
Rafał Mantiuk
Computer Laboratory, University of Cambridge

Global Illumination
Advanced Graphics & Image Processing

What’s wrong with recursive raytracing?
o Soft shadows are expensive
o Shadows of transparent objects require

further coding or hacks
o Lighting off reflective objects follows

different shadow rules from normal
lighting

o Hard to implement diffuse reflection
(color bleeding, such as in the Cornell
Box—notice how the sides of the inner
cubes are shaded red and green)

o Fundamentally, the ambient term is a
hack and the diffuse term is only one
step in what should be a recursive, self-
reinforcing series.

2

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual
box is built and photographed; an
identical scene is then rendered in
software and the two images are
compared.

Global illumination examples

This box is white!

3

Global Illumination in real-time graphics

Pre-GI Post-GI
4

Cornell Box: a rendering or photograph?

Rendering Photograph

5

Rendering equation (revisited)
 Most rendering methods require solving an (approximation) of

the rendering equation:

 The solution is trivial for
point light sources

 Much harder to estimate
the contribution of other
surfaces

ݎܮ ࣓࢘ = න ߩ ,࢏࣓ ࣓࢘ ݅ܮ ߱݅ ࢏࣓݀݅ߠݏ݋ܿ

ஐ

Reflected light

Incident light

BRDF

Integral over the
hemisphere of
incident light

࣓࢘

࢏࣓ = ߶௜ , ௜ߠ

6

Light transport

DD DS

SD SS

7

Shadows, refraction and caustics
• Problem: shadow ray strikes

transparent, refractive object.
• Refracted shadow ray will now miss

the light.
• This destroys the validity of the

boolean shadow test.

• Problem: light passing through a
refractive object will sometimes
form caustics (right), artifacts where
the envelope of a collection of rays
falling on the surface is bright
enough to be visible.

8

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and
outside of its shadow.
Photo credit: Jan Zankowski

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping

Shadows, refraction and caustics
 Solutions for shadows of transparent objects:

 Backwards ray tracing (Arvo)
 Very computationally heavy
 Improved by stencil mapping (Shenya et al)

 Shadow attenuation (Pierce)
 Low refraction, no caustics

 More general solution:
 Path tracing
 Photon mapping (Jensen)→

9

Path tracing
 Trace the rays from the camera (as in recursive ray tracing)

 [Russian roulette] When a surface is hit, either (randomly):
 shoot another ray in the random direction sampled using the BRDF [importance

sampling];
 or terminate

 For each hit sample sample light sources (direct illumination) and other
directions (indirect illumination)

 40-1000s rays must be traced
for each pixel

 The method converges to
the exact solution of the
rendering equation
 But very slowly
 Monte Carlo approach to

solving the rendering equation
Image from A Practical Guide to Global Illumination
using Photon Maps by Henrik Jensen (2000)10

Monte-Carlo methods
 Path tracing estimates rendering equation by shooting rays in

random directions (sampling) and averaging the contributions
 This is equivalent to estimating integral using Monte-Carlo

sampling

න ݂ ݔ ݔ݀
௕

௔
≈

1
ܰ

෍ ݂ ௜ݔ (ܾ − ܽ)
ே

௜ୀଵ

where ݔ௜ are randomly drawn from Uniform(a,b)

11

Importance sampling
 Monte-Carlo sampling converges faster if ray directions with

dominant contribution are sampled more often
 Dominant directions are unknown

 But BRDF could be used as an estimate
of importance

 When the sampling distribution is
non-uniform, we need to use
different estimator:

න ݂ ݔ ݔ݀ = න
݂ ݔ
݌ ݔ

݌ ݔ ݔ݀ = ܧ
(ݕ)݂
(ݕ)݌

≈
1
ܰ

෍
(௜ݕ)݂
(௜ݕ)݌

ே

௜ୀଵ

Where ݕ is sampled from the distribution ݌ ݕ - shown as red-
dashed line in the plot

(ݕ)݂

݌ ݕ

12

Importance sampling (intuition)
 Monte-carlo integration requires less samples when the

integrated function varies less

 One way to make the integrated function vary less: divide by
an approximation of the integrated function

መ݂ ݔ =
(ݔ)݂
(ݔ)݌

13

Russian roulette
 Intuition: consecutive light bounces contribute less and less to

the final color
 But we cannot stop after N bounces as it will introduce bias (under-

estimation)

 Instead: (after the first one or two bounces) terminate the
current path with the probability ݍ
 Then, the estimator becomes

ᇱܨ = ൝
ி

ଵି௤
݂݅ ߬ > ݍ

0 ݁ݏ݅ݓݎℎ݁ݐ݋
݉ݎ݋݂ܷ݅݊~߬ , 0,1 ܨ , – next bounce radiance

 Longer paths (with more vertices) become unlikely
 Works the best if we know the contribution of F is likely to be small
 If ݍ is too large, we may end up with high variance and fireflies

14

Denoising for Monte-Carlo rendering
 Instead of tracing 1000s of rays, we can trace 4-8 rays per pixel

and employ a denoiser
 Modern denoisers are (convolutional) neural networks that take as input

sample radiance, geometric and material features (G-buffer) and warped
samples from the previous frame(s)

From: Balint et al. 2023 http://dx.doi.org/10.1145/3588432.3591562

15

Photon mapping
Photon mapping is the process of
emitting photons into a scene and
tracing their paths probabilistically to
build a photon map, a data structure
which describes the illumination of
the scene independently of its
geometry.

This data is then combined with ray
tracing to compute the global
illumination of the scene.

