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Many graphics/display solutions are 
motivated by visual perception

*

…
Halftonning

Image & video 
compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s 
Bayer pattern

Color wheel in DLPs
2



Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance (again)
 Luminance – measure of light weighted by the response 

of the achromatic mechanism. Units: cd/m2

Luminance
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Steven’s power law for brightness
 Stevens (1906-1973) measured the perceived magnitude 

of physical stimuli
 Loudness of sound, tastes, smell, warmth, electric shock and 

brightness
 Using the magnitude estimation methods

 Ask to rate loudness on a scale with a known reference

 All measured stimuli followed the power law:

 For brightness (5 deg target in dark), a = 0.3

(I )  kI aPerceived 
magnitude

Physical 
stimulus

Exponent

Constant
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Steven’s law for brightness
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Steven’s law  vs. Gamma correction
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Detection thresholds

 The smallest detectable difference between 
 the luminance of the object and
 the luminance of the background
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Threshold versus intensity (t.v.i.) 
function
 The smallest detectable difference in luminance for a 

given background luminance

L

ΔL

L

L+ΔL
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t.v.i. measurements – Blackwell 1946
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Psychophysics
Threshold experiments 

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection 
threshold
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t.v.i function / c.v.i. function / Sensitivity
 The same data, different representation

t.v.i. c.v.i.
S

Contrast vs. intensityThreshold vs. intensity Sensitivity

backgrounddisk LLL 
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Sensitivity to luminance
 Weber-law – the just-noticeable difference 

is proportional to the magnitude of a 
stimulus

The smallest 
detectable 
luminance 
difference

Background 
(adapting) 
luminance

Constant

L
ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]
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Consequence of the Weber-law
 Smallest detectable difference in luminance

 Adding or subtracting luminance will have different visual 
impact depending on the background luminance

 Unlike LDR luma values, luminance values are not
perceptually uniform!

ΔLL

1 cd/m2100 cd/m2

0.01 cd/m21 cd/m2
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How to make luminance (more) 
perceptually uniform?

 Using “Fechnerian” integration

luminance - L

re
sp

on
se

 -
R

1

ΔL

dR
dl

(L)  1
L(L)

Derivative of 
response

Detection 
threshold
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Assuming the Weber law

 and given the luminance transducer

 the response of the visual system to light is:
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Fechner law

 Response of the visual system to luminance 
is approximately logarithmic

Gustav Fechner
[From Wikipedia]

R(L)  a ln(L)
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But…the Fechner law does not hold for 
the full luminance range

 Because the Weber law does not hold either
 Threshold vs. intensity function:

L

ΔL

The Weber law 
region
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Weber-law revisited
 If we allow detection threshold to vary with luminance 

according to the t.v.i. function:

 we can get a more accurate estimate of the “response”:

R(L)  1
tvi(l)

dl
0

L

L

ΔL tvi(L)
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Fechnerian integration and Stevens’ law
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R(L) - function 
derived from the 

t.v.i. function

R(L)  1
tvi(l)

dl
0

L



Applications of JND encoding – R(L)
 DICOM grayscale function
 Function used to encode signal for medial 

monitors
 10-bit JND-scaled (just noticeable 

difference)
 Equal visibility of gray levels

 HDMI 2.0a (HDR10)
 PQ (Perceptual Quantizer) encoding
 Dolby Vision
 To encode pixels for high dynamic range 

images and video 
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Resolution and sampling rate
 Pixels per inch [ppi]
 Does not account for vision

 The visual resolution depends on
 screen size
 screen resolution
 viewing distance

 The right measure
 Pixels per visual degree [ppd]
 In frequency space

 Cycles per visual degree [cpd]
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Fourier analysis
 Every N-dimensional function (including images) can be 

represented as a sum of sinusoidal waves of different 
frequency and phase

 Think of “equalizer” in audio software, which manipulates 
each frequency
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Spatial frequency in images
 Image space units: cycles per sample (or cycles per pixel)

 What are the screen-space frequencies of the red and green 
sinusoid?

 The visual system units: cycles per degree
 If the angular resolution of the viewed image is 55 pixels per 

degree, what is the frequency of the sinusoids in cycles per 
degree?
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
 Sampling density restricts the highest spatial frequency 

signal that can be (uniquely) reconstructed
 Sampling density – how many pixels per image/visual angle/…

 Any number of sinusoids can be fitted to this set of samples
 It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency / aliasing
 Nuquist frequency is the highest frequency that can be 

represented by a discrete set of uniform samples (pixels)
 Nuquist frequency = 0.5 sampling rate
 For audio

 If the sampling rate is 44100 samples per second (audio CD), then the 
Nyquist frequency is 22050 Hz

