Semantics of Programming Languages

Dr Neel Krishnaswami

(Slides used with thanks to Peter Sewell)

Michaelmas 2022

® Science

e Engineering
e Craft

e Art

e Bodgery

Fro. 5, AN ILLustraTioN or WHAT Exprosion Din 1o STAYS AND BrACES

Programming languages: basic engineering tools of our time

Semantics — What is it?
How to describe a programming language? Need to give:
e the syntax of programs; and

e their semantics (the meaning of programs, or how they behave).

Semantics — What is it?

How to describe a programming language? Need to give:

e the syntax of programs; and

e their semantics (the meaning of programs, or how they behave).
Styles of description:

e the language is defined by whatever some particular compiler does

e natural language ‘definitions’

e mathematically

Mathematical descriptions of syntax use formal grammars (eg BNF) —
precise, concise, clear. In this course we’ll see how to work with
mathematical definitions of semantics/behaviour.

What do we use semantics for?

1. to understand a particular language — what you can depend on as a
programmer; what you must provide as a compiler writer
2. as a tool for language design:
(a) for clean design

(b) for expressing design choices, understanding language features
and how they interact.

(c) for proving properties of a language, eg type safety, decidability of
type inference.

3. as a foundation for proving properties of particular programs

Design choices, from Micro to Macro

basic values

evaluation order

what can be stored

what can be abstracted over

what is guaranteed at compile-time and run-time
how effects are controlled

how concurrency is supported

how information hiding is enforceable

how large-scale development and re-use are supported

Warmup

In C, if initially x has value 3, what’s the value of the following?

x++ + x++ + x++ + x++

delegate 1nt IntThunk () ;

class M {
public static void Main () {
IntThunk|[] funcs = new IntThunk[1l1l];
for (int 1 = 0; i <= 10; i++)
{
funcs[1] = delegate() { return 1; 1};

}

foreach (IntThunk f 1n funcs)

{
System.Console.WritelLine (£ ());

Output:

11
11
11
11
11
11
11
11
11
11

JavaScript

function bar(x) {
return function () {
var X = X;
return Xx;

b

var £ = bar (200);

£ ()

Styles of Semantic Definitions

e Operational semantics
e Denotational semantics

e Axiomatic, or Logical, semantics

‘Toy’ languages

Real programming languages are large, with many features and, often,
with redundant constructs — things that can be expressed in the rest of the

language.

When trying to understand some particular combination of features it’s
usual to define a small ‘toy’ language with just what you're interested in,
then scale up later. Even small languages can involve delicate design

choices.

What’s this course?
Core
e operational semantics and typing for a tiny language
e technical tools (abstract syntax, inductive definitions, proof)
e design for functions, data and references
More advanced topics
e Subtyping and Objects
e Semantic Equivalence

e Concurrency

Operational semantics

| 11234

(assignment and while) Type systems

Implementations

25,6

(functions and recursive definitions) L g Language design choices

Inductive definitions

8 Inductive proof — structural; rule
(products, sums, records, references) L3°

e

Subtyping Semantic
and Objects® Equivalence™

Abstract syntax up to alpha

Concurrency 2

The Big Picture

Discrete Lodic Java and
Maths RLEA & P?OOf L C&DS

Computability

comtcton Semanficg pronoopIs I
and Optimising emantics rogramiming
Compilers guag

. K , Advanced
Topics in Denotational -
Types Concurrency Spec&Ver ,lI Semantics Programming

Languages?

Admin

e Please let me know of typos, and if it is too fast/too slow/too
interesting/too dull (please complete the on-line feedback at the end)

e Exercises in the notes.
e |Implementations on web.

e Books (Harper, Hennessy, Pierce, Winskel)

L1

L1 — Example

L1 is an imperative language with store locations (holding integers),
conditionals, and while loops. For example, consider the program

lr := 0;

while !/; > 1 do (
lo :=l+;
L=+ —1)

in the initial store { [, — 3, [> 0}.

L1 — Syntax

Booleans b € B = {true, false}
Integers n € Z =4{...,—1,0,1,...}
Locations ¢/ € L = {l, Z(), Zl, ZQ, }

Operations op =+ |[>

Expressions

e = n|ble op e |if e then ¢ else ez |
(:=e|ll
skip | e1; € |

while ¢; do e

Write L for the set of all expressions.

Transition systems

A transition system consists of
e aset Config, and
e a binary relation —>C Config * Config.

The elements of Config are often called configurations or states. The
relation — is called the transition or reduction relation. We write —>

infix, so ¢ — ¢’ should be read as ‘state ¢ can make a transition to
state ¢”.

L1 Semantics (1 of 4) — Configurations

Say stores s are finite partial functions from L. to Z.. For example:

{ll — 7, Zg — 23}

Take configurations to be pairs (¢, s) of an expression ¢ and a store s, so

our transition relation will have the form

(e,s) — (€, s")

Transitions are single computation steps. For example we will have:

(I =241, {l— 3}
— ([:=2+4+3, {l—3})
— ([:=5, {l—3})
— (skip, {l—5})
S

want to keep on until we get to a value v, an expression in

V=B U Z U{skip}.

Say (e, s) is stuck if e is not a value and (¢, s) /. For example
2 - true will be stuck.

L1 Semantics (2 of 4) — Rules (basic operations)

(op+) (n1 4+ no,s) — (n,s) ifn=mn + n

(op>) (ny > mo,s) —> (b,s) ifb=(ng > ny)

<61> 3> — <€{7 3/>

(op1) , ,
(e; op ey, 8) —> (€1 op e€g,5)

(0p2)

(v op e,8) — (v 0p e, 8)

Example

If we want to find the possible sequences of transitions of
(24 3)+ (6+7),0) ... look for derivations of transitions.
(you might think the answer should be 18 — but we want to know what this

definition says happens)

(op +)

(2+3,0) — (5,0)
(24+3)+(6+7),0) — B+ (6+7),0)

(op1)

(op +)

6+ 7,0) — (13,0)

(op2)
B+ (6+7),0) — (54 13,0)

(op +)

(5+13,0) — (18, 0)

L1 Semantics (3 of 4) — store and sequencing

(deref)y (!0, s) — (n,s) ifl{ € dom(s)ands({)=mn

(assign1) (¢ :=mn,s) — (skip,s + {{ — n}) ifl & dom(s)

(assign2) <6’ S>

(seql) (skip; s, 5) —> (€9, 8)

(€1,8) — (€1, 8)
(e1; e2,8) — (ey; €2, 5")

(seq2)

Example

(I :=3;!,{l — 0}) (skip; !, {I — 3})
(ML~ 3}

(3,{l — 3})

L1

(=31 =, {l—0}) — 7

(15417, () — 7

L1 Semantics (4 of 4) — The rest (conditionals and while)

(if1) (if true then ¢y else e3,s) — (ey,)

(if2) (if false then e, else e3,s) — (e3,$)

(e1,8) — (€1, 8)
(if e, then ey else e3,s) — (if ¢; then ey else e3, s')

(if3)

(while)

(while e; do ey, s) — (if e; then (ey;while ¢; do e;) else skip, .

