Advanced Graphics & Image Processing

Assessing Image Quality

Rafał Mantiuk
Computer Laboratory, University of Cambridge
The purpose of image quality assessment

- To compare algorithms in terms of image or video quality

Rate-Distortion (RD) curves
The purpose of image quality assessment

- To optimize application parameters – e.g. resolution and bit-rate
The purpose of image quality assessment

- To provide evidence of improvement over the state-of-the-art
Other application domains

- Recommendation systems
 - Which movie to watch? (Netflix)
 - Which product to buy? (Amazon)

- Product acceptance / rating
 - Food
 - Clothing
 - Consumer electronics, …

- Similar techniques used for
 - Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)
Subjective image/video quality assessment methods

Subjective quality assessment

- Ranking
 - Ordinal scaling
 - Rank order method
 - Pair-wise comparisons
 - ... (other methods)

- Rating
 - Direct interval scaling
 - Single stimulus with hidden reference
 - Double stimulus
 - ... (other methods)
Rating: Single stimulus + hidden reference

- With a hidden reference
- Task: **Rate** the quality of the image
- The categorical variables (excellent, good, ...) are converted into scores 1-5
- Then those are averaged across all observers to get Mean-Opinion-Scores (MOS)
- To remove the effect of reference content, we often calculate DMOS:

\[Q_{DMOS} = Q_{MOS}^{reference} - Q_{MOS}^{test} \]
Rating: Double stimulus

- Task: Rate the quality of the first and the second image
- The second image is typically the reference
- Potentially better accuracy of DMOS
- But takes more time
 - The reference shown after each test image
Pair-wise comparison method

- Example: video quality
- Task: Select the video sequence that has a higher quality
Comparison matrix

- Results of pairwise comparisons can be stored in a comparison matrix

\[
C = \begin{bmatrix}
0 & 3 & 1 \\
3 & 0 & 2 \\
5 & 4 & 0
\end{bmatrix}
\]

- In this example: 3 compared conditions: C1, C2, C3
- \(C_{ij} = n \) means that condition C_\text{i} was preferred over C_\text{j} \(n \) times
Full and reduced designs

- **Full design**
 - Compare all pairs of conditions
 - This requires \(\binom{n}{2} = \frac{n(n-1)}{2} \) comparisons for \(n \) conditions
 - Tedious if \(n \) is large

- **Reduced design**
 - We assume transitivity
 - If \(C_1 > C_2 \) and \(C_2 > C_3 \) then \(C_1 > C_3 \)
 - no need to do all comparisons
 - There are numerous “block designs” (before computers)
 - But the task is also a sorting problem
 - The number comparison can be reduced to \(n \log(n) \) for a “human quick-sort”
 - And many others: Swiss chess system, active sampling ...
Pairwise comparisons vs. rating (e.g. single stimulus)

- The method of pairwise comparisons is **fast**
 - More comparisons, but
 - It takes less time to achieve the same sensitivity as for direct rating methods
- Has a higher sensitivity
 - Less “external” variance between and within observers
- Provides a unified quality scale
 - The scale (of JOD/JND) is transferrable between experiments
- Simple procedure
 - Training is much easier
 - Less affected by learning effects
- Especially suitable for non-expert participants
 - E.g. Crowdsourcing experiments
Time-efficiency

The results show how long (on average) it took participants to complete the experiment.
Active sampling can make the experiments even faster

- **Active sampling**
 - For each trial, select a pair of conditions that maximizes the information gain
 - Information gain is the DK-divergence between the prior and posterior distributions

Practical significance - scaling

- Scaling: to map user judgments into meaningful interval scale
- Typically that scale is in just-noticeable-difference units
 - The difference of 1 JND means that 75% of observers would choose one condition over another
- Useful to show “practical” significance
Scaling pairwise comparison data

- Given a matrix of comparisons, for example

\[
C = \begin{bmatrix}
0 & 3 & 0 \\
27 & 0 & 7 \\
30 & 23 & 0
\end{bmatrix}
\]

- Infer the quality scores for all compared conditions
 - Using Maximum Likelihood Estimation (MLE)

- We start from an observer model, then link it to the observations
Thurstone (observer) model - Case V

- **Two assumptions:**
 - Quality scores for a given condition are normally distributed across the population.
 - The variance of that distribution is the same for each condition and the judgements are independent.
From the observer model to probabilities

- Given the observer model for two conditions:
 \[r_i = N(q_i, \sigma^2) \quad r_j = N(q_j, \sigma^2) \]

- The difference between two quality scores is:
 \[r_i - r_j = N(q_i - q_j, 2\sigma^2) \]

- Then, the probability of the judgment is explained by the cumulative normal distribution
 \[
P(r_i > r_j) = P(r_i - r_j > 0) = \Phi \left(\frac{q_i - q_j}{\sigma_{ij}} \right)
 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{q_i - q_j} e^{-\frac{x^2}{2\sigma_{ij}^2}} dx.
 \]
 where \(\sigma_{ij} = \sqrt{2}\sigma \)
Given that k out of n observers selected A over B, what is the probability distribution of selecting A over B

\[P(r_i > r_j | n, k) = \binom{n}{k} p^k (1 - p)^{n-k} \]
Maximum Likelihood Estimation

