Type Systems

Lecture 11: Applications of Continuations, and Dependent Types

Neel Krishnaswami
University of Cambridge
Applications of Continuations
Applications of Continuations

We have seen that:

• Classical logic has a beautiful inference system
• Embeds into constructive logic via double-negation translations
• This yields an operational interpretation
• What can we program with continuations?
The Typed Lambda Calculus with Continuations

Types \(X ::= 1 | X \times Y | 0 | X + Y | X \rightarrow Y | \neg X \)

Terms \(e ::= x | \langle \rangle | \langle e, e \rangle | \text{fst } e | \text{snd } e \\
| \text{abort } | L e | R e | \text{case}(e, L x \rightarrow e', R y \rightarrow e'') \\
| \lambda x : X. e | e e' \\
| \text{throw}(e, e') | \text{letcont } x. e \)

Contexts \(\Gamma ::= \cdot | \Gamma, x : X \)
Continuation Typing

\[\frac{\Gamma, u : \neg X \vdash e : X}{\Gamma \vdash \text{letcont } u : \neg X. \ e : X} \quad \text{CONT} \]

\[\frac{\Gamma \vdash e : \neg X \quad \Gamma \vdash e' : X}{\Gamma \vdash \text{throw}_Y(e, e') : Y} \quad \text{THROW} \]
signature CONT = sig
 type 'a cont
 val callcc : ('a cont -> 'a) -> 'a
 val throw : 'a cont -> 'a -> 'b
end
val mul : int list -> int

fun mul [] = 1
 | mul (n :: ns) = n * mul ns

• This function multiplies a list of integers
• If 0 occurs in the list, the whole result is 0
A Less Inefficient Program

```
val mul' : int list -> int

fun mul' [] = 1
  | mul' (0 :: ns) = 0
  | mul' (n :: ns) = n * mul ns
```

- This function multiplies a list of integers
- If 0 occurs in the list, it immediately returns 0
 - `mul' [0,1,2,3,4,5,6,7,8,9]` will immediately return
 - `mul' [1,2,3,4,5,6,7,8,9,0]` will multiply by 0, 9 times
Even Less Inefficiency, via Escape Continuations

```ml
val loop = fn : int cont -> int list -> int
fun loop return [] = 1
  | loop return (0 :: ns) = throw return 0
  | loop return (n :: ns) = n * loop return ns

val mul_fast : int list -> int
fun mul_fast ns = callcc (fn ret => loop ret ns)
```

- **loop** multiplies its arguments, unless it hits 0
- In that case, it throws 0 to its continuation
- **mul_fast** captures its continuation, and passes it to **loop**
- So if **loop** finds 0, it does no multiplications!
McCarthy’s amb Primitive

• In 1961, John McCarthy (inventor of Lisp) proposed a language construct amb
• This was an operator for *angelic nondeterminism*

```plaintext
let val x = amb [1,2,3]
val y = amb [4,5,6]
in
assert (x * y = 10);
(x, y)
end
(* Returns (2,5) *)
```

• Does search to find a successful assignment of values
• Can be implemented via backtracking – using *continuations*
The AMB signature

signature AMB = sig
 (* Internal implementation *)
 val stack : int option option cont list ref
 val fail : unit -> 'a

 (* External API *)
 exception AmbFail
 val assert : bool -> unit
 val amb : int list -> int
end
exception AmbFail

val stack : int option option cont list ref = ref []

fun fail () =
 case !stack of
 [] => raise AmbFail
 | (k :: ks) => (stack := ks;
 throw k NONE)

fun assert b =
 if b then () else fail()
fun amb [] = fail ()
 | amb (x :: xs) =
 let fun next y k =
 (stack := k :: !stack;
 SOME y)
 in
 case callcc (next x) of
 SOME v => v,
 NONE => amb xs.
 end
fun test2() =
 let val x = amb [1, 2, 3, 4, 5, 6]
 val y = amb [1, 2, 3, 4, 5, 6]
 val z = amb [1, 2, 3, 4, 5, 6]
 in
 assert(x + y + z >= 13);
 assert(x > 1);
 assert(y > 1);
 assert(z > 1);
 (x, y, z)
 end

