University of Cambridge 2022/23 Part II / Part III / MPhil ACS
 Category Theory
 Exercise Sheet 2
 by Andrew Pitts

1. Let C be a category with binary products.
(a) For morphisms $f \in \mathbf{C}(X, Y), g_{1} \in \mathbf{C}\left(Y, Z_{1}\right)$ and $g_{2} \in \mathbf{C}\left(Y, Z_{2}\right)$, show that

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle \circ f=\left\langle g_{1} \circ f, g_{2} \circ f\right\rangle \in \mathrm{C}\left(X, Z_{1} \times Z_{2}\right) \tag{1}
\end{equation*}
$$

(b) For morphisms $f_{1} \in \mathbf{C}\left(X_{1}, Y_{1}\right)$ and $f_{2} \in \mathbf{C}\left(X_{2}, Y_{2}\right)$, define

$$
\begin{equation*}
f_{1} \times f_{2} \triangleq\left\langle f_{1} \circ \pi_{1}, f_{2} \circ \pi_{2}\right\rangle \in \mathbf{C}\left(X_{1} \times X_{2}, Y_{1} \times Y_{2}\right) \tag{2}
\end{equation*}
$$

For any $g_{1} \in \mathbf{C}\left(Z, X_{1}\right)$ and $g_{2} \in \mathbf{C}\left(Z, X_{2}\right)$, show that

$$
\begin{equation*}
\left(f_{1} \times f_{2}\right) \circ\left\langle g_{1}, g_{2}\right\rangle=\left\langle f_{1} \circ g_{1}, f_{2} \circ g_{2}\right\rangle \in \mathbf{C}\left(Z, Y_{1} \times Y_{2}\right) \tag{3}
\end{equation*}
$$

(c) Show that the operation $f_{1}, f_{2} \mapsto f_{1} \times f_{2}$ defined in part (1b) satisfies

$$
\begin{align*}
\left(h_{1} \times h_{2}\right) \circ\left(k_{1} \times k_{2}\right) & =\left(h_{1} \circ k_{1}\right) \times\left(h_{2} \circ k_{2}\right) \tag{4}\\
\operatorname{id}_{X} \times \operatorname{id}_{Y} & =\operatorname{id}_{X \times Y} \tag{5}
\end{align*}
$$

2. Let \mathbf{C} be a category with binary products $\mathrm{X}_{\text {_ }}$ and a terminal object 1 . Given objects $X, Y, Z \in \mathrm{C}$, construct isomorphisms

$$
\begin{align*}
\alpha_{X, Y, Z}: X \times(Y \times Z) & \cong(X \times Y) \times Z \tag{6}\\
\lambda_{X}: 1 \times X & \cong X \tag{7}\\
\rho_{X}: X \times 1 & \cong X \tag{8}\\
\tau_{X, Y}: X \times Y & \cong Y \times X \tag{9}
\end{align*}
$$

3. A pairing for a monoid (M, \cdot, e) consists of elements $p_{1}, p_{2} \in M$ and a binary operation $\langle,,-\rangle$: $M \times M \rightarrow M$ satisfying for all $x, y, z \in M$

$$
\begin{align*}
p_{1} \cdot\langle x, y\rangle & =x \tag{10}\\
p_{2} \cdot\langle x, y\rangle & =y \tag{11}\\
\left\langle p_{1}, p_{2}\right\rangle & =e \tag{12}\\
\langle x, y\rangle \cdot z & =\langle x \cdot z, y \cdot z\rangle \tag{13}
\end{align*}
$$

Given such a pairing, show that the monoid, when regarded as a one-object category, has binary products.
4. A monoid (M, \cdot_{M}, e_{M}) is said to be abelian if its multiplication is commutative: $(\forall x, y \in M) x \cdot M$ $y=y \cdot m$.
(a) If $\left(M, \cdot{ }_{M}, e_{M}\right)$ is an abelian monoid, show that the functions $m \in \operatorname{Set}(M \times, M, M)$ and $u \in \operatorname{Set}(1, M)$ defined by

$$
\begin{aligned}
m(x, y) & =x \cdot{ }_{M} y & (\text { all } x, y \in M) \\
u(0) & =e_{M} &
\end{aligned}
$$

determine morphisms in the catgory Mon of monoids, $m \in \operatorname{Mon}(M \times M, M)$ and $u \in$ $\operatorname{Mon}(1, M)$ (where as usual we just write M for the monoid ($M,{ }_{M}, e_{M}$) and 1 for the terminal monoid ($1, \cdot{ }_{1}, e_{1}$) with 1 a one-element set, $\{0\}$ say, $0 \cdot{ }_{1} 0=0$ and $e_{1}=0$).
Show futher that m and u make the monoid M into a "monoid object in the category Mon", in the sense that the following diagrams in Mon commute:

$$
\begin{align*}
& \begin{aligned}
&(M \times M) \times M \xrightarrow{m \times \text { id }} M \times M \xrightarrow{m} M \\
&\left\langle\pi_{1} \circ \pi_{1},\left\langle\pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle\right\rangle \mid \cong \\
& M \times(M \times M) \xrightarrow[\text { id } \times m]{\longrightarrow} M \times M \xrightarrow[m]{\cong} \xlongequal{\longrightarrow} M
\end{aligned} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{rlr}
M \times 1 \xrightarrow{\text { id } \times u} M \times M \xrightarrow{m} M \\
\pi_{1} \mid \cong & \\
\downarrow & \cong{ }_{\text {id }} & \text { (right unit) } \\
M \xrightarrow[\text { id }]{ } & M
\end{array} \tag{16}
\end{align*}
$$

(b) Show that every monoid object in the category Mon (in the above sense) arises as in (4a). [Hint: if necessary, search the internet for "Eckmann-Hilton argument".]
5. Let AbMon be the category whose objects are abelian monoids (question 4) and whose morphisms, identity morphisms and composition are as in Mon.
(a) Show that the product in Mon of two abelian monoids gives their product in AbMon.
(b) Given $M, N \in \operatorname{AbMon}$ define morphisms $i \in \operatorname{AbMon}(M, M \times N)$ and $j \in \operatorname{AbMon}(N, M \times$ N) that make $M \times N$ into a coproduct in AbMon.
6. The category Set ${ }^{\omega}$ of 'sets evolving through discrete time' is defined as follows:

- Objects are triples $\left(X,()^{+},\left.\right|_{-}\right)$, where $X \in \operatorname{Set},\left({ }_{-}\right)^{+} \in \operatorname{Set}(X, X)$ and $\left.\right|_{-} \mid \in \operatorname{Set}(X, \mathbb{N})$ satisfy for all $x \in X$

$$
\begin{equation*}
\left|x^{+}\right|=|x|+1 \tag{17}
\end{equation*}
$$

[Think of $|x|$ as the instant of time at which x exists and $x \mapsto x^{+}$as saying how an element evolves from one instant to the next.]

- Morphisms $f:\left(X,()^{+},\left.\right|_{-} \mid\right) \rightarrow\left(Y,()^{+},\left.\right|_{-} \mid\right)$are functions $f \in \operatorname{Set}(X, Y)$ satisfying for all $x \in X$

$$
\begin{gather*}
(f x)^{+}=f\left(x^{+}\right) \tag{18}\\
|f x|=|x| \tag{19}
\end{gather*}
$$

- Composition and identities are as in the category Set.

Show that Set ${ }^{\omega}$ has a terminal object and binary products.
7. Show that the category PreOrd of pre-ordered sets and monotone functions is a cartesian closed category.