- Given our observations (comparison matrix) what is the likelihood of the quality values q_i:

$$L(\hat{q}_i - \hat{q}_j | c_{ij}, n_{ij}) = \frac{n_{ij}}{c_{ij}} P(r_i > r_j)^{c_{ij}} (1 - P(r_i > r_j))^{n_{ij} - c_{ij}}$$

$$= \frac{n_{ij}}{c_{ij}} \Phi \left(\frac{\hat{q}_i - \hat{q}_j}{\sigma_{ij}} \right)^{c_{ij}} \left(1 - \Phi \left(\frac{\hat{q}_i - \hat{q}_j}{\sigma_{ij}} \right) \right)^{n_{ij} - c_{ij}}$$

- where $n_{ij} = c_{ij} + c_{ji}$

- To estimate the values of q_i, we maximize:

$$\arg \max_{\hat{q}_2, \ldots, \hat{q}_n} \prod_{i, j \in \Omega} L(\hat{q}_i - \hat{q}_j | c_{ij}, n_{ij})$$
JND/JOD = 1

- Just Noticeable Differences
- Just Objectionable Differences
- We want $q_i - q_j = 1$ when 75% of observers prefer condition “i” over “j”

- This happens when $\sigma_{ij} = 1.4826$
- This is arbitrary selected scaling, made for easier interpretation of the results
JND vs JOD

- Just Noticeable Differences
- Just Objectionable Differences

- JND – is one visually different from another
- JOD – is the quality of one different from the quality of another (relative to the reference)
Practicalities of MLE scaling

- At least 15-20 comparisons per each pair are needed to obtain stable results (prior helps)
Forced choice vs. comparison with ties

- Giving a “tie” option is usually a bad idea
- Scaling the results with ties requires a more complex observer model with more parameters to estimate
Objective (image/video) quality metrics
Types of objective (image/video) quality metrics

Full Reference (FR) metrics
- Test image
- Reference image
- Full-reference quality metric
- Quality score
- (optional) Distortion map

No Reference (NR) metrics
- Test image
- No-reference quality metric
- Quality score

Reduced Reference (RR) metrics
- Test image
- Reference image
- Reduced-reference quality metric
- Quality score
- Image statistics
Main use cases of objective quality metrics

(I) Evaluation

Which method is the best?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Set5</td>
<td>×2</td>
<td>33.66 / 0.9299</td>
<td>36.54 / 0.9544</td>
<td>36.66 / 0.9542</td>
<td>37.53 / 0.9587</td>
</tr>
<tr>
<td></td>
<td>×3</td>
<td>30.39 / 0.8842</td>
<td>32.58 / 0.9088</td>
<td>32.75 / 0.9099</td>
<td>33.66 / 0.9213</td>
</tr>
<tr>
<td></td>
<td>×4</td>
<td>28.42 / 0.8104</td>
<td>30.28 / 0.8603</td>
<td>30.48 / 0.8628</td>
<td>31.35 / 0.8838</td>
</tr>
<tr>
<td>Set14</td>
<td>×2</td>
<td>30.24 / 0.8688</td>
<td>32.28 / 0.9056</td>
<td>32.42 / 0.9063</td>
<td>33.03 / 0.9124</td>
</tr>
<tr>
<td></td>
<td>×3</td>
<td>27.55 / 0.7742</td>
<td>29.13 / 0.8188</td>
<td>29.28 / 0.8209</td>
<td>29.77 / 0.8314</td>
</tr>
<tr>
<td></td>
<td>×4</td>
<td>26.00 / 0.7027</td>
<td>27.32 / 0.7491</td>
<td>27.49 / 0.7503</td>
<td>28.01 / 0.7674</td>
</tr>
<tr>
<td>B100</td>
<td>×2</td>
<td>29.56 / 0.8431</td>
<td>31.21 / 0.8863</td>
<td>31.36 / 0.8879</td>
<td>31.90 / 0.8960</td>
</tr>
<tr>
<td></td>
<td>×3</td>
<td>27.21 / 0.7385</td>
<td>28.29 / 0.7855</td>
<td>28.41 / 0.7863</td>
<td>28.82 / 0.7976</td>
</tr>
<tr>
<td></td>
<td>×4</td>
<td>25.96 / 0.6675</td>
<td>26.82 / 0.7087</td>
<td>26.90 / 0.7101</td>
<td>27.29 / 0.7251</td>
</tr>
<tr>
<td>Urban100</td>
<td>×2</td>
<td>26.88 / 0.8403</td>
<td>29.20 / 0.8938</td>
<td>29.50 / 0.8946</td>
<td>30.76 / 0.9140</td>
</tr>
<tr>
<td></td>
<td>×3</td>
<td>24.46 / 0.7349</td>
<td>26.03 / 0.7973</td>
<td>26.24 / 0.7989</td>
<td>27.14 / 0.8279</td>
</tr>
<tr>
<td></td>
<td>×4</td>
<td>23.14 / 0.6577</td>
<td>24.32 / 0.7183</td>
<td>24.52 / 0.7221</td>
<td>25.18 / 0.7524</td>
</tr>
</tbody>
</table>

Aims:
- To demonstrate the difference in quality
- To replace subjective experiments

(II) Optimization

What are the best parameter values?

