

Advanced Graphics & Image Processing

Assessing Image Quality

Rafał Mantiuk Computer Laboratory, University of Cambridge The purpose of image quality assessment

• To compare algorithms in terms of image or video quality

The purpose of image quality assessment

▶ To optimize application parameters – e.g. resolution and bit-rate

The purpose of image quality assessment

• To provide evidence of improvement over the state-of-the-art

Algorithm A

Algorithm B

Algorithm C

Other application domains

- Recommendation systems
 - Which movie to watch? (Netflix)
 - Which product to buy? (Amazon)
- Product acceptance / rating
 - Food
 - Clothing
 - Consumer electronics, ...
- Similar techniques used for
 - Ranking of the players/gamers to match their skills in the game (TrueSkill on Xbox)

Subjective image/video quality assessment methods

Rating: Single stimulus + hidden reference

- With a hidden reference
- Task: Rate the quality of the image
- The categorical variables (excellent, good, ...) are converted into scores I-5
- Then those are averaged across all observers to get Mean-Opinion-Scores (MOS)
- To remove the effect of reference content, we often calculate DMOS: $Q_{DMOS} = Q_{MOS}^{reference} - Q_{MOS}^{test}$

Rating: Double stimulus

- Task: Rate the quality of the first and the second image
- The second image is typically the reference
- Potentially better accuracy of DMOS
- But takes more time
 - The reference shown after each test image

Pair-wise comparison method

- Example: video quality
- Task: Select the video sequence that has a higher quality

Comparison matrix

• Results of pairwise comparisons can be stored in a comparison matrix

 $C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

- ▶ In this example: 3 compared conditions: CI, C2, C3
- $C_{ij} = n$ means that condition Ci was preferred over Cj n times

Full and reduced designs

Full design

- Compare all pairs of conditions
- This requires $\binom{n}{2} = \frac{n(n-1)}{2}$ comparisons for *n* conditions
- Tedious if *n* is large

Reduced design

- We assume transitivity
 - If CI > C2 and C2 > C3 then CI > C3
 - $\hfill\square$ no need to do all comparisons
- There are numerous "block designs" (before computers)
- But the task is also a sorting problem
 - The number comparison can be reduced to $n \log(n)$ for a "human quick-sort"
- And many others: Swiss chess system, active sampling ...

	C1	C2	C3	
	0	3	1	C1
<i>C</i> =	3	0	2	C2
	5	4	0	C3

Pairwise comparisons vs. rating (e.g. single stimulus)

• The method of pairwise comparisons is **fast**

- More comparisons, but
- It takes less time to achieve the same sensitivity as for direct rating methods
- Has a higher sensitivity
 - Less "external" variance between and within observers
- Provides a unified quality scale
 - The scale (of JOD/JND) is transferrable between experiments
- Simple procedure
 - Training is much easier
 - Less affected by learnining effects
- Especially suitable for non-expert participants
 - E.g. Crowdsourcing experiments

Active sampling can make the experiments even faster

- Active sampling
 - For each trial, select a pair of conditions that maximizes the information gain
 - Information gain is the DK-divergence between the prior and posterior distributions

Normalized number of comparisons

 Mikhailiuk, A., C. Wilmot, M. Perez-Ortiz, D. Yue, and R.K. Mantiuk. "ASAP: Active Sampling for Pairwise Comparisons via Approximate Message Passing and Information Gain Maximization." In International Conference on Patter Recognition, 2020.

Practical significance - scaling

- Scaling: to map user judgments into meaningful interval scale
- Typically that scale is in just-noticeable-difference units
 - The difference of I JND means that 75% of observers would choose one condition over another
 - Useful to show "practical" significance

Scaling pairwise comparison data

• Given a matrix of comparisons, for example

$$\mathbf{C} = \begin{bmatrix} 0 & 3 & 0\\ 27 & 0 & 7\\ 30 & 23 & 0 \end{bmatrix}$$

- Infer the quality scores for all compared conditions
 - Using Maximum Likelihood Estimation (MLE)
- We start from an observer model, then link it to the observations