Example

If

€ — (ZQ = O,Whl'& 'll 2 1 do (lg :'ZQ—I—'ll, ll Z:!ll -+ —1))
S:{lll%g,lgl%()}

then

(e,s) —* 7

L1: Collected Definition

Syntax

Booleans b € B = {true, false}
Integers n. € Z = {...,—1,0,1,...}
Locations ¢ € L = {l,ly, l1,l,...}
Operations op 1=+ |>

Expressions
e == nl|ble op e]if e then ey else e3 |
0= e |1t
skip | er; e |

while ¢; do es

Operational Semantics

Note that for each construct there are some computation rules, doing ‘real work’, and
some context (or congruence) rules, allowing subcomputations and specifying their or-
der.

Stores s are finite partial functions from I to Z. Values v are expressions from the
grammar v ::=b | n | skip.

(op+) (n1+ ng,s) — (n,s) ifn=mn +ny

(0p>) {(ny > ng,s) — (b,s) ifb=(ng > ny)

(op1) <€17S> — <6175/>

(e1 op ez, s) — (e] op ez,s')

<€2, 5> — <eéa S/>

(0p2) -
(v oop e2,5) — (v op e, 5)

(derefy (14, s) — (n,s) if{ € dom(s)ands({)=n
(assign1) (¢ :=n,s) — (skip,s + {¢{— n}) if¢ € dom(s)

(assign2)

(seql) (skip; e2,5) — (€2, s)

{e1,8) — (e1,)

(seq2) bel
(e1; ea,8) — (e]; e, s")

(if1) (if true then ey else e3,s) — (€2, s)

(if2) (if false then e; else e3, s) —> (es3, s)

<€1> 5> — <617 8/>

(if3)
(if €1 then ey else e3,s) — (if ¢| then e else e3,s’)

(while)

(while e; do e, s) — (if e; then (ey;while e; do e3) else skip, s)

Determinacy

Theorem 1 (L1 Determinacy) /f (¢, s) — (eq, s1) and
(e,s) — (ea, So) then (e1, $1) = (ea, So).

Proof — see later

L1 implementation

Many possible implementation strategies, including:

1.

animate the rules — use unification to try to match rule conclusion
left-hand-sides against a configuration; use backtracking search to find
all possible transitions. Hand-coded, or in Prolog/LambdaProlog/Twelt.

. write an interpreter working directly over the syntax of configurations.

Coming up, in ML and Java.

. compile to a stack-based virtual machine, and an interpreter for that.

See Compiler Construction.

. compile to assembly language, dealing with register allocation etc. etc.

See Compiler Construction/Optimizing Compilers.

L1 implementation

Will implement an interpreter for L1, following the definition. Use mosml
(Moscow ML) as the implementation language, as datatypes and pattern
matching are good for this kind of thing.

First, must pick representations for locations, stores, and expressions:

type loc = string

type store = (loc x 1int) list

datatype oper

datatype expr
Integer of

| Boolean of

| Op of expr

| If of expr

= Plus

int
bool
*x Ooper

*x expr

| GTEQ

*x expr

*x expr

| Assign of loc % expr

| Deref of loc

| Skip

| Seqg of expr * expr

| While of expr * expr

Store operations

Define auxiliary operations

lookup : storexloc —> 1int option

update : storex(locxint) —-> store option
which both return NONE if given a location that is not in the domain of the
store. Recall that a value of type T opt ion is either NONE or
SOME v for a value v of T.

The single-step function

Now define the single-step function
reduce : exprxstore —> (exprxstore) option

which takes a configuration (e, s) and returns either

NONE, if (e, s) #—,

or SOME (e’ ,s’),ifithas atransition (¢, s) — (¢’, s").

Note that if the semantics didn’t define a deterministic transition system

we’d have to be more elaborate.

(op +), (op =)
fun reduce (Integer n,s) = NONE
| reduce (Boolean b,s) = NONE
| reduce (Op (el,opr,e2),s) =
(case (el,opr,e2) of
(Integer nl, Plus, Integer n2) =>
SOME (Integer (nl+n2), s)
| (Integer nl, GTEQ, Integer n2) =>
SOME (Boolean (nl >= n2), s)

| (el,opr,e2) =>

(op1), (op2)

1f (1s_value el) then
case reduce (e2,s) of
SOME (e2’,s’) =>
SOME (Op(el,opr,e2’),s’)
| NONE => NONE
else
case reduce (el,s) of
SOME (el’,s’) =>
SOME (Op (el’” ,opr,e2),s’)
| NONE => NONE)

(assign1), (assign2)

| reduce (Assign (1,e),s)
(case e otf
Integer n =>
(case update (s, (1,n)) of
SOME s’ => SOME (Skip, s’)
| NONE => NONE)
=>
(case reduce (e,s) of
SOME (e’ ,s’") =>
SOME (Assign (l1,e’), s’)
| NONE => NONE))

The many-step evaluation function
Now define the many-step evaluation function
evaluate: expr*xstore —> (exprxstore) option

which takes a configuration (e, s) and returnsthe (e’ , s’) such that
(e,s) —* (e, ") /—, if there is such, or does not return.
fun evaluate (e,s) =
case reduce (e,s) of
NONE => (e, s)

| SOME (e’ ,s’) => evaluate (e’,s’)

Demo

The Java Implementation
Quite different code structure:

e the ML groups together all the parts of each algorithm, into the
reduce, infertype,and prettyprint functions;

e the Java groups together everything to do with each clause of the
abstract syntax, inthe IfThenElse, Assign, etc. classes.

Language design 1. Order of evaluation

For (¢, op es), the rules above say ¢; should be fully reduced, to a
value, before we start reducing e5. For example:

(1:=1;0)+ (1 :=2;0),{l = 0}) —> (0, {l = | 2 |})
For right-to-left evaluation, replace (op1) and (op2) by

<627 3> — <€év 3/>

(0p1Db)
(e; op e3,8) — (e1 op €5, 5")

(e1,8) — (€1, 8)
(e; op v,8) — (e; op v,s)

(op2b)

In this language (call it L1b)
(1:=1:0)4 (1 :=2:0), {l— 0}) —2 (0, {l = | 1|}

Language design 2. Assignment results
Recall
(assign1) ({:=n,s) — (skip,s + {{+— n}) ifl & dom(s)
(seql) (skip;es, 5) —> (€9, 5)
SO
(l:=1;1:=2{l—0}) — (skip;l:=2{l— 1})
—* (skip, {/ — 2})

We've chosen ¢ := n to result in skip, and ¢;; e, to only progress if
e; — skip, not for any value. Instead could have this:

(assign1’) (/:=mn.s) — (n,s+ (L +— n)) ifl & dom(s)

(seql’) (v;e9,5) —> (€9, 8)

Language design 3. Store initialization

Recall that

(deref) (!0, s) — (n,s) ifl{ & dom(s)and s({)=n

(assign1) ({ :=n,s) — (skip, s + {{ +— n}) ifl{ & dom(s)
both require / & dom(s), otherwise the expressions are stuck.
Instead, could
1. implicitly initialize all locations to 0, or

2. allow assignment to an /' ¢ dom(s) to initialize that /.