Aims:
- To replace manual parameter tweaking
- Especially in multi-dimensional problems
Pixel-wise quality metrics

- **Root Mean Square Error (RMSE)**
 \[E_{RMSE} = \sqrt{\frac{1}{w \cdot h} \sum_{x,y} (t(x,y) - r(x,y))^2} \]

- **Peak Signal to Noise Ratio (PSNR)**
 \[E_{PSNR} = 20 \frac{I_{peak}}{E_{RMSE}} \text{ [dB]} \]
 - \(I_{peak} \) - the peak pixel value (e.g. 255 or 1)
 - If the error is normally distributed and its mean is 0, \(E_{RMSE} \) is the standard deviation of the distortion (noise)
The shortcomings of pixel-wise metrics

Reference

JPEG-encoded
PSNR=24.7

Blur
PSNR=24.8

Noise
PSNR=24.8

Rotation (1.3 deg)
PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]
Texture quality metrics

Test image

Extract (local) image statistics (e.g. mean, var)

Reference image

Extract (local) image statistics (e.g. mean, var)

Pooling

Quality score

≠ per pixel

≈ appearance

30
Structural Similarity Index (SSIM)

- Split test and reference images into 11×11 px overlapping patches
- For each patch, calculate mean μ_T, μ_R, std σ_T, σ_R and covariance σ_{TR} of each patch, weighted by a Gaussian window
- Calculate three terms (per patch)
 - “Luminance”: $l_x = \frac{2\mu_T \mu_R + C_0}{\mu_T^2 + \mu_R^2 + C_0}$
 - Contrast: $c_x = \frac{2\sigma_T \sigma_R + C_1}{\sigma_T^2 + \sigma_R^2 + C_1}$
 - Structure: $s_x = \frac{\sigma_{TR} + C_2}{\sigma_T \sigma_R + C_2}$ (cross-correlation)
- Multiply them together: $q_x = l_x \cdot c_x \cdot s_x$
- And pool: $q_{SSIM} = \frac{1}{N} \sum x q_x$
Learned Perceptual Image Patch Similarity (LPIPS)

- Use a pre-trained CNN as a feature extractor

Diagram:
- Test image x
- Reference image x_0
- Learned weights w
- Feature differences
- Multiply L2 norm Spatial Average
- Average d_0
- Predicted quality
Metrics and viewing conditions

- Majority of image/video metrics disregard viewing conditions
 - Display size
 - Display resolution
 - Viewing distance
 - Display peak luminance
 - Colour gamut
- PSNR, SSIM, LPIPS operate on 0-255 pixel values
 - Cannot handle HDR images/video
- To account for the viewing conditions, we need metrics based on psychophysical models
 - Known as visual difference predictors (VDPs)
Perceptual metrics (Visual Difference Predictors)

"standard_4k": {
 "resolution": [3840, 2160],
 "viewing_distance_meters": 0.7472,
 "diagonal_size_inches": 30,
 "max_luminance": 200,
 "contrast": 1000,
 "E_ambient": 250,
}
Perceptual metrics (Visual Difference Predictors)

Test contrast

Mask contrast

castleCSF
minimum
detectable
contrast
difference
Perceptual metrics (Visual Difference Predictors)

The quality is scaled in the units of Just Objectionable Differences [JOD]
1 JOD difference ≈ 50% increase in preference

Can express supra-threshold (well-visible) differences
Metric performance on band-limited noise

40 Violet – large difference; Orange – small difference
Metric performance on masking patterns

![Graphs showing metric performance on masking patterns]

- **Violet** – large difference;
- **Orange** – small difference

Contrast of the distortion (Gabor)
Contrast of the masker
References

- Scaling of pairwise comparison data
 - pwcmp - https://github.com/mantiuk/pwcmp
 - A practical guide and software for analysing pairwise comparison experiments - https://arxiv.org/abs/1712.03686

- Active sampling
 - ASAP - https://github.com/gfxdisp/asap

- SSIM
 - A Hitchhiker’s Guide to Structural Similarity - https://doi.org/10.1109/ACCESS.2021.3056504

- VDP metrics
 - HDR-VDP – https://hdrvdp.sourceforge.net/
 - FovVideoVDP - https://github.com/gfxdisp/FovVideoVDP
 - ColorVideoVDP - https://github.com/gfxdisp/ColorVideoVDP