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The purpose of image quality assessment
 To compare algorithms in terms of image or video quality
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The purpose of image quality assessment
 To optimize application parameters – e.g. resolution and bit-rate
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The purpose of image quality assessment
 To provide evidence of improvement over the state-of-the-art

Algorithm A Algorithm B Algorithm C
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Other application domains
 Recommendation systems
 Which movie to watch? (Netflix)
 Which product to buy? (Amazon)

 Product acceptance / rating
 Food
 Clothing
 Consumer electronics, …

 Similar techniques used for
 Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)
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Subjective image/video quality assessment methods

Subjective quality assessment

Ranking
ordinal scaling

Rating
direct interval scaling

Pair-wise 
comparisons

Rank order 
method

Single stimulus 
with hidden 
reference

Double 
stimulus

... ...
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Rating: Single stimulus + hidden reference

 With a hidden reference
 Task: Rate the quality of the image
 The categorical variables (excellent, 

good, …) are converted into scores 
1-5

 Then those are averaged across all 
observers to get 
Mean-Opinion-Scores (MOS)

 To remove the effect of reference 
content, we often calculate DMOS:

ܳ஽ெைௌ = ܳெைௌ
௥௘௙௘௥௘௡௖௘ − ܳெைௌ

௧௘௦௧
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Rating: Double stimulus
 Task: Rate the quality of the first and 

the second image 
 The second image is typically the 

reference
 Potentially better accuracy of DMOS
 But takes more time
 The reference shown after each test image
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Pair-wise comparison method
 Example: video quality
 Task: Select the video sequence that has a higher quality
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Comparison matrix
 Results of pairwise comparisons can be stored in a comparison matrix

 In this example: 3 compared conditions: C1, C2, C3
 Cij = n means that condition Ci was preferred over Cj n times

C1   C2   C3
C1

C2   

C3
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Full and reduced designs
 Full design

 Compare all pairs of conditions

 This requires 
݊
2 = ௡(௡ିଵ)

ଶ
comparisons for n conditions

 Tedious if n is large

 Reduced design
 We assume transitivity

 If C1 > C2 and C2 > C3 then C1 > C3 
 no need to do all comparisons

 There are numerous “block designs” (before computers)
 But the task is also a sorting problem

 The number comparison can be reduced to ݊ log(n) for a “human quick-sort”

 And many others: Swiss chess system, active sampling ...

C1   C2   C3
C1

C2   

C3
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Pairwise comparisons vs. rating (e.g. single stimulus)
 The method of pairwise comparisons is fast

 More comparisons, but 
 It takes less time to achieve the same sensitivity as for direct rating methods

 Has a higher sensitivity
 Less “external” variance between and within observers

 Provides a unified quality scale
 The scale (of JOD/JND) is transferrable between experiments

 Simple procedure
 Training is much easier
 Less affected by learnining effects 

 Especially suitable for non-expert participants
 E.g. Crowdsourcing experiments
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Time-efficiency

From: Mantiuk et al. 
CGF 2012

The results show how long 
(on average) it took 
participants to complete the 
experiment

Pairwise comparisons full design
Pairwise comparisons reduced design
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Active sampling can make the experiments even 
faster
 Active sampling

 For each trial, select a pair of conditions 
that maximizes the information gain

 Information gain is the DK-divergence 
between the prior and posterior 
distributions

 Mikhailiuk, A., C. Wilmot, M. Perez-Ortiz, D. Yue, and R.K. 
Mantiuk. “ASAP: Active Sampling for Pairwise 
Comparisons via Approximate Message Passing and 
Information Gain Maximization.” In International 
Conference on Patter Recognition, 2020.

Normalized number of comparisons

ASAP

Swiss system

Estimation error
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Practical significance - scaling
 Scaling: to map user judgments into meaningful interval scale
 Typically that scale is in just-noticeable-difference units

 The difference of 1 JND means that
75% of observers would choose 
one condition over another 

 Useful to show “practical” significance
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Scaling pairwise comparison data
 Given a matrix of comparisons, for example

 Infer the quality scores for all compared conditions
 Using Maximum Likelihood Estimation (MLE)

 We start from an observer model, then link it to the observations
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Thurstone (observer) model - Case V
 Two assumptions:

 Quality scores for a given condition are normally distributed across the population
 The variance of that distribution is the same for each condition and the judgements are independent

Condition A Condition C

Condition B
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From the observer model to probabilities
 Given the observer model for two 

conditions:

 The difference between two quality 
scores is: 

 Then, the probability of the judgment is 
explained by the cumulative normal 
distribution

௜ݎ = ௜ݍ)ܰ , (ଶߪ ௝ݎ = ௝ݍ)ܰ , (ଶߪ

௜ݎ − ௝ݎ = ௜ݍ)ܰ − ௝ݍ , (ଶߪ2

where  ߪ௜௝ = ߪ2

௜ݎ)ܲ > ௜ݍ|௝ݎ − ௝ݍ = −1)
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 Given that k out of n observers selected A over B, what is the probability 
distribution of selecting A over B

ܲ ௜ݎ > ,݊|௝ݎ ݇ = ݊
݇ ௞(1݌ − ௡ି௞(݌

Binomial distribution
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Maximum Likelihood Estimation
 Given our observations (comparison matrix) what is the likelihood of the 

quality values ݍ௜:

 where ݊௜௝ = ܿ௜௝ + ௝ܿ௜

 To estimate the values of ݍ௜, we maximize:

Cumulative Normal
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JND/JOD = 1
 Just Noticeable Differences
 Just Objectionable Differences
 We want ݍ௜ − ௝ݍ =1 when 75% of observers prefer condition “i” over “j”

Cumulative 
Normal 

distribution

 This happens 
when 
௜௝ߪ = 1.4826

 This is arbitrary 
selected scaling, 
made for easier 
interpretation of 
the results
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JND vs JOD
 Just Noticeable Differences
 Just Objectionable Differences

 JND – is one 
visually different 
from another

 JOD – is the 
quality of one 
different from 
the quality of 
another (relative 
to the 
reference)
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Practicalities of MLE scaling
 At least 15-20 comparisons per each pair are needed to obtain stable results 

(prior helps)
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Forced choice vs. comparison with ties
 Giving a “tie” option is usually a bad idea

 Scaling the results 
with ties requires a 
more complex 
observer model 
with more 
parameters to 
estimate
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Objective (image/video) quality metrics



Types of objective (image/video) quality metrics

Test image Reference image

Full Reference (FR) metrics

Full-reference
quality metric

Quality 
score

(optional)
Distortion map

Test image

No Reference (NR) metrics

No-reference
quality metric

Quality 
score

Test image Reference image

Reduced Reference (RR) metrics

Reduced-reference
quality metric

Quality 
score

Image 
statistics
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Main use cases of objective quality metrics

(I) Evaluation
Which method is the best?

Aims:
 To demonstrate the difference in 

quality

 To replace subjective experiments

(II) Optimization
What are the best parameter values? 

Aims:
 To replace manual parameter 

tweaking
 Especially in multi-dimensional 

problems

27



Pixel-wise quality metrics
 Root Mean Square Error (RMSE)

ோெௌாܧ =
1

ݓ ȉ ℎ ෍ ݐ ,ݔ ݕ − ݎ ,ݔ ݕ ଶ

௫,௬

 Peak Signal to Noise Ratio

௉ௌேோܧ = 20
௣௘௔௞ܫ

ோெௌாܧ
[ܤ݀] 

 ௣௘௔௞ܫ - the peak pixel value (e.g. 255 or 1)

 If the error is normally distributed and its 
mean is 0, ܧோெௌா is the standard 
deviation of the distortion (noise)

Reference 
image

Test
image
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The shortcomings of pixel-wise metrics

Reference

JPEG-encoded
PSNR=24.7

Blur
PSNR=24.8

Noise
PSNR=24.8

Rotation (1.3 deg)
PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]
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Texture quality metrics

Test image

Reference image

Quality 
score

Extract (local) 
image statistics 
(e.g. mean, var)

Extract (local) 
image statistics 
(e.g. mean, var)

Pooling

≠ per pixel

≈ appearance
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Structural Similarity Index (SSIM)
 Split test and reference images into 11 × 11 px overlapping patches
 For each patch, calculate mean ்ߤ , ோߤ , std ߪ்ߪோ and covariance ்ߪோ
 of each patch, weighted by a Gaussian window

 Calculate three terms (per patch)
 “Luminance”:   l࢞ = ଶఓ೅ఓೃା஼బ

ఓ೅
మାఓೃ

మ ା஼బ

 Contrast:  ܿ࢞ = ଶఙ೅ఙೃା஼భ
ఙ೅

మାఙೃ
మା஼భ

 Structure:    ࢞ݏ = ఙ೅ೃା஼మ
ఙ೅ఙೃା஼మ

(cross-correlation)

 Multiply them together:    ࢞ݍ = ݈࢞ ȉ c࢞ ȉ s࢞

 And pool:    ݍௌௌூெ = ଵ
ே

∑ ࢞࢞ݍ
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Learned Perceptual Image Patch Similarity (LPIPS)
 Use a pre-trained CNN as a feature extractor

Test image Reference image

Feature 
differences

Learned weights

AlexNet, 
VGG, …

Predicted quality
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Metrics and viewing conditions
 Majority of image/video metrics disregard 

viewing conditions
 Display size
 Display resolution
 Viewing distance
 Display peak luminance
 Colour gamut

 PSNR, SSIM, LPIPS operate on 0-255 pixel values
 Cannot handle HDR images/video

 To account for the viewing conditions, we need 
metrics based on psychophysical models
 known as visual difference predictors (VDPs)

pixel pixel≠
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Perceptual metrics (Visual Difference Predictors)

"standard_4k": {
"resolution": [3840, 2160],
"viewing_distance_meters": 0.7472,
"diagonal_size_inches": 30,
"max_luminance": 200,
"contrast": 1000,
"E_ambient": 250,

}
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)
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Perceptual metrics (Visual Difference Predictors)

Contrast
masking

Te
st

 c
on

tra
st

Mask contrast

castleCSF
minimum

detectable
contrast

difference
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Perceptual metrics (Visual Difference Predictors)

The quality is scaled in the units of
Just Objectionable Differences [JOD]
1 JOD difference ≈ 50% increase in preference

Can express supra-threshold (well-visible)
differences
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Metric performance on band-limited noise

Spatial frequency

C
on

tra
st

Violet – large difference; Orange – small difference40



Metric performance on masking patterns

Violet – large difference; Orange – small difference Contrast of the masker
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