Language design 4. Storable values

Recall stores s are finite partial functions from L to Z, with rules:

(deref)y (!/,s) — (n,s) ifl{ € dom(s)ands({)=mn

(assign1) (/:=mn,s) — (skip, s +{(+— n}) if{ € dom(s)

(e,s) —> (e, s)

/

ign2
(assion2) :=e,8) — (L:=¢ 5"

Can store only integers. ([:= true, s) is stuck.
Why not allow storage of any value? of locations? of programs?

Also, store is global. We will consider programs that can create new

locations later.

Language design 5. Operators and basic values

Booleans are really not integers (unlike in C)
The L1 impl and semantics aren’t quite in step.
Exercise: fix the implementation to match the semantics.

Exercise: fix the semantics to match the implementation.

Expressiveness

Is L1 expressive enough to write interesting programs?

e yes: it's Turing-powerful (try coding an arbitrary register machine in
L1).

® Nno: there’s no support for gadgets like functions, objects, lists, trees,

modules,.....
Is L1 foo expressive? (ie, can we write too many programs in it)

e yes: we'd like to forbid programs like 5 + false as early as possible,
rather than let the program get stuck or give a runtime error. We'll do
so with a type system.

L1 Typing

Type systems
used for
e describing when programs make sense
® preventing certain kinds of errors
e structuring programs
e guiding language design

|deally, well-typed programs don’t get stuck.

Run-time errors

Trapped errors. Cause execution to halt immediately. (E.g. jumping to an
illegal address, raising a top-level exception, etc.) Innocuous?

Untrapped errors. May go unnoticed for a while and later cause arbitrary
behaviour. (E.g. accessing data past the end of an array, security
loopholes in Java abstract machines, etc.) Insidious!

Given a precise definition of what constitutes an untrapped run-time error,
then a language is safe if all its syntactically legal programs cannot cause
such errors.

Usually, safety is desirable. Moreover, we'd like as few trapped errors as
possible.

Formal type systems

We will define a ternary relation I' = e: 7', read as ‘expression ¢ has type
', under assumptions 1" on the types of locations that may occur in ¢’.
For example (according to the definition coming up):

{} — if true then 2 else 3+4 : int
[i:intref + if!l; > 3 then!l; else 3 : int
) 7 3+ false . T forany T

{} / if true then 3 else false : int

Types for L1

Types of expressions:

T = int| bool | unit
Types of locations:

T = intref

Write ‘1" and 1. for the sets of all terms of these grammars.

Let | range over '1'ypelinv, the finite partial functions from locations L.
to T',.. Notation: write a I as [;:intref, ..., [,.:intref instead of
{l, — intref, ..., [, — intref}.

Defining the type judgement| I' - e: 7" | (1 of 3)

(int) I'= n:int forn € Z

(bool) ['F b:bool forb € {true,false}

[I' - elzint I' - €1Iint
' - 622int '+ Ggiint
(op +) _ (op =)
' ey + es:int ' e; > ey:bool

(lf) F I_ 61:b00| F I_ 62:T F I_ 63:T
[' | if e; then ¢, else €3IT

Example

To show { } - if false then 2 else 3 + 4:int we can give a type
derivation like this:

(Pool) (int) _
{} I false:bool {1 F 2:int

{} - if false then 2 else 3 -+ 4:int

(if)

where V is

Example

To show { } I~ if false then 2 else 3 -+ 4:int we can give a type
derivation like this:

(bool) (int)
{} - false:bool {}F 2:int v
{} Fif false then 2 else 3+ 4:int

(if)

where V is
(int) (int)
{} = 3:int {} F 4:int

(F 3+ 4iint

(op +)

Defining the type judgement| I' - e¢:T" |(2 of 3)

['({) = intref T F e:int

assign)
(['- /7 := e:unit

['(¢) = intref

(deref)
[' FlZ:int

Defining the type judgement| I' - e¢: 1" | (3 of 3)

(skip) I I skip:unit

'+ elzunit ['F GQIT
I'Fe;e0: T

(seq)

' ei:bool T'F ey:unit
I' - while e; do ey:unit

(while)

Properties

Theorem 2 (Progress) If[' = ¢:T" and dom(1") C dom(s) then either ¢
is a value or there exist ¢’ s" such that (e, s) — (¢', s').

Theorem 3 (Type Preservation) /f[" = ¢: 1" and dom(1") C dom(s)
and (e, s) — (€', s") then" = e¢": T and dom(1") C dom(s’").

From these two we have that well-typed programs don’t get stuck:

Theorem 4 (Safety) If[' - e:T', dom(I") C dom(s), and

(e,s) —" (€', s") then either ¢’ is a value or there exist ¢”, s such
that (¢’ s") — (", s").

Type checking, typeability, and type inference

Type checking problem for a type system: given 1", e, 7 is|' - e: T’
derivable?

Type inference problem: given 1" and ¢, find 7" suchthat ' — e: 7' is
derivable, or show there is none.

Second problem is usually harder than the first. Solving it usually results
in a type inference algorithm: computing a type /' for a phrase ¢, given
type environment 1 (or failing, if there is none).

For this type system, though, both are easy.

More Properties

Theorem 5 (Type inference) Given 1, ¢, one can find ' such that
[' = e:'T", or show that there is none.

Theorem 6 (Decidability of type checking) Givenl'. ¢, I', one can
decidel' = e:T'.

Also:

Theorem 7 (Uniqueness of typing) /fI'— e¢: T and1' = e: 1" then
T ="T".