Thurstone (observer) model - Case V

- Two assumptions:
 - Quality scores for a given condition are normally distributed across the population
 - > The variance of that distribution is the same for each condition and the judgements are independent

From the observer model to probabilities

Given the observer model for two conditions:

$$r_i = N(q_i, \sigma^2)$$
 $r_j = N(q_j, \sigma^2)$

The difference between two quality scores is:

$$r_i - r_j = N(q_i - q_j, 2\sigma^2)$$

 Then, the probability of the judgment is explained by the cumulative normal distribution

$$P(r_i > r_j) = P(r_i - r_j > 0) = \Phi\left(\frac{q_i - q_j}{\sigma_{ij}}\right) \qquad P(r_i > r_j) = \frac{1}{\sigma_{ij}\sqrt{2\pi}} \int_{-\infty}^{q_i - q_j} e^{\left(\frac{-x^2}{2\sigma_{ij}^2}\right)} dx \quad \text{where } \sigma_{ij}$$

 $=\sqrt{2}\sigma$

Binomial distribution

Given that k out of n observers selected A over B, what is the probability distribution of selecting A over B

Maximum Likelihood Estimation

Given our observations (comparison matrix) what is the likelihood of the quality values q_i:

$$L(\hat{q}_{i} - \hat{q}_{j}|c_{ij}, n_{ij}) = {n_{ij} \choose c_{ij}} P(r_{i} > r_{j})^{c_{ij}} (1 - P(r_{i} > r_{j}))^{n_{ij} - c_{ij}}$$
$$= {n_{ij} \choose c_{ij}} \Phi \left(\frac{\hat{q}_{i} - \hat{q}_{j}}{\sigma_{ij}}\right)^{c_{ij}} \left(1 - \Phi \left(\frac{\hat{q}_{i} - \hat{q}_{j}}{\sigma_{ij}}\right)\right)^{n_{ij} - c_{ij}}$$
Cumulative Normal

- where $n_{ij} = c_{ij} + c_{ji}$
- To estimate the values of q_i , we maximize:

$$\underset{\hat{q}_2,\ldots,\hat{q}_n}{\arg\max} \prod_{i,j\in\Omega} L(\hat{q}_i - \hat{q}_j | c_{ij}, n_{ij})$$

JND/JOD = 1

- Just Noticeable Differences
- Just Objectionable Differences
- We want $q_i q_j = 1$ when 75% of observers prefer condition "i" over "j"

JND vs JOD

- Just Noticeable Differences
- Just Objectionable Differences

- JND is one visually different from another
- JOD is the **quality** of one different from the quality of another (relative to the reference)

Practicalities of MLE scaling

 At least 15-20 comparisons per each pair are needed to obtain stable results (prior helps)

Forced choice vs. comparison with ties

• Giving a "tie" option is usually a bad idea

 Scaling the results with ties requires a more complex observer model with more parameters to estimate

Objective (image/video) quality metrics

Types of objective (image/video) quality metrics

Main use cases of objective quality metrics

(I) Evaluation

Which method is the best?

Dataset	Scale	Bicubic	A+ [27]	SRCNN [4]	VDSR [11]
Set5	$\times 2$	33.66 / 0.9299	36.54 / 0.9544	36.66 / 0.9542	37.53 / 0.9587
	$\times 3$	30.39 / 0.8682	32.58 / 0.9088	32.75 / 0.9090	33.66 / 0.9213
	$\times 4$	28.42 / 0.8104	30.28 / 0.8603	30.48 / 0.8628	31.35 / 0.8838
Set14	$\times 2$	30.24 / 0.8688	32.28 / 0.9056	32.42 / 0.9063	33.03 / 0.9124
	$\times 3$	27.55 / 0.7742	29.13 / 0.8188	29.28 / 0.8209	29.77 / 0.8314
	$\times 4$	26.00 / 0.7027	27.32 / 0.7491	27.49/0.7503	28.01 / 0.7674
B100	$\times 2$	29.56 / 0.8431	31.21 / 0.8863	31.36 / 0.8879	31.90 / 0.8960
	$\times 3$	27.21 / 0.7385	28.29 / 0.7835	28.41 / 0.7863	28.82 / 0.7976
	$\times 4$	25.96 / 0.6675	26.82 / 0.7087	26.90/0.7101	27.29 / 0.7251
Urban100	$\times 2$	26.88 / 0.8403	29.20/0.8938	29.50/0.8946	30.76 / 0.9140
	$\times 3$	24.46 / 0.7349	26.03 / 0.7973	26.24 / 0.7989	27.14 / 0.8279
	$\times 4$	23.14 / 0.6577	24.32/0.7183	24.52 / 0.7221	25.18/0.7524