(* Returns (2, 5, 6) *)
Conclusions

• **amb** required the *combination* of state and continuations
• Theorem of Andrzej Filinski that this is **universal**
• Any “definable monadic effect” can be expressed as a combination of state and first-class control:
 • Exceptions
 • Green threads
 • Coroutines/generators
 • Random number generation
 • Nondeterminism
Dependent Types
<table>
<thead>
<tr>
<th>Logic</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitionistic Propositional Logic</td>
<td>STLC</td>
</tr>
<tr>
<td>Classical Propositional Logic</td>
<td>STLC + 1st class continuations</td>
</tr>
<tr>
<td>Pure Second-Order Logic</td>
<td>System F</td>
</tr>
</tbody>
</table>

- Each logical system has a corresponding computational system
- One thing is missing, however
- Mathematics uses quantification over *individual elements*
- Eg, $\forall x, y, z, n \in \mathbb{N}. \text{if } n > 2 \text{ then } x^n + y^n \neq z^n$
A Logical Curiosity

\[
\begin{align*}
\Gamma \vdash z : \mathbb{N} & \quad \mathbb{N}l_z \\
\Gamma \vdash e : \mathbb{N} & \quad \mathbb{N}l_s \\
\Gamma \vdash s(e) : \mathbb{N} & \\
\Gamma \vdash e_0 : \mathbb{N} & \quad \Gamma \vdash e_1 : X \\
\Gamma, x : X \vdash e_2 : X & \\
\Gamma \vdash \text{iter}(e_0, z \rightarrow e_1, s(x) \rightarrow e_2) : X & \quad \text{NE}
\end{align*}
\]

• \(\mathbb{N}\) is the type of natural numbers
• Logically, it is equivalent to the unit type:
 • \((\lambda x : 1. z) : 1 \rightarrow \mathbb{N}\)
 • \((\lambda x : \mathbb{N}. \langle\rangle) : \mathbb{N} \rightarrow 1\)
• Language of types has no way of distinguishing \(z\) from \(s(z)\).
Dependent Types

- Language of types has no way of distinguishing \(z \) from \(s(z) \).
- So let’s fix that: let types refer to values
- Type grammar and term grammar mutually recursive
- Huge gain in expressive power
An Introduction to Agda

• Much of earlier course leaned on prior knowledge of ML for motivation
• Before we get to the theory of dependent types, let’s look at an implementation
• Agda: a dependently-typed functional programming language
• http://wiki.portal.chalmers.se/agda/pmwiki.php
data Bool : Set where
 true : Bool
 false : Bool

not : Bool → Bool
not true = false
not false = true

• Datatype declarations give constructors and their types
• Functions given type signature, and clausal definition
Agda: Inductive Datatypes

```agda
data Nat : Set where
  z : Nat
  s : Nat → Nat

_+_ : Nat → Nat → Nat
z + m = m
s n + m = s (n + m)

_×_ : Nat → Nat → Nat
z × m = z
s n × m = m + (n × m)
```

- Datatype constructors can be recursive
- Functions can be recursive, but checked for termination
Agda: Polymorphic Datatypes

```agda
data List (A : Set) : Set where
  [] : List A
  _,_ : A → List A → List A

app : (A : Set) → List A → List A → List A
app A [] ys = ys
app A (x , xs) ys = x , app A xs ys

app' : {A : Set} → List A → List A → List A
app' [] ys = ys
app' (x , xs) ys = (x , app' xs ys)
```

- Datatypes can be polymorphic
- `app` has F-style explicit polymorphism
- `app'` has implicit, inferred polymorphism
Agda: Indexed Datatypes

1. `data Vec (A : Set) : Nat → Set` where

2. `[] : Vec A z`

3. `_ , _ : \{n : Nat\} → A → Vec A n → Vec A (s n)`

- This is a *length-indexed list*
- Cons takes a head and a list of length `n`, and produces a list of length `n + 1`
- The empty list has a length of 0
data Vec (A : Set) : Nat → Set where

 [] : Vec A z

_ , _ : {n : Nat} → A → Vec A n → Vec A (s n)

head : {A : Set} → {n : Nat} → Vec A (s n) → A

head (x , xs) = x

• head takes a list of length > 0, and returns an element
• No [] pattern present
• Not needed for coverage checking!
• Note that {n: Nat} is also an implicit (inferred) argument
```
1 data Vec (A : Set) : Nat → Set where
2   [] : Vec A z
3   _ , _ : {n : Nat} → A → Vec A n → Vec A (s n)
4 app : {A : Set} → {n m : Nat} →
5       Vec A n → Vec A m → Vec A (n + m)
6 app [] ys = ys
7 app (x , xs) ys = (x , app xs ys)
```