Type inference — Implementation
First must pick representations for types and for 1 ’s:
datatype type_Ll =
int
| unit

| bool

datatype type_loc =

intref

type typeEnv = (locxtype_loc) 1list

Now define the type inference function

infertype : typeEnv —-> expr -> type_Ll option

The Type Inference Algorithm

fun infertype gamma (Integer n) = SOME int
| infertype gamma (Boolean b) = SOME bool
| infertype gamma (Op (el,opr,e2))
= (case (infertype gamma el, opr, infertype gamma e2) of
(SOME int, Plus, SOME int) => SOME int
| (SOME int, GTEQ, SOME int) => SOME bool
| _ => NONE)
| infertype gamma (If (el,e2,e3))
= (case (infertype gamma el, infertype gamma e2, infertype gamma e3) of
(SOME bool, SOME t2, SOME t3) =>
if t2=t3 then SOME t2 else NONE
| - => NONE)
| infertype gamma (Deref 1)
= (case lookup (gamma,l) of
SOME intref => SOME int
| NONE => NONE)
| infertype gamma (Assign (1,e))
= (case (lookup (gamma,l), infertype gamma e) of
(SOME intref, SOME int) => SOME unit
| - => NONE)
| infertype gamma (Skip) = SOME unit
| infertype gamma (Seqg (el,e2))
= (case (infertype gamma el, infertype gamma e2) of
(SOME unit, SOME t2) => SOME t2
| _ => NONE)
| infertype gamma (While (el,e2))

= (case (infertype gamma el, infertype gamma e2) of

The Type Inference Algorithm — I £

| infertype gamma (If (el,e2,e3))
= (case (1nfertype gamma el,
infertype gamma eZ,
infertype gamma e3) of
(SOME bool, SOME t2, SOME t3) =>
1f t2=t3 then SOME tZ else NONE
| _ => NONE)

— ¢1:bool
'+ GQIT
'+ 632T

['+if e; then e, else e3: T

(if)

The Type Inference Algorithm — Deref

| 1nfertype gamma (Deref 1)

(case lookup (gamma,l) of
SOME intref => SOME 1nt
| NONE => NONE)

['(¢) = intref

(deref)
[' F1l:int

Demo

Executing L1 in Moscow ML

L1 is essentially a fragment of Moscow ML — given a typable L1

expression ¢ and an initial store s, ¢ can be executed in Moscow ML by
wrapping it

let val skip = ()
and 11 = ref nl
and 12 = ref n?2

and lk = ref nk
in
S

end;

where s is the store {/; — n4, ..., [— n;} and all locations that occur
in ¢ are contained in {[;,.... [, }.

Why Not Types?

“l can’t write the code | want in this type system.”

(the Pascal complaint) usually false for a modern typed language

“It's too tiresome to get the types right throughout development.”

(the untyped-scripting-language complaint)

“Iype annotations are too verbose.”

type inference means you only have to write them where it's useful

“Iype error messages are incomprehensible.”

hmm. Sadly, sometimes true.

“l really can’t write the code | want.”

Induction

We've stated several ‘theorems’, but how do we know they are true?
Intuition is often wrong — we need proof.

Use proof process also for strengthening our intuition about subtle

language features, and for debugging definitions — it helps you examine all
the various cases.

Most of our definitions are inductive. To prove things about them, we need
the corresponding induction principles.

Three forms of induction

Prove facts about all natural numbers by mathematical induction.

Prove facts about all terms of a grammar (e.g. the L1 expressions) by

structural induction.

Prove facts about all elements of a relation defined by rules (e.g. the L1
transition relation, or the L1 typing relation) by rule induction.

We shall see that all three boil down to induction over certain trees.

Principle of Mathematical Induction

For any property ®(z) of natural numbers z € N ={0,1,2,...},t0

prove
Ve € N&(z)

it's enough to prove

¢(0)andV z € N.®(z) = P(z +1).
.e.

(P(0) A (V2 € N®(z) = P(z+1))) =V € NO(z)

(P(0) A (V2 € N®(z) = P(z+ 1)) =V € NO(z)

For example, to prove

Theorem8 1 + 2+ ...+ 2 =1/2%xx* (x + 1)
use mathematical induction for
Plz)=1+2+...+2=12%xxx(x+1))

There’s a model proof in the notes, as an example of good style. Writing a
clear proof structure like this becomes essential when things get more
complex — you have to use the formalism to help you get things right.

Emulate it!

Abstract Syntax and Structural Induction

How to prove facts about all expressions, e.g. Determinacy for L1?

Theorem 1 (Determinacy) If (¢, s) — (e, 51) and
(e,s) —> (ey, s9) then (e1, s1) = (eg, So) .

First, don’t forget the elided universal quantifiers.

Theorem 1 (Determinacy) For all e, s, e1, 51, €3, So, If
(e,s) —> (e1,81) and (e, s) — (e, So) then (€1, 51) = (e, S2) .

Abstract Syntax

Then, have to pay attention to what an expression is.

Recall we said:

e == mnl|ble op el|if e then ¢ else ¢ |
(:=¢e|ll
skip | ¢; e |

while ¢ do ¢

defining a set of expressions.

Q: Is an expression, e.g. if |/ > 0 then skip else (skip;/ := 0):
1. alist of characters [‘27, ‘&£’ , ‘*_7, 7 7" _ . .];
2. alistoftokens | IF, DEREF, LOC "1", GTEQ, ..];or

3. an abstract syntax tree?

if_then_else_

> skip ;
\ BN
0 skip [:=

0

/

y)

A: an abstract syntax tree. Hence: 2 + 2 # 4

+ 4
/ N\
2 2
1 + 2 + 3 — ambiguous
(14+2)+3#1+ (24 3)
//\ //\
/\\ ,/\

Parentheses are only used for disambiguation — they are not part of the
grammar. 1 +2=(1+2)=((1+2)) = (((((1)))) + ((2)))

Principle of Structural Induction (for abstract syntax)

For any property Cb(e) of expressions ¢, to prove
Ve e qu)(G)

it's enough to prove for each tree constructor ¢ (taking £ > 0 arguments)
that if & holds for the subtrees ¢, .., e, then ® holds for the tree

cler, .., e). ie.

(V eV er, . ep.(P(er) Ao n DP(eg)) = D(clen, ..,) =V e.D(e

where the tree constructors (or node labels) ¢ are n, true, false, !/, skip,

[:=, while_do_, if_then_else_, etc.

In particular, for L1: to show V ¢ € L;.®(e) it's enough to show:

nullary: P (skip)
V b € {true,false}.P(b)
Vn € Z.9(n)
Vi e Lo
unary: V(0 € LV e®(e) = P/ :=e¢)
binary: YV op .V e, e0.(P(er) A Per)) = P(e; op e3)
Ve, e.(P(er) nPeg)) = P(eq; e0)
Ve, e.(P(ey) A P(er)) = P(while e; do e)
ternary: V eq, eg, e3.(P(e1) A P(ez) A P(e3)) = P(if e; then ey els

(See how this comes directly from the grammar)

Proving Determinacy (Outline)

Theorem 1 (Determinacy) If (¢, s) — (eq, s1) and
(e,s) —> (ey, 59) then (e1, s1) = (eg, So) .

