Advanced Graphics & Image Processing

Ray tracing (refresher)

Alejandro Sztrajman, Rafał Mantiuk
Computer Laboratory, University of Cambridge
Ray tracing

Given a set of 3D objects, shoot a ray from the eye through the centre of every pixel and see what surfaces it hits

- Identify point on surface and calculate illumination

shoot a ray through each pixel

whatever the ray hits determines the colour of that pixel
Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
 determine the ray from the eye through the pixel’s centre
 FOR each object in the scene
 IF the object is intersected by the ray
 IF the intersection is the closest (so far) to the eye
 record intersection point and object
 calculate colour for the closest intersection point (if any)
 END IF ;
 END IF ;
 END FOR ;
Reflection models and radiometry

Alejandro Sztrajman, Rafał Mantiuk

Computer Laboratory, University of Cambridge
Applications

- To render realistic looking materials
- Applications also in computer vision, optical engineering, remote sensing, etc.
 - To understand how surfaces reflect light
Applications

- Many applications require faithful reproduction of material appearance

Source: http://ikea.com/

Source: http://www.mercedes-benz.co.uk/
Most rendering methods require solving an (approximation) of the rendering equation:

\[L_r(\omega_r) = \int_{\Omega} \rho(\omega_i, \omega_r)L_i(\omega_i)\cos\theta_i d\omega_i \]

- The solution is trivial for point light sources
- Much harder to estimate the contribution of other surfaces

\[\omega_i = [\phi_i, \theta_i] \]
Radiance

- Power of light per unit projected area per unit solid angle
- Symbol: $L(x, \omega_i)$
- Units: $\frac{W}{m^2 \text{sr}}$
Solid angle

Angle in 2D

Equivalent in 3D

\[\theta = \frac{L}{R} \text{ [rad]} \]

\[\omega = \frac{A}{R^2} \text{ [sr]} \]

Full circle = 2\(\pi \) radians

Full sphere = 4\(\pi \) steradians
Radiance

- Power per solid angle per projected surface area
- Invariant along the direction of propagation (in vacuum)
- Response of a camera sensor or a human eye is related to radiance
- Pixel values in image are related to radiance (projected along the view direction)

\[L(x, \omega_i) = \frac{d\phi}{d\omega \, dA \, \cos\theta} \]
Irradiance and Exitance

- Power per unit area
- Irradiance: $H(x)$ – incident power per unit area
- Exitance / radiosity: $E(x)$ – exitant power per unit area
- Units: $\frac{W}{m^2}$
Relation between Irradiance and Radiance

- Irradiance is an integral over all incoming rays
 - Integration over a hemisphere Ω:
 \[
 H = \int_{\Omega} L(x, \omega_i) \cos \theta \, d\omega
 \]
 - In the spherical coordinate system, the differential solid angle is:
 \[
 d\omega = \sin \theta \, d\theta \, d\phi
 \]
 - Therefore:
 \[
 H = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} L(x, \omega_i) \cos \theta \sin \theta \, d\theta \, d\phi
 \]
 - For constant radiance:
 \[
 H = \pi L
 \]
BRDF: Bidirectional Reflectance Distribution Function

BRDF is measured as a ratio of reflected radiance to irradiance.

Because it is difficult to measure $L_i(\omega_i)$, BRDF is not defined as the ratio $L_r(\omega_r)/L_i(\omega_i)$.

BRDF of various materials

- The diagrams show the distribution of reflected light for the given incoming direction.
- The material samples are close but not accurate matches for the diagrams.

Magnesium alloy; $\lambda = 0.5\,\mu m$

Aluminium; $\lambda = 2.0\,\mu m$

Aluminium; $\lambda = 0.5\,\mu m$

Magnesium alloy; $\lambda = 0.5\,\mu m$
Other material models

- Bidirectional Scattering Surface Reflectance Distribution F.
- **Bidirectional Reflectance Distribution Function**
- Bidirectional Transfer Distribution Function
- But also: BTF, SVBRDF, BSDF
- In this lecture we will focus mostly on BRDF

Source: Guarnera et al. 2016
Sub-surface scattering

- Light enters material and is scattered several times before it exits
 - Examples - human skin: hold a flashlight next to your hand and see the color of the light
- The effect is expensive to compute
 - But approximate methods exist
Subsurface scattering - examples
BRDF Properties

