
Advanced Operating Systems
Through tracing, analysis, and experimentation

ACS/Part III: Advanced Operating Systems
Part II: Advanced Operating Systems

Lecture 1, Part 2: The Course
Prof. Robert N. M. Watson

2023-2024

Why study operating systems?

The OS plays a central role in whole-system design when
building efficient, effective, and secure systems:
• Strong influence on whole-system performance
• Critical foundation for computer security
• Exciting programming techniques, algorithms, problems

• Virtual memory; network stack; filesystem; run-time linker; …

• Co-evolves with platforms, applications, users
• Multiple active research communities
• Reusable techniques for building complex systems
• Boatloads of fun (best text adventure ever)

2

Where is the OS research?
A sub-genre of systems research:
• Evolving hardware-software interfaces

• New computation models/architectures
• New kinds of peripheral devices

• Integration with programming languages and runtimes
• Concurrent/parallel programming models; scheduling
• Security and virtualisation
• Networking, storage, and distributed systems
• Tracing and debugging techniques
• Formal modeling and verification
• As a platform for other research – e.g., mobile systems
Venues: SOSP, OSDI; ATC; EuroSys; HotOS; FAST; NSDI;
HotNets; ASPLOS; USENIX Sec.; ACM CCS; IEEE SSP; …

3

What are the research questions?
Just a few examples: By changing the OS, can I…
• Create new abstractions for new hardware?
• Make my application run faster by…

• Better masking latency?
• Using parallelism more effectively?
• Exploiting new storage mediums?
• Adopting distributed-system ideas in local systems?

• Make my application more {reliable, energy efficient}
• Limit {security, privacy} impact of exploited programs?
• Use new language/analysis techniques in new ways?

Systems research focuses on evaluation with respect to
applications or workloads: How can we measure
whether it is {faster, better, ...}?

4

Teaching operating systems

• Two common teaching tropes:
• Trial by fire: in micro, recreate classic elements of operating

systems: microkernels with processes, filesystems, etc.
• Research readings course: read, present, discuss, and write

about classic works in systems research
• This module adopts elements of both styles while:

• mitigating the risk of OS kernel hacking in a short course
• working on real-world systems rather than toys; and
• targeting research skills not just operating-system design

• Trace and analyse real systems driven by specially
crafted benchmarks
• Possible only because of (fairly) recent developments in

tracing and hardware-based performance analysis tools

5

Aims of the module (1/2)

Teaching methodology, skills, and knowledge
required to understand and perform research on
contemporary operating systems by…
• Employing systems methodology and practice
• Exploring real-world systems artefacts through

performance and functional evaluation/analysis
• Developing scientific writing skills (Part III/ACS

only)
• Reading original systems research (Part III/ACS

only)

6

Aims of the module (2/2)
On completion of this module, students should:
• Have an understanding of high-level OS kernel

structure.
• Gained insight into hardware-software interactions

for compute and I/O.
• Have practical skills in system tracing and

performance analysis.
• Have been exposed to research ideas in system

structure and behaviour. (Part III/ACS only)
• Have learned how to write systems-style

performance evaluations. (Part III/ACS only)
7

Prerequisites
We will take for granted:
• High-level knowledge of OS terminology from an

undergraduate course (or equivalent); e.g.,:
• What schedulers do
• What processes are … and how they differ from threads
• What Inter-Process Communication (IPC) does
• How might a simple filesystem might work

• Reasonable fluency in reading multithreaded C
• Good working knowledge of Python
• Comfort with the UNIX command-line environment
• Undergraduate skills with statistics

(mean/median/mode/stddev/t-tests/linear regression/boxplots/scatterplots ...)

You can pick up some of this as you go (e.g., IPC, Python,
or t-tests), but will struggle if you are missing several 8

Module structure –
four complementary strands
• Lectures (⨉5: 4 in-person 2-hour slots, 1 prerecorded)

• Theory, methodology, architecture, and practice

• Assigned research and applied readings
• Selected portions of module texts – learn skills, methodology
• Related research readings – research exposure (L41 only)

• In-person lab exercises (⨉3 labs, prerecorded lecturelets)
• Short prerecorded lecturelet introduces each lab
• RPi4 cluster to run experiments (one board per student)
• 6⨉ Module demonstrators available to answer questions

• First lab assignment
• Acclimate to platform
• Learn essential skills to perform later labs (e.g., DTrace, Jupyter)

• Later lab assignments (Part II – ⨉2) or reports (L41 – ⨉2)
• Based on experiments done in lab exercises
• Develop scientific + writing skills suitable for systems research (L41)

9

Outline of module schedule
• Submodule 1: Introduction to kernels and tracing/analysis

