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Advanced Graphics & Image Processing

Image-based rendering
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What is image-based rendering (IBR)?

» IBR = use images for 3D rendering

3D mesh + textures + shading Photogrammetry NraI Radiance Fields

» Our focus: methods that let us capture content with cameras
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Motivation: why do we need image-based rendering?

» For inexpensive creation of high-quality 3D content
Minimize manual steps
Use cameras, which are good and abundant

» Why do we need 3D content!?
AR/VR (+ novel display tech)
User-created content
3D-printing

E-commerce o
& Vision Pro
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3D computer graphics
» We need:

Geometry + materials + textures
Lights
» Full control of illumination, realistic
material appearance
» Graphics assets are expensive to create

» Rendering can be expensive

Shading tends to takes most of the
computation

Cyberpunk 2077 (C) 2020 by CD Projekt RED



Baked / precomputed illumination
» We need:

Geometry + textures + (light maps)
» No need to scan and model materials

» Much faster rendering — simplified shading

Precomputed light maps (from Wikipedia)



Billboards / Sprites
» We need:

Simplified geometry + textures (with alpha)
Lights
» Much faster to render than objects with
1000s of triangles

» Used for distant objects

or a small rendering budget

» Can be pre-computed from complex
geometry

A tree rendered from a set of billboards
From:
https://docs.unity3d.com/ScriptReference/Bil
IboardAsset.html



Light fields
» We need:

Images of the scene

Or a microlens image

» Does not need any geometry

But requires a large number of images
for good quality

» Photographs are rep-projected on a
(focal) plane

» No relighting
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Light fields + depth

» We need:
Depth map

Images of the object/scene

» We can use camera-captured images

» View-dependent shading

» Depth-map can be computed using multi-
view stereo techniques

» No relighting

A depth map is approximated by triangle
mesh and rasterized. From: Overbeck et al.
TOG 2018,

Demo:



Multi-plane images (MPI)
» We need:

Images of the scene
+ camera poses

» Each plane: RGB + alpha

Decomposition formulated as an
optimization problem

" Promote to MPI

Differential rendering

Rendered image
Reconstruction
loss

» Only front view

[1] Mildenhall, et al. “Local Light Field Fusion.” ACM Transactions on
Graphics 38, no. 4 (July 12, 2019): 1-14.
https://doi.org/10.1145/3306346.3322980

[2] Wizadwongsa et al. “NeX: Real-Time View Synthesis with Neural Basis .
Expansion.” In CVPR, 8530-39. IEEE, 2021. SR RGB! Wiew-depentient RGR MH
https://doi.org/10.1109/CVPR46437.2021.00843 From [2]
https://nex-mpi.github.io/

S

Ground truth>
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Neural Radiance Fields (NeRF)

5D Input Output Volume Rendering
2 We need Position + Direction Color + Density Rendering Loss
10
r» (x0,2,0,¢)— —(RGBo) \ /—\
Ray'1 & - 2
Images of the scene e Fy  wiws, i e[

+ camera poses

» Similar to MPI but stored in a
. From [1]

volumetric data structure 5 ssmmsmews
Implicit: multi-layer perceptron TAN-R

Explicit:Voxel grid

c) Volumetric Rendering

minimize Lyecon + ALy
® (0.0}

Training

» Volumetric differential

M a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization
rendering
From [2]

[1] Mildenhall, et al. “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis,” 405-21, 2020.

[2] Yu et al. “Plenoxels: Radiance Fields without Neural
Networks.” In CVPR, 5501-10, 2022.
http://arxiv.org/abs/2112.05131.
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Imaging — without lens

Sensor
Two example film
points > camera sensor
retina
Object

Every point in the scene illuminates every point
(pixel) on a sensor. Everything overlaps - no useful
image.



Imaging — pinhole camera

Two example A
points —
NG
Object

Pinhole mask

Pinhole masks all but only tiny beams of light. The light

from different points is separated and the image is
formed.