16

Image by Henrik Jensen (2000)

Photon mapping—algorithm (1/2)
Photon mapping is a two-pass algorithm:
1. Photon scattering

A. Photons are fired from each light source,
scattered in randomly-chosen directions.
The number of photons per light is a function of its surface area and
brightness.

B. Photons fire through the scene (re-use that raytracer). Where they
strike a surface they are either absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction and
energy of the photon in the photon map. The photon map data
structure must support fast insertion and fast nearest-neighbor
lookup; a kd-tree1 is often used.

17

Image by Zack Waters

Photon mapping—algorithm (2/2)
Photon mapping is a two-pass algorithm:
2. Rendering

A. Ray trace the scene from the point of view of
the camera.

B. For each first contact point P use the ray tracer for specular but
compute diffuse from the photon map.

C. Compute radiant illumination by summing the contribution along the
eye ray of all photons within a sphere of radius r of P.

D. Caustics can be calculated directly here from the photon map. For
accuracy, the caustic map is usually distinct from the radiance map.

18

Image by Zack Waters

Photon mapping is probabilistic
This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting equation)
is simulated by randomly sampling
values from within the integral’s domain
until enough samples average out to
about the right answer.
• This means that you’re going to be

firing millions of photons. Your data
structure is going to have to be very
space-efficient.

19
Image credit: http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic
• Initial photon direction is random. Constrained by light

shape, but random.
• What exactly happens each time a photon hits a solid also

has a random component:
• Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where
(pd+ps+pt)≤1. This gives a probability map:

• Choose a random value p є [0,1]. Where p falls in the probability
map of the surface determines whether the photon is reflected,
refracted or absorbed.

20

0 1pd pspt
This surface would
have minimal
specular highlight.

Photon mapping gallery

21 http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

Real-time global illumination:
irradiance probes (diffuse GI only)

Step 1: Create a voxel grid

Step 2: For each voxel
centre, render
a cube map (or sample
with a ray-tracer). For
the first bounce, render
direct illumination only.

Step 3: Integrate incoming light over a
hemisphere (compute irradiance probes)

Step 4: Render the scene using interpolated values
from the irradiance probes to look up indirect illumination

Repeat Steps 2 and 3 (potentially over consecutive frames) to simulate more bounces of light

22

Dynamic Diffuse Global Illumination

23

Dynamic Diffuse Global Illumination

Main issue: how to
discount the effect of
the occluded probes

24

Dynamic Diffuse Global Illumination

Storing depth per
sample is too
expensive

25

Dynamic Diffuse Global Illumination

We want to store
depth per a range of
directions

26

Dynamic Diffuse Global Illumination

To encode the
variation in depth, we
store the distribution
of depths (mean and
variance)

27

Dynamic Diffuse Global Illumination

When interpolating
irradiance from the
probes, use the
cumulative
distribution to
determine weight due
to shadowing

28

Ambient occlusion
 Approximates global

illumination
 Estimate how much occluded is

each surface
 And reduce the ambient light it

receives accordingly

 Much faster than a full global
illumination solution, yet
appears very plausible
 Commonly used in animation,

where plausible solution is more
important than physical accuracy

Image generated with ambient
component only (no light) and
modulated by ambient occlusion
factor.

29

Ambient occlusion in action

30 Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Ambient occlusion in action

31 Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Ambient occlusion
 For a point on a surface, shoot rays in random directions

 Count how many of these rays hit objects

 The more rays hit other
objects, the more occluded
is that point
 The darker is the

ambient component

Ap occlusion at point p
n normal at point p
Vp,߱ visibility from p in direction ߱
Ω integrate over a hemisphere

32

Ambient occlusion - Theory
 This approach is very flexible
 Also very expensive!
 To speed up computation, randomly

sample rays cast out from each
polygon or vertex (this is a Monte-
Carlo method)

 Alternatively, render the scene from
the point of view of each vertex and
count the background pixels in the
render

 Best used to pre-compute per-object
“occlusion maps”, texture maps of
shadow to overlay onto each object

 But pre-computed maps fare poorly
on animated models...

33 Image credit: “GPU Gems 1”, nVidia, 2004.
Top: without AO. Bottom: with AO.

Z-
bu

ffe
r -

to
w

ar
ds

 th
e

ey
e

Screen Space Ambient Occlusion - SSAO
“True ambient occlusion is hard, let’s
go hacking.”

 Approximate ambient occlusion by
comparing z-buffer values in screen
space!

 Open plane = unoccluded
 Closed ‘valley’ in depth buffer =

shadowed by nearby geometry
 Multi-pass algorithm
 Runs entirely on the GPU

34 Image: CryEngine 2. M. Mittring, “Finding Next Gen –
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28

Surface in
Z-buffer

References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Matt Pharr, Wenzel Jakob, Greg Humphreys, “Physically Based Rendering From Theory to Implementation”
(2017)

Dynamic Diffuse Global Illumination
 Majercic et al. “Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields”

Ambient occlusion and SSAO
 “GPU Gems 2”, nVidia, 2005. Vertices mapped to illumination.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
 MITTRING, M. 2007. Finding Next Gen – CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 –

Advanced Real-Time Rendering in 3D Graphics and Games, Siggraph 2007, San Diego, CA, August 2007.
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-
Finding_NextGen_CryEngine2.pdf

 John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Photon mapping
 Henrik Jensen, “Global Illumination using Photon Maps”: http://graphics.ucsd.edu/~henrik/
 Henrik Jensen, “Realistic Image Synthesis Using Photon Mapping”
 Zack Waters, “Photon Mapping”:

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

Some slides are the curtesy of Alex Benton

35

