Adam Smith (1723 – 1790), an economist and philosopher of the Scottish Enlightenment.

He argued that if individuals act greedily in their own self-interest then the outcome will be beneficial for society.

“[The individual who acts for his own gain] is led by an invisible hand to promote an end which was no part of his intention.”
Several different university societies have all requested to book the sports hall, request k having start time $u_k \in \mathbb{R}$ and end time $v_k \in \mathbb{R}$. The hall can only fit one activity at a time. What is the maximum number of requests that can be satisfied without overlap?

Let $f(X)$ be the maximum number of requests in a set X that can be simultaneously satisfied. Then

$$f(X) = \begin{cases} \max_{k \in X} \{1 + f(\text{events in } X \text{ that end before } k \text{ starts}) + f(\text{events in } X \text{ that start after } k \text{ ends}) \} & \text{if } X \neq \emptyset \\ 0 & \text{if } X = \emptyset \end{cases}$$

QUESTION

Can we find a different way to set up this task so that the states aren’t sets?
Several different university societies have all requested to book the sports hall, request k having start time $u_k \in \mathbb{R}$ and end time $v_k \in \mathbb{R}$. The hall can only fit one activity at a time. What is the maximum number of requests that can be satisfied without overlap?

Let's make this problem a bit more algorithm-friendly by making it discrete. Instead of using real numbers $(u_k, v_k) \in \mathbb{R} \times \mathbb{R}$ for start and end times, let's use integer time indexes $(\bar{u}(k), \bar{v}(k)) \in \mathbb{N} \times \mathbb{N}$, indexes into a list of "interesting" timepoints $t_0 < t_1 < \ldots < t_n \in \mathbb{R}$.

“All problems in computer science can be solved by adding a layer of indirection.”
“Adding a layer of indirection creates more problems than it solves.”
Example 3.2.1 Resource allocation

Several different university societies have all requested to book the sports hall, request k having start time $u_k \in \mathbb{R}$ and end time $v_k \in \mathbb{R}$. The hall can only fit one activity at a time. What is the maximum number of requests that can be satisfied without overlap?

Let $f(i,j) = \max \# \text{ requests that can be satisfied in } [t_i, t_j]$, for $i \leq j$. We want $f(0,n)$ (where the "interesting" time points are $t_0 < t_1 < \cdots < t_n$).

The Bellman equation is

$$f(i,j) = \begin{cases} 0 & \text{if } i = j \\ \max_{k \in X(i,j)} \left\{ 1 + f(i, \bar{u}(k)) + f(\bar{v}(k), j) \right\} & \text{otherwise} \end{cases}$$

Where $X(i,j) = \{ \text{requests that fit in } [t_i, t_j] \} = \{ l \in X : \bar{u}(l) \geq i \text{ and } \bar{v}(l) \leq j \}$.
3.2 Greedy algorithms

To compute the best action from state x using the Bellman recursion, we need to evaluate $v(\cdot)$ for all of x’s children in the dependency graph.

What if instead we use a simple heuristic to choose the next action?

The greedy strategy, with heuristic function h, is to pick action

$$\arg \max_{a \in A} h(x, a)$$

Heuristics are fast, but typically don’t give an optimal solution to the overall problem.

However, in some cases, if we set the problem up carefully, we can show that a greedy strategy is optimal.
Heuristic 1: always pick the shortest available activity

Heuristic 2: always pick the available activity with the fewest overlaps

Heuristic 3: pick the available activity with the earliest end-time
Theorem: We should always pick the activity with the earliest end-time.

What does this even mean? How can we express it as a proposition that's amenable to proof? Let's at least start by making some definitions.

Let X be a set of requests.

Let $EE(X) \subseteq X$ be the set of events in X with the earliest end-time. [There may be more than one.]

Let $Y \subseteq X$ be a maximal overlap-free subset.

Second attempt

Theorem: $\exists k \in EE(X)$ such that $k \in Y$.

This isn't even true! Consider Y'. Then neither of the events $k \in EE(X)$ come in Y.

Also, it isn't helpful: this says $\exists k \in EE(X)$, which is unhelpful, because it doesn't tell us which $k \in EE(X)$ we should pick.

What we really want to say: "we don't lose anything by picking some arbitrary $k \in EE(X)$".