But very little light reaches the sensor.

Sensor

film

camera sensor
B’ retina

A!




Imaging — lens

/rﬂ\ Sensor
Two example / \ film
points — camera sensor
< retina
Object

Lens

Lens can focus a beam of light on a sensor (focal plane).

Much more light-efficient than the pinhole.



Imaging — lens

,/—K Sensor

film

camera sensor
retina

Objec

U

Lens

But it the light beams coming from different distances are
not focused on the same plane.
These points will appear blurry in the resulting image.

Camera needs to move lens to focus an image on the
sensor.



Depth of field

» Depth of field — range of depths that provides sufficient
focus
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Defocus blur is often desirable

TO separate the object of Defocus blur is a strong depth cue
interest from background



Imaging — aperture

,/_\; Sensor
/ ‘ film
camera sensor
retina
Objec
Lens

Aperture

Aperture (introduced behind the lens) reduces the
amount of light reaching sensor, but it also reduces
blurriness from defocus (increases depth-of-field).



Imaging — lens

/ﬁj Sensor
| film
camera sensor

retina
Focal length

Focal length — length between the sensor and the lens that is
needed to focus light coming from an infinite distance.

Larger focal length of a lens — more or less magnification?
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From a plenoptic function to a light field

» Plenoptic function — describes all possible rays in a 3D space

Function of position (x,y, z)
and ray direction (6, ¢)

But also wavelength A and time t )

Y

L(z,y,z,0,0)

Between 5 and 7 dimensions (.9, 2) L
(0]

» But the number of dimensions can be reduced if
The camera stays outside the convex hull of the object
The light travels in uniform medium

Then, radiance L remains the same along the ray (until the ray hits an object)

This way we obtain a 4D light field

21



Planar 4D light field
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Refocusing and view point adjustment

» 23 Screen capture from http://www.lytro.com/



Depth estimation from light field

» Passive sensing of depth . Reconstructed
Central view  depth

» Light field captures multiple
depth cues

» Correspondance (disparity)
between the views

» Defocus
» Occlusions

From: Ting-Chun Wang, Alexei A. Efros, Ravi
Ramamoorthi; The IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 3487-3495




Two methods to capture light fields

» Small baseline » Large baseline
» Good for digital refocusing » High resolution
» Limited resolution » Rendering often requires approximate

depth
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Light field image — with microlens array

26
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Digital Refocusing using
Light Field Camera

Lenslet
array
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e-sided microlenses [Ng et al 2005]
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Lytro-cameras

» First commercial light-field cameras
» Lytro illum camera

40 Mega-rays

2D resolution: 2450 x 1634 (4 MPixels)
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Raytrix camera

» Similar technology to Lytro

» But profiled for
computer vision applications

%
l

| Micro Lens Array Main Lens Object

Image Sensor Intermediate Image
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Stanford camera array

Application: Reconstruction of
occluded surfaces
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96 cameras
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PiCam camera array module

» Array of 4 x 4 cameras on a
single chip

» Each camera has its own lens
and senses only one spectral

COIOU"' band 2-Element Lens Array Sensor Arfay
Optics can be optimized for
that band el
» The algorithm needs to e

reconstruct depth

31




Light fields: two parametrisations

(shown in 2D)
>
- h

>
| >

2 Ray ] | S- position
\: - slope

|X - position

(U - position

Position and slope
(slope - tangent of the angle) Two planes
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Lightfield - example







Lightfield - ex




Lightfield - example
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Position X Image on the retina
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Light field rendering (1/3)

We want to render a scene (Blender monkey) as seen
by camera K. We have a light field captured by a
camera array. Each camera in the array has its aperture
on plane C.

38



Light field rendering (2/3)

From the viewpoint of
camera K

Each camera in the
array provides
accurate light
measurements only for
the rays originating
from its pinhole
aperture.

