AbMon(𝑀×𝑁, 𝑃) also satisfies
ℎ′ ◦ 𝑖 = 𝑓 and ℎ′ ◦ 𝑗 = 𝑔, then

ℎ′(𝑥,𝑦) = ℎ′((𝑥, 𝑒) · (𝑒,𝑦)) = ℎ′(𝑥, 𝑒) · ℎ′(𝑒,𝑦) = ℎ′(𝑖 𝑥) · ℎ′( 𝑗 𝑦) = 𝑓 𝑥 · 𝑔𝑦 ≜ ℎ(𝑥,𝑦).

so that ℎ′ = ℎ.

Question 6

• Terminal object is (N, ( )+, | |), where for all 𝑛 ∈ N, 𝑛+ ≜ 𝑛 + 1 and |𝑛 | ≜ 𝑛, which trivially
have the required property (17). For each object (𝑋, ( )+, | |) ∈ Set𝜔 , the unique morphism
(𝑋, ( )+, | |) → (N, ( )+, | |) is given by | |.

• Binary product of (𝑋, ( )+, | |) and (𝑌, ( )+, | |) is (𝑋, ( )+, | |) 𝜋1←−− (𝑃, ( )+, | |) 𝜋2−−→ (𝑌, ( )+, | |),
where

𝑃 ≜ {(𝑥,𝑦) ∈ 𝑋 × 𝑌 | |𝑥 | = |𝑦 |}
(𝑥,𝑦)+ ≜ (𝑥+, 𝑦+)
| (𝑥,𝑦) | ≜ |𝑥 | ( = |𝑦 |)
𝜋1(𝑥,𝑦) ≜ 𝑥

𝜋2(𝑥,𝑦) ≜ 𝑦

Given morphisms (𝑋, ( )+, | |)
𝑓
←− (𝑍, ( )+, | |)

𝑔
−→ (𝑌, ( )+, | |), the unique morphism ⟨𝑓 , 𝑔⟩ :

(𝑍, ( )+, | |) → (𝑃, ( )+, | |) with 𝜋1 ◦ ⟨𝑓 , 𝑔⟩ = 𝑓 and 𝜋2 ◦ ⟨𝑓 , 𝑔⟩ = 𝑔 maps each 𝑧 ∈ 𝑍 to

⟨𝑓 , 𝑔⟩ 𝑧 ≜ (𝑓 𝑧, 𝑔 𝑧)

(which does lie in 𝑃 because |𝑓 𝑧 | = |𝑧 | = |𝑔 𝑧 |).

Question 7 I do not give the proof that a one-element poset is terminal in PreOrd, or that the
binary product of (𝑃, ≤) and (𝑄, ≤) in PreOrd is given by the cartesian product of underlying sets
together with the partial order

(𝑝1, 𝑞1) ≤ (𝑝2, 𝑞2) ≜ 𝑝1 ≤ 𝑝2 ∧ 𝑞1 ≤ 𝑞2 for all 𝑝1, 𝑝2 ∈ 𝑃 and 𝑞1, 𝑞2 ∈ 𝑄 .

Let us show that the exponential of (𝑃, ≤) and (𝑄, ≤) is given by:

𝑃 � 𝑄 ≜ {𝑓 ∈ 𝑄𝑃 | (∀𝑝, 𝑝′) 𝑝 ≤ 𝑝′ ∈ 𝑃 ⇒ 𝑓 𝑝 ≤ 𝑓 𝑝′ ∈ 𝑄} (21)
𝑓 ≤ 𝑓 ′ ∈ 𝑃 � 𝑄 ≜ (∀𝑝 ∈ 𝑃) 𝑓 𝑝 ≤ 𝑓 ′𝑝 (22)

app(𝑓 , 𝑝) ≜ 𝑓 𝑝 (23)

Two things need checking (that we don’t do here):

• (22) does define a partial order on the set (21), and

• (23) does give a monotone function.



So we have a morphism app : (𝑃 � 𝑄, ≤) × (𝑃, ≤) → (𝑄, ≤) in PreOrd and we need to see that it
has the universal property of the exponential of (𝑃, ≤) and (𝑄, ≤).

Given 𝑓 : (𝑅, ≤) × (𝑃, ≤) → (𝑄, ≤) in PreOrd, since 𝑓 ∈ Set(𝑅 × 𝑃,𝑄) we have the function
cur 𝑓 ∈ Set(𝑅,𝑄𝑃 ), where as usual, cur 𝑓 𝑟 𝑝 = 𝑓 (𝑟, 𝑝) for all 𝑟 ∈ 𝑅 and 𝑝 ∈ 𝑃 . Note that

𝑝 ≤ 𝑝′ ∈ 𝑃 ⇒ (𝑟, 𝑝) ≤ (𝑟, 𝑝′) ∈ 𝑅 × 𝑃
⇒ cur 𝑓 𝑟 𝑝 = 𝑓 (𝑟, 𝑝) ≤ 𝑓 (𝑟, 𝑝′) = cur 𝑓 𝑟 𝑝′ since 𝑓 is monotone

so that for each 𝑟 ∈ 𝑅, we have cur 𝑓 𝑟 ∈ 𝑃 � 𝑄 . In other words, cur 𝑓 ∈ Set(𝑅, 𝑃 � 𝑄). Furthermore
cur 𝑓 is a monotone function, because

𝑟 ≤ 𝑟 ′ ∈ 𝑅 ⇒ (∀𝑝 ∈ 𝑃) (𝑟, 𝑝) ≤ (𝑟 ′, 𝑝) ∈ 𝑅 × 𝑃
⇒ (∀𝑝 ∈ 𝑃) cur 𝑓 𝑟 𝑝 = 𝑓 (𝑟, 𝑝) ≤ 𝑓 (𝑟 ′, 𝑝) = cur 𝑓 𝑟 ′𝑝 since 𝑓 is monotone

Note that app ◦(cur 𝑓 × id𝑃 ) = 𝑓 ∈ PreOrd((𝑅, ≤) × (𝑃, ≤), (𝑄, ≤)), because for all (𝑟, 𝑝) ∈ 𝑅 × 𝑃

(app ◦(cur 𝑓 × id𝑃 )) (𝑟, 𝑝) = app((cur 𝑓 × id𝑃 ) (𝑟, 𝑝)) = app(cur 𝑓 𝑟, 𝑝) = cur 𝑓 𝑟 𝑝 = 𝑓 (𝑟, 𝑝)

Finally, cur 𝑓 is the only element 𝑔 ∈ PreOrd((𝑅, ≤), (𝑃 � 𝑄, ≤)) satisfying app ◦(𝑔× id𝑃 ) = 𝑓 , since
the latter equation implies that𝑔 𝑟 𝑝 = (app ◦(𝑔×id𝑃 )) (𝑟, 𝑝) = 𝑓 (𝑟, 𝑝) = cur 𝑓 𝑟 𝑝 for all (𝑟, 𝑝) ∈ 𝑅×𝑃 .
Hence for any 𝑟 ∈ 𝑅, 𝑔 𝑟 and cur 𝑓 𝑟 are equal functions from 𝑃 to 𝑄 ; and therefore 𝑔 = cur 𝑓 .