- **Helmholtz reciprocity principle**
 - BRDF remains unchanged if incident and reflected directions are interchanged
 \[\rho(\omega_r, \omega_i) = \rho(\omega_i, \omega_r) \]

- **Smooth surface: isotropic BRDF**
 - reflectivity independent of rotation around surface normal
 - BRDF has only 3 instead of 4 directional degrees of freedom
 \[\rho(\theta_i, \theta_r, \phi_r - \phi_i) \]
BRDF Properties

- **Characteristics**
 - BRDF units \([1/\text{sr}]\)
 - Not intuitive
 - Range of values:
 - From 0 (absorption) to \(\infty\) (reflection, \(\delta\)-function)
 - Energy conservation law
 \[
 \int_{\Omega} \rho(\omega_r, \omega_i) \cos \theta_i d\omega_i \leq 1
 \]
 - No self-emission
 - Possible absorption
 - Reflection only at the point of entry \((x_i = x_r)\)
 - No subsurface scattering
BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
 - point light source position \((\theta, \phi)\)
 - light detector position \((\theta_o, \phi_o)\)
- 4 directional degrees of freedom
- BRDF representation
 - \(m\) incident direction samples \((\theta, \phi)\)
 - \(n\) outgoing direction samples \((\theta_o, \phi_o)\)
 - \(mn\) reflectance values (large!!!)
BRDF Modeling

- It is common to split BRDF into diffuse, mirror and glossy components
- Ideal diffuse reflection
 - Lambert’s law
 - Matte surfaces
- Ideal specular reflection
 - Reflection law
 - Mirror
- Glossy reflection
 - Directional diffuse
 - Shiny surfaces
Diffuse Reflection

- Light equally likely to be reflected in any outgoing direction (independent of incident direction)
- Constant BRDF \(\rho(\omega_r, \omega_i) = k_d = \text{const} \)

\[
L_r(\omega_r) = \int_{\Omega} k_d L_i(\omega_i) \cos \theta_i d\omega_i = k_d \int_{\Omega} L_i(\omega_i) \cos \theta_i d\omega_i = k_d H
\]

- \(k_d \): diffuse coefficient, material property [1/sr]
Diffuse reflection

- **Cosine term**
 - The surface receives less light per unit area at steep angles of incidence

- **Rough, irregular surface results in diffuse reflection**
 - Light is reflected in random direction
 - (this is just a model, light interaction is more complicated)
Reflection Geometry

- **Direction vectors (all normalized):**
 - **N:** surface normal
 - **I:** vector to the light source
 - **V:** viewpoint direction vector
 - **H:** halfway vector
 \[H = \frac{I + V}{|I + V|} \]
 - **R(I):** reflection vector
 \[R(I) = I - 2(I \cdot N)N \]
 - **Tangential surface: local plane**
Glossy Reflection
Glossy Reflection

- Due to surface roughness
- Empirical models
 - Phong
 - Blinn-Phong
- Physical models
 - Blinn
 - Cook & Torrance
Phong Reflection Model

- Cosine power lobe
 \[\rho(\omega_r, \omega_i) = k_s (R \cdot V)^{k_e} \]

- Dot product & power
- Not energy conserving/reciprocal
- Plastic-like appearance
Phong Exponent k_e

$$\rho(\omega_r, \omega_i) = k_s (R \cdot V)^{k_e}$$

- Determines the size of highlight
Phong Illumination Model

- Extended light sources: l point light sources

$$L_r = k_a L_{i,a} + k_d \sum I_l (I_l \cdot N) + k_s \sum L_l (R(I_l) \cdot V)^{k_e} \quad \text{(Phong)}$$

$$L_r = k_a L_{i,a} + k_d \sum I_l (I_l \cdot N) + k_s \sum L_l (H_l \cdot N)^{k_e} \quad \text{(Blinn)}$$

- Colour of specular reflection equal to light source

- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term

- Often: light sources & viewer assumed to be far away
Micro-facet model

- We can assume that at small scale materials are made up of small facets
 - Facets can be described by the distribution of their sizes and directions D
 - Some facets are occluded by other, hence there is also a geometrical attenuation term G
 - And we need to account for Fresnel reflection (see next slides)

$$\rho(\omega_i, \omega_r) = \frac{D \cdot G \cdot F}{4 \cos \theta_i \theta_r}$$
Cook-Torrance model