Final attempt

Theorem: $\forall k \in EE(X)$ $\exists Y' \subseteq X$ such that $k \in Y'$ and Y' is overlap-free and $|Y'| = |Y|$.

Example: EE(X) \rightarrow $\exists Y'$ such that $k \in Y'$ and Y' is optimal \rightarrow an optimal Y'. The theorem asserts that we can pick either of the $EE(X)$ requests, and find some optimal Y' containing it.
Theorem: \(\forall k \in \text{EE}(x) \exists Y' \leq x \) such that \(k \in Y' \) and \(Y' \) is overlap-free and \(|Y'| = |Y| \).

Proof: Pick an arbitrary solution \(Y \) to the resource allocation problem, and an arbitrary \(k \in \text{EE}(x) \).

Either \(k \in Y \), in which case set \(Y' = Y \), and we are done.

Or \(k \notin Y \), in which case let's pick some \(l \in \text{EE}(Y) \) and construct \(Y' = Y \cup \{k\} \setminus \{l\} \).

\[\text{CLAIM: } k \in Y' \text{ and } Y' \text{ is overlap-free and } |Y'| = |Y| \]

1. \(\text{CLAIM: } Y' \text{ is overlap-free.} \)
 - Suppose not; i.e., suppose there is some \(a, b \in Y', a \neq b \), that overlap.
 - Either \(a + k \) and \(b + k \) in which case \(a, b \in Y \), but \(Y \) is overlap-free.
 - Or \(a = k \) or \(b = k \), wlog \(a = k \). Since \(b \in Y' \) and \(b + k \), \(b \in Y \).
 - Since \(b \in Y \) and \(l \in Y \), \(b \) doesn't overlap with \(l \).
 - So Either \(b \) starts after \(l \) ends — but \(k \in \text{EE}(x) \) so \(\text{end}(k) \geq \text{end}(l) \), so \(k \) can't overlap \(b \).
 - Or \(b \) ends before \(l \) starts — impossible, by choice of \(l \) to be \(\in \text{EE}(Y) \).
 - We conclude that \(\) is false, i.e. \(\) is true. This proves \(\).
I call this a “might as well” proof.

We “might as well” pick some arbitrary $k \in EE(X)$, and it won’t hurt us i.e. won’t prevent us from achieving an optimal allocation.

The proof structure is:
1. Take an optimal solution Y
2. Propose a tweaked version Y' that satisfies the property we want
3. Show that Y' is also an optimal solution

To be able to prove (3), we need to choose a very cunning tweak for (2)!

Theorem $\forall k \in EE(x) \exists Y' \leq X$ such that $k \in Y'$ and Y' is overlap free and $|Y'| = |Y|$.
Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s. Given two strings s and t, what’s the longest subsequence they have in common?

Bellman equation: Let $v_{i,j}$ be the length of the LCS between $s[0:i]$ and $t[0:j]$. Then

$$v_{i,j} = \begin{cases}
 v_{i,j-1} \lor v_{i-1,j-1} \lor (1 + v_{i-1,j-1}) & \text{if } i = 0 \text{ or } j = 0 \\
 v_{i,j-1} \lor v_{i-1,j} & \text{if } i > 0 \text{ and } j > 0 \text{ and } s[i-1] = t[j-1] \\
 v_{i-1,j} \lor v_{i,j-1} & \text{if } i > 0 \text{ and } j > 0 \text{ and } s[i-1] \neq t[j-1]
\end{cases}$$

Claim: we might as well pick the m action.

Proof sketch. Let y be an optimal action sequence (yielding a LCS). Either y uses this m, or there’s a y' just as good that does.
3.2.2 Huffman codes

We have a string that we’d like to compress a string into a sequence of bits. We want a code that says how each character is to be encoded, e.g.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>11101</td>
<td>01010</td>
<td>11011</td>
<td>001</td>
<td>110101</td>
<td>110100</td>
<td>0001</td>
<td>0111</td>
<td></td>
</tr>
</tbody>
</table>

Our code has to produce uniquely decodable bit sequences. We can ensure this by insisting on a code that takes the form of a tree, called a **prefix-free code**.

0001001101111011110001011001010

Problem statement. Find a prefix-free code that minimizes the average codelength $L = \sum_i p_i \ell_i$, where p_i is the frequency of letter i and ℓ_i is the length of its codeword.

Beautiful greedy algorithm. Left as an optional tick.