• 2 lectures (one prerecorded), 1 lab on kernel tracing
• Introduction: OSes, Systems Research, and L41
• The Kernel: Kernel and Tracing

• Submodule 2: The Process Model
• 2 lectures, 1 lab on IPC
• The Process Model (1) – Binaries and Processes
• The Process Model (2) – Traps, System Calls, and Virtual Memory

• Submodule 3: The Network Stack (TCP/IP)
• 2 lectures, 1 lab on TCP
• The Network Stack (1) – Implementation and research
• The Network Stack (2) – TCP and its implementation

• Please consult online materials for all deadlines
10

The lab platform
• 50x Raspberry Pi 4 boards in a rack
• Broadcom BCM2711 SoC
• 4x 64-bit A72 ARMv8-A cores
• 8GB DRAM, 64G SD Card

• FreeBSD operating system
• DTrace tracing tool
• HWPMC counter framework
• Bespoke potted benchmarks

motivating OS and microarchitectural
performance analysis
• Jupyter lab notebook environment

• Remotely accessed via SSH +
tunneling for Jupyter

11

Shared first Lab 1:
Getting started with kernel tracing
• Identical assignment for Part II and Part III/ACS
• Exercises to get you started on the platform; teach:

• Jupyter Lab Notebooks
• DTrace instrumentation and data collection – in particular,

tracing and profiling scripts
• Relevant Python plotting tools including Flame Graphs
• And first dirty hands with respect to OS internals

• Submitted only via Moodle; use “Print to PDF” in your
browser to generate a PDF to submit
• Low proportion of marks (10% for Part III/ACS; optional

for Part II): really about teaching basic skills you will
need for later labs
• Experience confirms that students who don’t do the first lab

will do badly on later labs; correlation .. maybe causality?
• Deadline is 12:00 on 1 December 2023

12

Lab Assignments 2 and 3 (Part II only)

13

• A series of questions requiring short answers
• Answers consist of written text, selected data, and plots
• Perform your work in the Jupyter lab framework
• Your submission will consist of generated PDF of the

completed lab notebook – e.g., by printing to a PDF file
• Submissions are accepted only via Moodle

• Ensure that your submission is well presented; e.g.,
• Plots don’t span page boundaries or run off the side
• Plots have clearly labeled axes, data sets, and so on
• Make sure your text is concise and clear, addressing the

questions that are answered

• Marked based on submitted data, text, and plots

Lab Reports 2 and 3 (Part III/ACS only)
Lab reports document an experiment and analyse its results – typically
using one or more hypotheses (which we will provide).
Our lab reports will contain the following sections (see notes, template):

Some formats break out (e.g.) experimental setup vs. methodology,
and results vs. discussion. The combined format seems to work better
for systems experimentation as compared to (e.g.) biology.
• The target length is 8 pages excluding appendices, references
• Over-length reports will be penalized – please stop by the limit!
• Appendices will not be read if too long, and should not be essential

to understanding the core content of the report

1. Title + abstract (1 page) 5. Conclusion (1-2 para)

2. Introduction (1-2 para) 6. References

3. Experimental setup and
methodology (1-2 pages)

7. Appendices

4. Results and discussion (3-4 pages)

14

Module texts – core material
You will need to make frequent reference to these books both
in the labs and outside of the classroom:

Operating systems: Marshall Kirk McKusick, George V. Neville-Neil, and
Robert N. M. Watson, The Design and Implementation of the
FreeBSD Operating System, 2nd Edition, Pearson Education, Boston,
MA, USA, September 2014.

Performance measurement: Raj Jain, The Art of Computer Systems
Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley - Interscience, New
York, NY, USA, April 1991.

Tracing and profiling: Brendan Gregg and Jim Mauro, DTrace: Dynamic
Tracing in Oracle Solaris, Mac OS X and FreeBSD, Prentice Hall Press,
Upper Saddle River, NJ, USA, April 2011.

The FreeBSD and DTrace books are available online via vlebooks.com:
https://www.vlebooks.com/Vleweb/Search/Keyword?keyword=freebsd

15

https://www.vlebooks.com/Vleweb/Search/Keyword?keyword=freebsd

Module texts – additional material
If your OS recollections feel a bit hazy:

Operating systems: Abraham Silberschatz, Peter Baer
Galvin, and Greg Gagne. Operating System Concepts,
Eighth Edition, John Wiley & Sons, Inc., New York, NY, USA,
July 2008.

If you want to learn a bit more about architecture
and measurement:

Performance measurement and diagnosis: Brendan
Gregg, Systems Performance: Enterprise and the Cloud,
Prentice Hall Press, Upper Saddle River, NJ, USA, October
2013.

16

