University of Cambridge 2022/23 Part II / Part III / MPhil ACS
 Category Theory
 Exercise Sheet 3
 by Andrew Pitts

1. Show that for any objects X and Y in a cartesian closed category C , there are functions

$$
\begin{aligned}
f \in \mathrm{C}(X, Y) & \mapsto\ulcorner f\urcorner \in \mathrm{C}\left(1, Y^{X}\right) \\
g \in \mathrm{C}\left(1, Y^{X}\right) & \mapsto \bar{g} \in \mathrm{C}(X, Y)
\end{aligned}
$$

that give a bijection between the set $\mathbf{C}(X, Y)$ of \mathbf{C}-morphisms from X to Y and the set $\mathbf{C}\left(1, Y^{X}\right)$ of C-morphisms from the terminal object 1 to the exponential Y^{X}. [Hint: use the isomorphism (7) from Exercise Sheet 2, question 2.]
2. Show that for any objects X and Y in a cartesian closed category C , the morphism app : $Y^{X} \times X \rightarrow Y$ satisfies cur $(\mathrm{app})=\mathrm{id}_{Y^{X}}$. [Hint: recall from equation (4) on Exercise Sheet 2 that $\left.\operatorname{id}_{Y^{X}} \times i d_{X}=i d_{Y^{X} \times X}.\right]$
3. Suppose $f: Y \times X \rightarrow Z$ and $g: W \rightarrow Y$ are morphisms in a cartesian closed category C. Prove that

$$
\begin{equation*}
\operatorname{cur}\left(f \circ\left(g \times \operatorname{id}_{X}\right)\right)=(\operatorname{cur} f) \circ g \in \mathbf{C}\left(W, Z^{X}\right) \tag{1}
\end{equation*}
$$

[Hint: use Exercise Sheet 2, question 1c.]
4. Let \mathbf{C} be a cartesian closed category. For each \mathbf{C}-object X and \mathbf{C}-morphism $f: Y \rightarrow Z$, define

$$
\begin{equation*}
f^{X} \triangleq \operatorname{cur}\left(Y^{X} \times X \xrightarrow{\text { app }} Y \xrightarrow{f} Z\right) \in \mathrm{C}\left(Y^{X}, Z^{X}\right) \tag{2}
\end{equation*}
$$

(a) Prove that $\left(i d_{Y}\right)^{X}=i d_{Y^{X}}$.
(b) Given $f \in \mathrm{C}(Y \times X, Z)$ and $g \in \mathrm{C}(Z, W)$, prove that

$$
\begin{equation*}
\operatorname{cur}(g \circ f)=g^{X} \circ \operatorname{cur} f \in \mathrm{C}\left(Y, W^{X}\right) \tag{3}
\end{equation*}
$$

(c) Deduce that if $u \in \mathrm{C}(Y, Z)$ and $v \in \mathrm{C}(Z, W)$, then $(v \circ u)^{X}=v^{X} \circ u^{X} \in \mathrm{C}\left(Y^{X}, W^{X}\right)$.
[Hint: for part (4a) use question 2; for part (4b) use Exercise Sheet 2, question 1c.]
5. Let \mathbf{C} be a cartesian closed category. For each \mathbf{C}-object X and \mathbf{C}-morphism $f: Y \rightarrow Z$, define

$$
\begin{equation*}
X^{f} \triangleq \operatorname{cur}\left(X^{Z} \times Y \xrightarrow{\mathrm{id} \times f} X^{Z} \times Z \xrightarrow{\text { app }} X\right) \in \mathrm{C}\left(X^{Z}, X^{Y}\right) \tag{4}
\end{equation*}
$$

(a) Prove that $X^{\mathrm{id}_{Y}}=\mathrm{id}_{X^{Y}}$.
(b) Given $g \in \mathrm{C}(W, X)$ and $f \in \mathrm{C}(Y \times X, Z)$, prove that

$$
\begin{equation*}
\operatorname{cur}\left(f \circ\left(\operatorname{id}_{Y} \times g\right)\right)=Z^{g} \circ \operatorname{cur} f \in \mathbf{C}\left(Y, Z^{W}\right) \tag{5}
\end{equation*}
$$

(c) Deduce that if $u \in \mathrm{C}(Y, Z)$ and $v \in \mathrm{C}(Z, W)$, then $X^{(v o u)}=X^{u} \circ X^{v} \in \mathrm{C}\left(X^{W}, X^{Y}\right)$.
[Hint: for part (5a) use question 2; for part (5b) use Exercise Sheet 2, question 1c.]
6. Let C be a cartesian closed category in which every pair of objects X and Y possesses a binary coproduct $X \xrightarrow{\operatorname{inl}_{X, Y}} X+Y \stackrel{\operatorname{inr}_{X, Y}}{\longleftrightarrow} Y$. For all objects $X, Y, Z \in \mathrm{C}$ construct an isomorphism $(Y+Z) \times X \cong(Y \times X)+(Z \times X)$. [Hint: you may find it helpful to use some of the properties from question 4.]
7. Using the natural deduction rules for Intuitionistic Propositional Logic (given in Lecture 6), give proofs of the following judgements. In each case write down a corresponding typing judgement of the Simply Typed Lambda Calculus.
(a) $\diamond, \psi \vdash(\varphi \Rightarrow \psi) \Rightarrow \psi$
(b) $\diamond, \varphi \vdash(\varphi \Rightarrow \psi) \Rightarrow \psi$
(c) $\diamond,((\varphi \Rightarrow \psi) \Rightarrow \psi) \Rightarrow \psi \vdash \varphi \Rightarrow \psi$
8. (a) Given simple types A, B, C, give terms s and t of the Simply Typed Lambda Calculus that satisfy the following typing and $\beta \eta$-equality judgements:

$$
\begin{align*}
& \diamond, x:(A \times B) \rightarrow C \vdash s: A \rightarrow(B \rightarrow C) \tag{6}\\
& \diamond, y: A \rightarrow(B \rightarrow C) \vdash t:(A \times B) \rightarrow C \tag{7}\\
& \diamond, x:(A \times B) \rightarrow C \vdash t[s / y]={ }_{\beta \eta} x:(A \times B) \rightarrow C \tag{8}\\
& \diamond, y: A \rightarrow(B \rightarrow C) \vdash s[t / x]={ }_{\beta \eta} y: A \rightarrow(B \rightarrow C) \tag{9}
\end{align*}
$$

(b) Explain why question (8a) implies that for any three objects X, Y and Z in a cartesian closed category \mathbf{C}, there are morphisms

$$
\begin{align*}
f: Z^{(X \times Y)} & \rightarrow\left(Z^{Y}\right)^{X} \tag{10}\\
g:\left(Z^{Y}\right)^{X} & \rightarrow Z^{(X \times Y)} \tag{11}
\end{align*}
$$

that give an isomorphism $Z^{(X \times Y)} \cong\left(Z^{Y}\right)^{X}$ in C.
9. Make up and solve a question like question 8 ending with an isomorphism $X^{1} \cong X$ for any object X in a cartesian closed category \mathbf{C} (with terminal object 1).