Take

((e,s) —> (€', s") n{e,s) — (", s"))

— <€/’ 8/> — <€//7 S//>

and show V ¢ € [,.®(e) by structural induction.

Ple) = Vs,e,s, e s".
({e,s) —> (e, s") A (e, s) —> (e",s"))
= (e',s") = (", s")
nullary: @ (skip)
V b € {true,false}.®(b)
Vn € Z.®(n)
Vi e L.l
unary: VI € LVe®(e)= O/ :=e)
binary: V op .V e1, e2.(P(e1) A P(e2)) = P(e1 op e2)
Voer, e (P(er) nP(e2)) = P(er; e2)
Voer,ex.(P(er) n P(e2)) = P(while e; do e2)
ternary: VYV e1, ez, e3.(P(e1) A P(e2) A P(e3)) = P(if e; then ez else e3)

(op+) (n1+ n2,s) —>(n,s) ifn=n+ns
(op >) (n1 > n2,s) —> (b,s) ifb=(n1 > n2)

(e1,s) — (e, s")

(op1)

(e1 op ea,s) —> (e; op e2,s’) (if1) (if true then e2 else e3, s) —
o0 (e2,s) — (e5,s") (f2) (if false then eo else es, s) -
op
(v op e2,s8) — (v op e, s’)
<617 S> o
(deref)y (14, s) — (n,s) if¢ &€ dom(s)ands(¥) = n (if3)

(if e; then ex else e3, s) —

(assign1) (£ :=mn,s) — (skip,s + {f +— n}) iff &€ dom(s)

(e,s) — (e, s) while)
(assign2) : : (while e; do ez, s) —> (if ey the
f:=e,s) — (£ :=¢',s")

(seql) (skip; ez, s) — (e2, s)

<€17 S> — <6i, S/>

(seq2) ; ;
(e1;e2,s8) — (ej;e2,s")

(assign1) (¢ :=mn,s) — (skip, s + {{ — n}) ifl & dom(s)

(assign2)

Lemma: Values don’t reduce

Lemma9 Foralle € L, ife isavalue then
Vs.—de s’ (e, s) — (e s").

Proof By defn ¢ is a value if it is of one of the forms 7, 0, skip. By

examination of the rules on slides ..., there is no rule with conclusion of

the form (e, s) — (€', ') for e one of 1, b, skip.

Inversion

In proofs involving multiple inductive definitions one often needs an
inversion property, that, given a tuple in one inductively defined relation,

gives you a case analysis of the possible “last rule” used.
Lemma 10 (Inversion for —) If (e, s) — (¢, S) then either

1. (op +) there exists 11, no, and n such that ¢ = ny + ny, € = n,
s = s,and n = ny + no (NB watch out for the two different +s), or

2. (op1) there exists ¢, ¢35, op , and e{ such thate — e¢; op es,
e=-e, op ey, and(e,s) — (e, s),or

3. ...

Lemma 11 (Inversion for) IfI' = e: 1" then either

1. ...

All the determinacy proof details are in the notes.

Having proved those 9 things, consider an example (!/ + 2) + 3. To see
why ©((!l 4+ 2) + 3) holds:

/N
/ N\

y) 2

Inductive Definitions and Rule Induction

How to prove facts about all elements of the L1 typing relation or the L1
reduction relation, e.g. Progress or Type Preservation?

Theorem 2 (Progress) If ' - ¢: 1" and dom(1") C dom(s) then either e
is a value or there exist ¢’ s' such that (¢, s) — (¢’, s").

Theorem 3 (Type Preservation) If [= ¢:T" and dom(1") C dom(s)
and (e, s) — (€', s") then" = ¢": T and dom(1") C dom(s").

What does (e, s) — (€', s") really mean?

Inductive Definitions

We defined the transition relation (¢, s) — (¢’, s’) and the typing
relation I' = e: I’ by giving some rules, eg

(op+) (n1+ no,s) — (n,s) ifn=n + n

(e1,8) — (€1, 8)
(e; op ey,s) —> (e] op e3,5")

(op1)

[' - €1Iint [' - 623int
[I' - e1 + 621int

(0p +)

What did we actually mean?

These relations are just normal set-theoretic relations, written in infix
notation.

For the transition relation:

e Start with A = [, * store % [; * store.
e Write — C Ainfix,e.g. (e,s) — (€, s") instead of
(e,s,€',s") e—>.

For the typing relation:

e Start with A = T'ypeEnv x L * types.
e Write - C A mixfix,e.g. ' e: T instead of (I, ¢, T") € |-

For each rule we can construct the set of all concrete rule instances,
taking all values of the metavariables that satisfy the side condition. For
example, for (op +) and (op1) we take all values of 1, 15, s, n

(satisfying n = 1y + no) and of e, ey, s, €7, 5.

(op+) (op +)

242,41 — 44 . 243,41 — 5. AD) -

(op1) 2+2,{}h) — 4 {}) op1) (2+2,{}) — (false, {})

(242)+3,{}) — 4+ 3,{}) , ((24+2)+3,{}) — (talse + 3,{})

Now a derivation of a transition (¢, s) — (¢’ s’) or typing judgment
[= e:7T"is afinite tree such that each step is a concrete rule instance.

e —am
(2+2)+3,{)) — (t+3.0)

1

(2+2)1325.()) — d+3=57) P
— (deref) — (int)

[' F!l:int ' - 2:int .
T+ 2ent P Fegin (M

D (1 +2) + 3int P +)

and (¢, s) — (€', s’) is an element of the reduction relation
(resp. I' = e:T"is an element of the transition relation) iff there is a
derivation with that as the root node.

Principle of Rule Induction

For any property CID(a) of elements @ of A, and any set of rules which
define a subset Sy of A, to prove

Va € SR(I)(Q>

it's enough to prove that {a | ®(a)} is closed under the rules, ie for each

concrete rule instance

hy .. Iy

it ©(hy) A ... n D(hy) then P(c).

Principle of rule induction (a slight variant)

For any property ©(a) of elements a of A, and any set of rules which
inductively define the set Sy, to prove

Va € SR(I)(Q>

it's enough to prove that

for each concrete rule instance

hy .. Iy

C

ifq)(hl)/\.../\q)(hk>/\h1 c Spa..nh, € Spthen (I)(C)

Proving Progress (Outline)

Theorem 2 (Progress) If ' - ¢: 1" and dom(1") C dom(s) then either ¢
is a value or there exist ¢’ s' such that (¢, s) — (¢’, s").

Proof Take

ST, e, T) © Vs dom(I") C dom(s) =

value(e) v (3 €', s".(e, s) — (€', §))

We show that for all I, e, 7', if I" = e: 1" then ® (I, e, T'), by rule
induction on the definition of I-.

