
We’ve designed a beautiful search-tree data structure that keeps itself 
roughly balanced. Now, let’s translate this design back into a simple 
binary search tree.
Why?

▪ It’s easier to code a BST than a B-tree
▪ It clarifies the logic we’re applying inside each node
▪ It may give us ideas for other self-balancing designs
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Let’s look at 2-3-4 trees, i.e. #keys ∈ {1,2,3} at each node. Let’s translate as follows:
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A 2-3-4 tree corresponds to a roughly-balanced BST, called a red-black tree.

QUESTION. If a 2-3-4 tree has height ℎ, 
what’s the minimum and maximum depth of 
a node in its corresponding red-black tree?

! In lectures 
I said 2h-1



Let’s translate 2-3-4 tree operations into red-black operations.

insert(𝑘∗,𝑣∗)
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There are lots of cases to work through.
And we still have to deal with the harder “welling up” cases!

𝑘1

𝑘∗

𝑘2



A

B

D E G

I N

S

H
insert 
this

A

B I N

S

D G
H

E

B N

A S

I

E

For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.

D G H



For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.
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RULE: Let new nodes be 
coloured red. If 𝑘∗ 
already has a black 
parent, nothing need be 
done.

CASE 0

𝛼, 𝛽, and 𝛾 are all either empty, 
or subtrees with a black node on top. 
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RULE: If 𝑘∗ has a 
red parent and 
a red aunt, then 
simply flip the 
colours of 𝑘1, 
𝑘2, and 𝑘3.



For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.

CASE 0

CASE 3
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𝑘∗ already has a black 
parent, so there’s 
nothing to do.

RULE: if 𝑘∗ has a 
red parent and a 
black uncle, rotate 
its parent– 
grandparent edge

This “rotation” trick is behind a host of other self-
balancing tree data structures.
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A Void, translated from the original French La Disparition, is 
a 300-page French novel by Georges Perec, entirely without 
using the letter e, following Oulipo constraints.

Oulipo, short for Ouvroir de littérature potentielle, is a loose 
gathering of French-speaking writers and mathematicians 
who seek to create works using constrained writing 
techniques.



Can we characterize valid red-black trees, without reference to 2-3-4 trees?
Why?

▪ To debug our insert/delete code, it’s useful to have a formal test “is this a valid red-black tree”?

▪ A perfectly satisfactory test is “does it translate to a valid 2-3-4 tree?”

▪ Let’s be Oulipo coders, and come up with a characterization that doesn’t mention 2-3-4 trees.

A red-black tree is a binary search tree that 
satisfies the following properties:

1. Every node is either black or red

2. The root is black

3. A red node’s children are black

4. All paths from the root to the bottom of the 
tree have the same number of black nodes

5. All nodes have 2 children, apart from the 
leaves, which are keyless childless black nodes
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We could then analyse all our cases for insert / 
delete and prove that they maintain these 
properties. (If we had no taste.)
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A correctness proof 
for bfs-all
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TODO: Please review Huang’s code and proof before the final lecture.
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