- Can model metals and dielectrics
- Sum of diffuse and specular components
 \[\rho(\omega_i, \omega_r) = \rho_d(\omega_i) + \rho_s(\omega_i, \omega_r) \]
- Specular component:
 \[\rho_s(\omega_i, \omega_r) = \frac{D(h) G(I, V) F(\omega_i)}{\pi \cos \theta_i \cos \theta_r} \]
- Distribution of microfacet orientations:
 \[D(h) = \cos \theta_r e^{-\left(\frac{\alpha}{m}\right)^2} \]
- Geometrical attenuation factor
 - To account to self-masking and shadowing
 \[G(I, V) = \min \left\{ 1, \frac{2(N \cdot H)(N \cdot V)}{V \cdot H}, \frac{2(N \cdot H)(N \cdot I)}{V \cdot H} \right\} \]
GGX model

- Multiple PBR models have been defined by modifying the definitions of the D and G functions.

\[\rho_s(\omega_i, \omega_r) = \frac{D(h) G(I, V) F(\omega_i)}{\pi \cos \theta_i \cos \theta_r} \]

- Distribution of microfacet orientations:

\[D_{GGX}(\vec{n}) = \frac{\alpha^2}{\pi \left[(\vec{n} \cdot \hat{n})^2 (\alpha^2 - 1) + 1 \right]^2} \]

- More computationally efficient than Beckmann
- More realistic, especially high roughness materials
- Longer tails (higher intensity reflections at grazing angles)
- Currently used by most real-time renderers

Source: https://planetside.co.uk/news/terragen-4-5-release
Fresnel term

- The light is more likely to be reflected rather than transmitted near grazing angles.
- The effect is modelled by Fresnel equation: it gives the probability that a photon is reflected rather than transmitted (or absorbed).

Example from: https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel
Reflectance for s-polarized light:

\[
R_s = \left| \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right|^2 = \left| \frac{n_1 \cos \theta_i - n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2}}{n_1 \cos \theta_i + n_2 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2}} \right|^2,
\]

Reflectance for p-polarized light:

\[
R_p = \left| \frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i} \right|^2 = \left| \frac{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2} - n_2 \cos \theta_i}{n_1 \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2} + n_2 \cos \theta_i} \right|^2.
\]
Fresnel term

- In Computer Graphics the Fresnel equation is approximated by Schlick’s formula [Schlick, 94]:

\[R(\theta, \lambda) = R_0(\lambda) + (1 - R_0(\lambda))(1 - \cos\theta)^5 \]

- where \(R_0(\lambda) \) is reflectance at normal incidence and \(\lambda \) is the wavelength of light

- For dielectrics (such as glass):

\[R_0(\lambda) = \left(\frac{n(\lambda) - 1}{n(\lambda) + 1} \right)^2 \]
Which one is Phong / Cook-Torrance?
Spatially-Varying Materials

- In spatially-varying materials the reflectance has an additional dependence on the position over the material surface:

\[f_r(\vec{\omega}_i, \vec{\omega}_o, \vec{x}) \]
Spatially-Varying Materials

A common representation for SVBRDFs is via textures that encode analytic BRDF model parameters.
Spatially-Varying Materials

- In most commercial renderers, SVBRDFs are designed through procedural graphs. This gives the user great editing flexibility.
- Texture map representations can also be used as input or output of the graph (baking).

Source: Blender.
Image based lighting (IBL)

1. Capture an HDR image of a light probe

2. Create an illumination (cube) map

3. Use the illumination map as a source of light in the scene

The scene is surrounded by a cube map

Source: Image-based lighting, Paul Debevec, HDR Symposium 2009
Blender monkeys + IBL (path tracing)
Further reading

- A. Watt, 3D Computer Graphics
 - Chapter 7: Simulating light-object interaction: local reflection models

- Matt Pharr, Wenzel Jakob, Greg Humphreys, “Physically Based Rendering From Theory to Implementation” (2017)

- Eurographics 2016 tutorial
 - D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross
 - BRDF Representation and Acquisition
 - DOI: 10.1111/cgf.12867

- Some slides have been borrowed from Computer Graphics lecture by Hendrik Lensch