Principle of Rule Induction (variant form): to prove ®(a) for all ¢ in the
set Sp, it's enough to prove that for each concrete rule instance

hy .. Iy

C

ifq)(hl)/\.../\q)(hk)/\hl c SpAa..nh, € Spthen (I)(C)

Instantiating to the L1 typing rules, have to show:

(int) VI,n.®(,n,int)

(deref) V I',L.T'(¢) = intref = &(T', 14, int)

op+) VI,er,e.(P(l,er,int) A P(, ez,int) Al F erzint AT eg:int)
= ®(I', e1 + ez, int)

(seq) VI, er, e, T.(P(I,er,unit) n®(,ea, T)Al'F er:unit Al - e2:T)
= ®(I', e1;e2, T)

etc.

Having proved those 10 things, consider an example
' (114 2) + 3:int. Tosee why ®(I", (!l + 2) + 3, int) holds:

— (deref) — (int)
[' Hl:int ['F 2:int (0p +) (it

' (1 + 2):int [' - 3:int
- (op +)
' (1 +2)+ 3int

Which Induction Principle to Use?

Which of these induction principles to use is a matter of convenience —
you want to use an induction principle that matches the definitions you're
working with.

Example Proofs

In the notes there are detailed example proofs for Determinacy (structural
iInduction), Progress (rule induction on type derivations), and Type

Preservation (rule induction on reduction derivations).

You should read them off-line, and do the exercises.

When is a proof a proof?

What’s a proof?

Formal: a derivation in formal logic (e.g. a big natural deduction proof
tree). Often far too verbose to deal with by hand (but can
machine-check such things).

Informal but rigorous: an argument to persuade the reader that, if
pushed, you could write a fully formal proof (the usual mathematical
notion, e.g. those we just did). Have to learn by practice to see when
they are rigorous.

Bogus: neither of the above.

clear
structure

matters!

Sometimes it seems hard or pointless to prove things because they seem
‘too obvious'....

1. proof lets you see (and explain) why they are obvious
2. sometimes the obvious facts are false...
3. sometimes the obvious facts are not obvious at all

4. sometimes a proof contains or suggests an algorithm that you need —
eg, proofs that type inference is decidable (for fancier type systems)

Lemma: Values of integer type

Lemma 12 foralll', e, T',ifl' = e: T, e isavalue and ' = int then for
somen & / wehaveec = n.

Proving Progress

Theorem 2 (Progress) If[' = e: 1" and dom(1") C dom(s) then either e
is a value or there exist ¢, s" such that (¢, s) — (¢’, s).

Proof Take

O, e, T)Z Vs. dom(I') C dom(s) =

value(e) v (3 ¢, s".(e, s) — (€', s"))

We show that for all I, e, 7', if I" = e: T then ® (1", e, T'), by rule
induction on the definition of .

Principle of Rule Induction (variant form): to prove ®(a) for all @ in the set
Sr defined by the rules, it's enough to prove that for each rule instance

hy .. Iy

C

ifq)(hl)/\.../\q)(hk)/\hl c SpAa..nh, € Spthen (I)(C)

Instantiating to the L1 typing rules, have to show:

(int) VI,n.®(,n,int)

(deref) V I',L.T'(¢) = intref = &(T', 14, int)

op+) VI,er,e.(P(l,er,int) A P(, ez,int) Al F erzint AT eg:int)
= ®(I', e1 + ez, int)

(seq) VI, er, e, T.(P(I,er,unit) n®(,ea, T)Al'F er:unit Al - e2:T)
= ®(I', e1;e2, T)

etc.

ST e, T) e dom(I") C dom(s) =
v(de

value(e) 8" (e, 5) — (e, 5"))

Case (op+). Recall the rule

[I' - 612int
[' - 622int

(op +)
' e; + es:int

Suppose P (I, e, int), ®(I', ey, int), I' = eq:int, and [' F ey:int.
We have to show ® (17, ¢; + e, int).

Consider an arbitrary s. Assume dom(I") C dom(s).

Now ¢; + e Is not a value, so we have to show
=/ 7 I\ /. o\ N AN

Using (1", ey, int) and ®(I", ey, int) we have:
case ¢; reduces. Then e; + ¢ does, using (op1).
case c; Is a value but ¢ reduces. Then ¢; + €9 does, using (op2).

case Both ¢; and ey are values. Want to use:

(op+) (m1 + ng,s) — (n,s) iftn=mn; + ny

Lemma 13 foralll', e, T, ifl' = e:T', e isavalue and I' = int then

forsomen & / we have e = n.

We assumed (the variant rule induction principle) that I' -~ ¢;:int and

[ey:int, so using this Lemma have ¢; = n; and e; = n».

Then e¢; + e reduces, using rule (op—).

All the other cases are in the notes.

Summarising Proof Techniques

Determinacy structural induction for ¢

Progress rule induction for L' = e: T’

Type Preservation rule induction for (e, s) — (¢’, s")
Safety mathematical induction on —"

Uniqueness of typing
Decidability of typability exhibiting an algorithm

Decidability of checking corollary of other results

Functions — L2

Functions, Methods, Procedures...

fun addone x = x+1

public 1nt addone (int x) {

x+1

}

<script type="text/vbscript">
function addone (x)

addone = x+1

end function

</script>

delegate 1nt IntThunk () ;

class M {
public static void Main () {
IntThunk|[] funcs = new IntThunk[1l1l];
for (int 1 = 0; i <= 10; i++)
{
funcs[1] = delegate() { return 1; 1};

}

foreach (IntThunk f 1n funcs)

{
System.Console.WritelLine (£ ());

Functions — Examples

We will add expressions like these to L1.

(fn x:int = x+ 1)

(fn xtint=>x+1) 7

(fn y:int = (fn x:int = x4 y))

(fn y:int = (fn xiint = x+y)) 1

(fn x:int — int = (fn y:int = x (xy)))

(fn x:int — int = (fn y:int = x (xy))) (fn xiint = x+ 1)

((fn xzint — int = (fn y:int = x (xy))) (fn xsint = x+1)) 7

Functions — Syntax

First, extend the L1 syntax:
Variables © € Xforaset X = {x,v,7,...}

Expressions

e = ...|fInz:T=c¢ele e|x
Types

T == int|bool|unit| T} — T5

T ::= Iintref

Variable shadowing
(fn x:int = (fn x:int = x4+ 1))
class F {
vold m () {
int vy;
{int v; ... '} // Static error

{int v; ... }

Alpha conversion

In expressions fn 2:/" = ¢ the z is a binder.