 For images (visual degrees)
 If the sampling rate is 60 pixels per degree, then the Nyquist 

frequency is 30 cycles per degree

 When resampling an image to lower resolution, the 
frequency content above the Nyquist frequency needs to 
be removed (reduced in practice)
 Otherwise aliasing is visible
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Modeling contrast detection

32

LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking
Defocus &
Aberrations Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function



Spatial frequency  [cycles per degree]
C
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Campbell & Robson contrast sensitivity chart
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Contrast sensitivity function

CSF  S(,,, l,i2,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity
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CSF as a function of spatial frequency
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CSF as a function of background 
luminance
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CSF as a function of spatial frequency 
and background luminance
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Contrast constancy
Match?Experiment: Adjust the 

amplitude of one sinusoidal 
grating until it matches the 
perceived magnitude of 
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.39

ReferenceTest



Contrast constancy
No CSF above the detection threshold
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CSF and the resolution
 CSF plotted as the 

detection contrast
Δ

=

 The contrast below each 
line is invisible

 Maximum perceivable 
resolution depends on 
luminance
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iPhone 4
Retina displayHTC Vive Pro

CSF models:
Barten, P. G. J. (2004). 
https://doi.org/10.1117/12.537476

Expected 
contrast in 

natural images



Spatio-chromatic CSF
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Spatio-chromatic contrast sensitivity

 CSF as a function of luminance and frequency

Rafał Mantiuk, University of Cambridge43

Black-White Red-Green Violet-Yellow

http://dx.doi.org/10.2352/issn.
2169-2629.2020.28.1



CSF and colour 
ellipses

Rafał Mantiuk, University of Cambridge44

 Colour discrimination as a function of
– Background colour and luminance 

[LMS]
– Spatial frequency [cpd]
– Size [deg]



Visibility of blur

 The same amount of blur was introduced into light-dark, 
red-green and blue-yellow colour opponent channels

 The blur is only visible in light-dark channel
 This property is used in image and video compression
 Sub-sampling of colour channels (4:2:1)
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Mach Bands – evidence for band-pass 
visual processing

• “Overshooting“ along edges
– Extra-bright rims on bright sides
– Extra-dark rims on dark sides

• Due to “Lateral Inhibition“
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Centre-surround (Lateral Inhibition)
 “Pre-processing” step within the retina
 Surrounding brightness level weighted negatively

 A: high stimulus, maximal bright inhibition
 B: high stimulus, reduced inhibition & stronger response
 D: low stimulus, maximal inhibition
 C: low stimulus, increased inhibition &

weaker response

Center-surround 
receptive fields

(groups of 
photoreceptors)
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Centre-surround: Hermann Grid
• Dark dots at crossings
• Explanation

– Crossings (A)
• More surround stimulation 

(more bright area)
 Less inhibition
 Weaker response

– Streets (B)
• Less surround stimulation
 More inhibition
 Greater response

• Simulation
– Darker at crossings, brighter in streets
– Appears more steady
– What if reversed ?

A B

Sim
ulation
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Psychedelic

some further weirdness
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Spatial-frequency selective channels
 The visual information is 

decomposed in the visual cortex 
into multiple channels
 The channels are selective to spatial 

frequency, temporal frequency and 
orientation

 Each channel is affected by different 
„noise” level

 The CSF is the net result of 
information being passed in noise-
affected visual channels

From: Wandell, 1995
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Multi-scale decomposition

Steerable pyramid
decomposition
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Multi-resolution visual model
 Convolution kernels 

are band-pass, 
orientation selective 
filters

 The filters have the 
shape of an oriented 
Gabor function

From: Wandell, 1995
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Applications of multi-scale models
 JPEG2000
 Wavelet decomposition

 JPEG / MPEG
 Frequency transforms

 Image pyramids
 Blending & stitching
 Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

 Light adaptation: from dark to bright
 Dark adaptation: from bright to dark (much slower)
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Time-course of 
adaptation

Bright -> Dark Dark -> Bright

57



Temporal adaptation mechanisms
 Bleaching & recovery of photopigment
 Slow assymetric (light -> dark, dark -> light) 
 Reaction times (1-1000 sec)
 Separate time-course for rods and cones

 Neural adaptation
 Fast
 Approx. symmetric reaction times (10-3000 ms)

 Pupil
 Diameter varies between 3 and 8 mm
 About 1:7 variation in retinal illumunation
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Night and daylight vision

Luminous efficiency
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Simultaneous contrast
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High-Level Contrast Processing
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High-Level Contrast Processing
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Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives
– Directional emphasis
– Size emphasis
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Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

• Automatic geometrical interpretation
– 3D perspective
– Implicit scene depth
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Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.
– Confuse HVS by presenting 

contradicting visual clues
– Local vs. global processing
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Virtual Movement

caused by saccades, motion from dark to bright areas 
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Law of closure

68
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