- Note the appearance of \(n + m \) in the type
- This type guarantees that appending two vectors yields a vector whose length is the sum of the two
data Vec (A : Set) : Nat → Set where
 [] : Vec A z
_ , _ : {n : Nat} → A → Vec A n → Vec A (s n)

-- Won't typecheck!
app : {A : Set} → {n m : Nat} → Vec A n → Vec A m → Vec A (n + m)
app [] ys = ys
app (x , xs) ys = app xs ys

• We forgot to cons x here
• This program won’t type check!
• Static typechecking ensures a runtime guarantee
The Identity Type

\[
\text{data } _\equiv_ \{ \text{A : Set} \} \ (a : \text{A}) : \text{A} \to \text{Set} \ \text{where}
\]
\[
\text{refl} : a \equiv a
\]

- \(a \equiv b\) is the type of proofs that \(a\) and \(b\) are equal
- The constructor \text{refl} says that a term \(a\) is equal to itself
- Equalities arising from evaluation are automatic
- Other equalities have to be proved
An Automatic Theorem

data _≡_ {A : Set} (a : A) : A → Set where
 refl : a ≡ a

+ : Nat → Nat → Nat
z + m = m
s n + m = s (n + m)

z+-left-unit : (n : Nat) → (z + n) ≡ n
z+-left-unit n = refl

• z + n evaluates to n
• So Agda considers these two terms to be identical
data _≡_ {A : Set} (a : A) : A → Set where
 refl : a ≡ a

cong : {A B : Set} → {a a' : A} →
 (f : A → B) → (a ≡ a') → (f a ≡ f a')
cong f refl = refl

z+-+right-unit : (n : Nat) → (n + z) ≡ n
z+-+right-unit z = refl
z+-+right-unit (s n) = cong s (z+-+right-unit n)

• We prove the right unit law inductively
• Note that inductive proofs are recursive functions
• To do this, we need to show that equality is a congruence
The Equality Toolkit

```haskell
data _≡_ {A : Set} (a : A) : A → Set where
  refl : a ≡ a

sym : {A : Set} → {a b : A} →
  a ≡ b → b ≡ a
sym refl = refl

trans : {A : Set} → {a b c : A} →
  a ≡ b → b ≡ c → a ≡ c
trans refl refl = refl

cong : {A B : Set} → {a a' : A} →
  (f : A → B) → (a ≡ a') → (f a ≡ f a')
cong f refl = refl
```

- An equivalence relation is a reflexive, symmetric transitive relation
- Equality is congruent with everything
Commutativity of Addition

\[z-+-right : (n : \text{Nat}) \rightarrow (n + z) \equiv n \]
\[z-+-right z = \text{refl} \]
\[z-+-right (s n) = \]
\[\text{cong} \ s \ (z-+-right \ n) \]

\[s-+-right : (n \ m : \text{Nat}) \rightarrow \]
\[(s \ (n + m)) \equiv (n + (s \ m)) \]
\[s-+-right z \ m = \text{refl} \]
\[s-+-right (s \ n) \ m = \]
\[\text{cong} \ s \ (s-+-right \ n \ m) \]

\[+=-comm : (i \ j : \text{Nat}) \rightarrow \]
\[(i + j) \equiv (j + i) \]
\[+=-comm z \ j = z-+-right \ j \]
\[+=-comm (s \ i) \ j = \text{trans} \ p2 \ p3 \]
\[\text{where} \ p1 : (i + j) \equiv (j + i) \]
\[p1 = +=-comm \ i \ j \]
\[p2 : (s \ (i + j)) \equiv (s \ (j + i)) \]
\[p2 = \text{cong} \ s \ p1 \]
\[p3 : (s \ (j + i)) \equiv (j + (s \ i)) \]
\[p3 = s-+-right \ j \ i \]

- First we prove that adding zero on the right does nothing
- Then we prove that successor commutes with addition
- Then we use these two facts to inductively prove commutativity of addition
• Dependent types permit referring to program terms in types
• This enables writing types which state very precise properties of programs
 • Eg, equality is expressible as a type
• Writing a program becomes the same as proving it correct
• This is hard, like learning to program again!
• But also extremely fun...