Aims:

- To demonstrate the difference in quality
- To replace subjective experiments

(II) Optimization What are the best parameter values?

- To replace manual parameter tweaking
- Especially in multi-dimensional problems

Pixel-wise quality metrics

- Root Mean Square Error (RMSE) $E_{RMSE} = \sqrt{\frac{1}{w \cdot h} \sum_{x,y} (t(x,y) - r(x,y))^{2}}$ Test image Reference image
- Peak Signal to Noise Ratio $E_{PSNR} = 20 \frac{I_{peak}}{E_{RMSE}} [dB]$
 - *I_{peak}* the peak pixel value (e.g. 255 or 1)
 - If the error is normally distributed and its mean is $0, E_{RMSE}$ is the standard deviation of the distortion (noise)

The shortcomings of pixel-wise metrics

Reference

JPEG-encoded PSNR=24.7

Blur PSNR=24.8

Noise PSNR=24.8

Rotation (1.3 deg) PSNR=23.4

[Examples from: 10.1109/TIP.2008.926161]

Texture quality metrics

Structural Similarity Index (SSIM)

- \blacktriangleright Split test and reference images into $11 \times 11~{\rm px}$ overlapping patches
- For each patch, calculate mean μ_T , μ_R , std $\sigma_T \sigma_R$ and covariance σ_{TR}
 - of each patch, weighted by a Gaussian window
- Calculate three terms (per patch)
 - "Luminance": l_x = ^{2µ_Tµ_R+C₀}/_{µ²_T+µ²_R+C₀}
 Contrast: c_x = ^{2σ_Tσ_R+C₁}/_{σ²_T+σ²_R+C₁}
 Structure: s_x = ^{σ_{TR}+C₂}/_{σ_Tσ_R+C₂} (cross-correlation)
- Multiply them together: $q_x = l_x \cdot c_x \cdot s_x$

• And pool:
$$q_{SSIM} = \frac{1}{N} \sum_{x} q_{x}$$

Learned Perceptual Image Patch Similarity (LPIPS)

Use a pre-trained CNN as a feature extractor

Metrics and viewing conditions

- Majority of image/video metrics disregard viewing conditions
 - Display size
 - Display resolution
 - Viewing distance
 - Display peak luminance
 - Colour gamut
- PSNR, SSIM, LPIPS operate on 0-255 pixel values
 - Cannot handle HDR images/video
- To account for the viewing conditions, we need metrics based on psychophysical models
 - known as visual difference predictors (VDPs)

38

39

Metric performance on band-limited noise

40 Violet – large difference; Orange – small difference

Metric performance on masking patterns

41 Violet – large difference; Orange – small difference

Contrast of the masker

References

- Scaling of pairwise comparison data
 - pwcmp <u>https://github.com/mantiuk/pwcmp</u>
 - A practical guide and software for analysing pairwise comparison experiments -<u>https://arxiv.org/abs/1712.03686</u>
- Active sampling
 - ASAP <u>https://github.com/gfxdisp/asap</u>
- SSIM
 - A Hitchhiker's Guide to Structural Similarity <u>https://doi.org/10.1109/ACCESS.2021.3056504</u>
- VDP metrics
 - HDR-VDP <u>https://hdrvdp.sourceforge.net/</u>
 - FovVideoVDP <u>https://github.com/gfxdisp/FovVideoVDP</u>
 - ColorVideoVDP <u>https://github.com/gfxdisp/ColorVideoVDP</u>