® inside ¢, any x’s (that aren’t themselves binders and are not inside
another fn z:7” = ...) mean the same thing — the formal parameter

of this function.

e outside thisfn x:7" = e, it doesn’t matter which variable we used for
the formal parameter — in fact, we shouldn’t be able to tell. For
example, fn x:int = x + 2 should be the same as
fn y:nt = y + 2.
cf fol T+ xidr = fol y + y2dy

Alpha conversion — free and bound occurrences

In a bit more detail (but still informally):

Say an occurrence of = in an expression ¢ is free if it is not inside any
(fn z:1" = ...). For example:

L7

X+Yy

fn x:int = x4 2

fn xiint = x+ 2z

if y then 2 + x else ((fn x:int = x + 2)2)

All the other occurrences of & are bound by the closest enclosing
fn z:1 = ...

Alpha conversion — Binding examples

fn M—FQ
fn erz

fn M—I—z

fn@z

fn x:int = (fnm 2)

Alpha Conversion — The Convention

Convention: we will allow ourselves to any time at all, in any expression
...(fn r:1l = e)..., replace the binding = and all occurrences of = that
are bound by that binder, by any other variable — so long as that doesn’t

change the binding graph.

For example:
fn Xint =x+z = fnmjtz L fni@z

This is called ‘working up to alpha conversion’. It amounts to regarding
the syntax not as abstract syntax trees, but as abstract syntax trees with

pointers...

Abstract Syntax up to Alpha Conversion
fn xtiint=>x+4+2z = fnyint=y+z #* fnzint=2z+7z
Start with naive abstract syntax trees:

fn x:Int = fn y:nt = fn z:nt =

\ \ \
/ " \ - / " \
X Z y / \ 7 7 7
add pointers (from each x node to the closest enclosing fn x:/" = node);

remove names of binders and the occurrences they bind

fn -:nt = fn -:Int = fn -:nt =

N RN TN

® 7 ® 7 ® ®

fn x:int = (fn x:int = x + 2)
=fn y:int = (fn ziint =2+ 2) # fn zint = (fn y:int = z + 2]

fn -:nt = fn -:Int =

fn -:nt = fn -:nt =

7N N

e 2 o 2

(fn x:int = x) 7 fn z:int — int — int = (fn y:iint =2z yy)

fn -:nt — Int — Int =

7 \ |

fn -:Int = fn -:Int =

(\

o @

De Bruijn indices

Our implementation will use those pointers — known as De Bruijn indices.
Each occurrence of a bound variable is represented by the number of
fn - :7" = nodes you have to count out to to get to its binder.

fn -:int= (fn -:int=vy+2) # fn -:int= (fn -:int = vy +

fn - :Int = fn - :Int =
| |

fn - :Int = fn - :Int =
+ +

7N PN

o 2 o 2

Free Variables

Say the free variables of an expression ¢ are the set of variables x for
which there is an occurence of = free in e.

fv() = {7}
fv(e; op e) = fv(er) Ufv(es)

v(e) — {z)

fv(fn z:T = e)

Say ¢ is closed if fv(e) = {}.
If [is a set of expressions, write fv() for (], _ , fv(e).

(note this definition is alpha-invariant - all our definitions should be)

Substitution — Examples

The semantics for functions will involve substituting actual parameters for
formal parameters.

Write { ¢/ } ¢’ for the result of substituting ¢ for all free occurrences of
in ¢’. For example

13/x}(x 2 x) = (323
{3/x}((fn xiint = x+y)x) = (fn xiint = x+1y)3
{y 4+ 2/x}(fn yiint=x+y) = fn zint= (y+2)+2z

Substitution — Definition
Defining that:
{e/z}x = e if v = 2
= otherwise
{e/2}(n 2:T = ¢) = tn :T = ({e/z}e) ifax# 2%
and ¢ fv(e) (’

{e/z}(er e)

(e/z}e)(ie/z)e)

if (*) is not true, we first have to pick an alpha-variant of fn 2:/" = ¢; to
make it so (always can)

Substitution — Example Again

{y +2/x}(fn y:int = x+y)
= {y+ 2/x}(fn y":int = x 4+ y’) renaming
= fn yiint = {y +2/x}(x+y)asy #xandy' ¢ fv(y + 2)
= fn yiint = {y+2/x}x+ {y + 2/x}y’
= fn y:int= (y+2)+y

(could have chosen any other z instead of ', except v or x)

Simultaneous substitution

A substitution o is a finite partial function from variables to expressions.

Notation: write a o as { e, /11, .., €,/ 1. } instead of

{a1 > e, ...,z —> e} (for the function mapping z; to e; etc.)

A definition of o ¢ is given in the notes.

Function Behaviour
Consider the expression
e = (fn x:unit = ({:=1);x) ([:=2)
then

(e, {1 0}) —* (skip, {I s 777})

Function Behaviour. Choice 1: Call-by-value

Informally: reduce left-hand-side of application to a fn-term; reduce
argument to a value; then replace all occurrences of the formal parameter
in the fn-term by that value.

e = (fn x:unit = (1 :=1);x)(l := 2)

<67 {l — O}>

L2 Call-by-value
Values v ::=0 | n | skip | fn z:T = ¢

<617 5> — <6{7 8/>

(app1)
(e] eg,8) — (e €2, 8")

(€2,8) — (€3, 8)
(v €g,8) —> (v €5, §")

(app2)

(fn) ((fn 2:T = e) v,s) — ({v/z}e,s)

L2 Call-by-value — reduction examples

((fn x:int = fn yiint=x+7y) (3+4)5,s)
= (((fn xcint=fn yiint=x+y) (3+4))5,s)
— <(fn x:nt = fn ymt=>x+y)7)5,s>
— (({7/x}(fn yint=x+y))5,s)
= (((f]n yiint=T7+y))5,s)

— (T+5,s)
— (12, s)

(fn f:int — int = f 3) (fn x:int = (1 + 2) + x)

Function Behaviour. Choice 2: Call-by-name

Informally: reduce left-hand-side of application to a fn-term; then replace
all occurrences of the formal parameter in the fn-term by the argument.

e = (fn x:unit = (1 :=1);x) (I :=2)

(e,{l—0}) — ((I:=1);1:=2,{l— 0}
— (skip ;[:=2,{l—1})
— ([:=2 Al— 1})
— (skip Al — 2})

L2 Call-by-name

(same typing rules as before)

(e1,5) — (€1, 8")

(CBN-app)
(e] eg,8) — (€] €, 8)

(CBN-fn) ((fn z:T" = ¢e)es, s) — ({ex/x}e, s)

Here, don’t evaluate the argument at all if it isn’t used

((fn x:unit = skip)(l := 2),{l — 0})
— ({1 :=2/x}skip Al +— 0})
= (skip Al 0})

but if it IS, end up evaluating it repeatedly.