The missing rays can
be either interpolated
(reconstructed) or
ignored.




Light field rendering (3/3)

The rays from the camera need to be projected on the focal
plane F. The objects on the focal plane will be sharp, and
the objects in front or behind that plane will be blurry
(ghosted), as in a traditional camera.

If we have a proxy geometry, we can
project on that geometry instead — the
rendered image will be less
ghosted/blurry

40



Intuition behind light field rendering

» For large virtual aperture (use all cameras in the array)
Each camera in the array captures the scene
Then, each camera projects its image on the focal plane F

The virual camera K captures the projection

» For small virtual aperture (pinhole)

For each ray from the virtual camera

interpolate rays from 4 nearest camera images

Or use the nearest-neighbour ray

41



LF rendering — focal plane

3D object /\

N

» For a point on the focal
plane, all cameras capture
the same point on the 3D

F object

» They also capture
approximately the same
colour (for diffuse objects)

» Averaged colour will be
the colour of the point on

% the surface
\

G

42



» If the 3D object does not
lie on the focal plane, all
camaras capture different

- points on the object

LF rendering — focal plane
» Averaging colour values

3D object/\
will produce a ,,ghosted”

\ image

» If we had unlimited
number of cameras, this

would produce a depth-
% of-field effect
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Finding homographic transformation 1/3

» For the pixel coordinates p;, of
the virtual camera K, we want to

3D object

find the corresponding P
coordinates p; in the camera array

image
» Given the world 3D coordinates p
of a point w: AQ\
/ / \“/

oy N —F— . K
Intrinsic Projection View
camera matrix ) matrix matrix

z; f:c 0 Cac— 100 0 _U11 V12 713 ’014_ X
yi | = 0 fy ¢, 01 0 0 Va1 Vpa T2z Uoa Y
- 0 0 1 00 10 V31 V32 V33 Us4 Z

. - 0 0 0 1 Il
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Finding homographic transformation 2/3

» A homography between two views is usually found as:
Pk = KxPViw
p; = K;PV;w
hence
pi = K;PV,Vi' P~ K 'py
» But, Ky PV is not a square matrix and cannot be inverted

To find the correspondence, we need to constrain 3D coordinates w to lie on the
plane:

N (w—wpr)=0 or :[nw Ny N, —N-’wp]

N
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Finding homographic transf:

» Then, we add the plane equation to the projgction matrix

X
Yi
di

Ww;

Di

& B g

e o,

' s

= O
$?

=
’—

The plane in

the camera coordinates
(not world coordinates)

» Where d; is the distance to the plane

» Hence

46

~

Di

i l 0 O () i _’Ull
0 1 0 0] B
[n,‘(f) n nd —NO. w(;)] 31
0 0 1 0 | |0
P
K,PV,VXP 'K 'p
7 ) K Dk

V12

V22

V32
0

v,

V13
Vo3
Us3

V14

1

U924
U34

= N




GRAPHICS EeiRelu]y
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Stereo magnification:
learning view synthesis using multiplane images

» Synthetize motion parallax from two (stereo) views

Zhou, Tinghui, Richard Tucker, John
Flynn, Graham Fyffe, and Noah Snavely.
“Stereo Magnification: Learning View
Synthesis Using Multiplane Images.”
ACM Transactions on Graphics 37, no. 4
(August 31, 2018): 1-12.
https://doi.org/10.1145/3197517.320132
3.
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Stereo magnification:
learning view synthesis using multiplane images

» Goal: decompose images into multiple planes with an alpha channel (MPI)
» Intermediate representation: background and foreground images

To better handle occlusions
The network is overfitted to each scene

Synthesized views
i ] Background color MPI Representation ) 0
————————— - .
o ol . \ |
. B Layers at ‘ Colo i -’
ja— | | fixed depths, efeence source Neural Net i : |-
L —. 1 each is an \ W e
> : RGBA image. i : e
. B . N
M l AN l . ' Blending weights

Reference viewpoint v Q Novel viewpoint
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Local Light Field Fusion: Practical View Synthesis
with Prescriptive Sampling Guidelines

Mildenhall, Ben et al. “Local Light Field

.. . Prescriptive Sampling Guidelines.” ACM
» This is to better capture view-dependent effects Trans. on Graphics 38, no. 4 (July 12,
. 2019): 1-14.
E.g. specular reflections https://doi.org/10.1145/3306346.3322980.

:=‘~_ g o E g S . it
Fast and easy handheld capture with guideline: Promote sampled views to local light field Blend neighboring local light fields
closest object moves at most D pixels between views via layered scene representation to render novel views
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NeX: Real-time View Synthesis with Neural Basis
Expansion

51

» MPI + view-dependent color
encoding
» High quality reproduction of
the view-dependent effects
Specular reflections
Diffraction



NeX: Real-time View Synthesis with Neural Basis
Expansion

Sampling ,
(x,y,d)>» '

» The color is encoded
as a linear
combination of the

basis functions Rendered image

» The basis functions
are trainable

Reconstruction
loss

Ground truth

Base RGB MPI



NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis

» Models a volume rather than a set
of discrete planes

» 360 or front facing

» Uses MLP to represent the colour
and opacity

Mildenhall, Ben, Pratul P. Srinivasan, Matthew
Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. “NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis,” 405-21, 2020.
https://doi.org/10.1007/978-3-030-58452-8 24.
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NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x,,2,0,¢) —»I:"][I—» RGBo) \ /‘\
Ray 1 o v
.)/.;'v .. Ray 1/ | .—g.t. €
Ja o 0aS ?
D o ’_I{n_\'2 /—\ ‘ - 2
/ | 8-ee ],
Ray Distance
Pixel (x,y,z) coordinates
colour along the ray
tf t
C(r) = T(t)o(r(t))c d)dt, where T'(t) = exp( / J(r(s))ds>
t’n, tn

ray terminating (stored in
an MPL)

direction d (stored in an
MLP)

(differentiable) stratified

sampling

Computed as a
54

Colour at (x,y,z) in the J “opacity” or probability of}




Positional encoding
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» Encoding coordinates as the Fourier “features” allows MPL to
learn high frequencies

e
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» Works with other basis functions

0
W

Y
E

()
@)
(=)

y=fly(p)w)

—— No mapping
—— Gaussian Fourier features

0 1000 2000 3000 4000 5000
Training iteration

» 55 No positional encoding  With positional encoding




Implicit (neural) (volumetric/n-dim) representations

» Neural signed distance function

A function that stores a distance to a surface

d=fxy2¢)

» Neural radiance caching

Predict colour from feature buffers independently for each pixel

Feature buffers

Predicted color

Online
K supervised
' m(enc(x;0); D) RS training
N —>
I

» Learning a giga-pixel image
RGB = f(x,y; $)

56 [llustrations from:

https://dl.acm.org/doi/10.1145/3528223.3530127



Reducing the cost of the MLP

3
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Given input coordinates
x, only a small portion of
the network activations
will contribute to the
output. This is inefficient.
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Instant neural graphics primitives with a
multiresolution hash encoding

y =m(y(x); ¢)

L=2 b=15 [1/N° e

‘ N ; ) m(y; @)
i T 2 T O O
SEG : , 000
17 _| | ¢ i O O O

1/N; 0 | 4 —{|L-F —>
: |z O 00O
: . OO
6
1 | 7 7 = :
(1) Hashing of voxel vertices (2) Lookup  (3) Linear interpolation  (4) Concatenation (5) Neural network

Muller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural Graphics Primitives with a Multiresolution Hash
Encoding.” ACM Transactions on Graphics 41, no. 4 (July 22, 2022): 1-15. https://doi.org/10.1145/3528223.3530127.
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