Call-By-Need Example (Haskell)

let notdivby x v =y ‘mod' x /= 0
enumlfrom n = n : (enumFrom (n+1))
sileve (X:Xs) =
X : sleve (filter (notdivby x) xs)
in
sieve (enumFrom 2)
==>
(2,3,5,7,11,13,17,19,23,29,31,37,41,43,477,53,
59,01,067,71,73,79,83,89,97,101,103,107,109,
113,127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,22°7,229,233,

TntevrvriimntaAdl

Purity

Function Behaviour. Choice 3: Full beta

Allow both left and right-hand sides of application to reduce. At any point
where the left-hand-side has reduced to a fn-term, replace all
occurrences of the formal parameter in the fn-term by the argument.
Allow reduction inside lambdas.

(fn x:int = 2+ 2) — (fn x:int = 4)

L2 Beta

(e1,8) — (€1, 8')
(e1 eg,8) —> (€] ey, 5")

(beta-app1)

(€2,8) — (€3, 8)
(e] eg,8) — (e1 €5, 8)

(beta-app2)

(beta-fn1) ((fn 2:T = e)ey, s) — ({ex/x}e,)

(e,s) — (e, &)

(beta-fn2)
(fn z:T = e,8) — (In x:T = ¢, &)

L2 Beta: Example

(fn x:int = x4+ x) (2 + 2)

v
(fn x:int = x +x) 4 (24+2)+(2+2)
\ — T~
4+(2+j)/(2+2)+4

Function Behaviour. Choice 4: Normal-order reduction

Leftmost, outermost variant of full beta.

Back to CBV (from now on).

Typing functions (1)

Before, | gave the types of store locations; it ranged over ‘1 ypelinv
which was the set of all finite partial functions from locations L to 1.

Now, it must also give assumptions on the types of variables:

Type environments | are now pairs of a 1. (a partial function from L to
1. as before) and a |, a partial function from X to 1.

For example, we might have [',. = [;:intref and
[',r = x:int, y:bool — int.

Notation: we write dom(I") for the union of dom(I".) and dom(I',,,). If
r & dom(I',,,), we write I, z: T" for the pair of ', and the partial
function which maps x to /' but otherwise is like 1 ;.

Typing functions (2)

(var) I'Foa:T ifl(x)="T

I'z: T+ e:T’

(fn)
I'Ffn 22T = e: T — T

F|_€11T% T’ Fl_GQZT

(app)
[+ €1 €9. T/

Typing functions — Example

x:int = x:nt var) x:int = 2:int (in)
| - (op-+)
x:int F x 4+ 2:1nt) int
{} F (fn xtint = x + 2):int — int {} F 2:int app)

{} F (fn x:int = x + 2) 2:int

Typing functions — Example

(fn x:int — int = x((fn x:int = x)3)

Properties of Typing
We only consider executions of closed programs, with no free variables.

Theorem 14 (Progress) If ¢ closed and 1"+ e:'I" and

dom(I") C dom(s) then either ¢ is a value or there exist ¢, s’ such that
(e,s) —> (€, s).

Note there are now more stuck configurations, e.g.((3) (4))

Theorem 15 (Type Preservation) /f ¢ closed and 1 +— e:'[" and
dom(I") C dom(s) and (e, s) — (e',s") thenI' t= ¢":T" and ¢’
closed and dom(1") C dom(s’).

Proving Type Preservation

Theorem 15 (Type Preservation) If ¢ closed and '+ e:l" and
dom(I") C dom(s) and (e, s) — (e',s") thenI' = ¢":'T" and ¢’
closed and dom(1") C dom(s’).

Taking

P(e,s, e, s") =
vI.,T.

[' e:T A closed(e) A dom(I') C dom(s)
=

['t €T A closed(e’) Adom(I") C dom(s’)

we show V e, s, ¢’ s".(e,s) — (e, s") = D(e, s, e, s") by rule
induction.

To prove this one uses:

Lemma 16 (Substitution) If[' = c¢: T and ', z: T+ ¢ T" with
r & dom(T") thenT' = {e/x}e’T".

Normalization

Theorem 17 (Normalization) /n the sublanguage without while loops or
store operations, ifI' — e:’l" and e closed then there does not exist an

infinite reduction sequence (¢, {}) — (e1,{}) — (e, {}) — ...

Proof ? can’t do a simple induction, as reduction can make terms grow.
See Pierce Ch.12 (the details are not in the scope of this course).

Local definitions

For readability, want to be able to name definitions, and to restrict their

scope, so add:
e = ..|letval 2:T = ¢ in e end

this & is a binder, binding any free occurrences of x in ¢,.

Can regard just as syntactic sugar:

let val 2: T =¢; in e end ~~ (fn :T =)¢

Local definitions — derived typing and reduction rules (CBYV)

let val 2: T =¢; in e; end ~~ (fn :T = e3)e

' e: T I'z:T F ey: T

(let)
['Hlet val 2:7T = ¢; in ey end: 1"’

(let1)
(e1,8) — {e1, 8)
(let val z:T = ¢; in e; end,s) —> (let val z:T = e; in e, end,.

(let2)

(let val z:T = v in ey end,s) — ({v/z}es, s)

Recursive definitions — first attempt

How about
x = (fn y:int =if y > 1 then y+ (x (y + —1)) else 0)

where we use x within the definition of x? Think about evaluating x 3.

Could add something like this:
e = ..|let val rec z:T = ¢ in ¢ end
(here the binds in both ¢ and ¢’) then say

let val rec x:Int — Int =
(fn y:int = if y > 1 then y + (x(y + —1)) else 0)

in X3 end

But...
What about
let val rec x = (x,X)in x end ?
Have some rather weird things, eg
let val rec x:int list =3 ::x in x end

does that terminate? if so, is it equal to
let val rec x:int list =3 ::3::x in X end ? does
let val rec x:int list =3 :: (x+ 1)in x end terminate?

In a CBN language, it is reasonable to allow this kind of thing, as will only
compute as much as needed. In a CBV language, would usually disallow,
allowing recursive definitions only of functions...

Recursive Functions

So, specialize the previous let val rec construct to

T = 1Ty — 15 recursion only at function types
e = ftn y:17 = ¢ and only of function values
e = ..|letval rec x:T) — To=(fn y:T) = €;)in ey end

(here the 1 binds in ¢;; the = bindsin (fn y: 7" = ¢;) and in &)

F,ZEITl% TQ,yITll_GllTQ F,fI]ITl% T2|_621T
[t let val rec z:1T7 — Ty = (fn y:T7 = e1)in ey end

(let rec fn)

Concrete syntax: In ML can write let fun f(x:7):T5 = ¢, in e, end,
orevenlet fun f(x) = e; in ey end, for
let val rec :71] — 15 =1n 2:1] = € in e end.

Recursive Functions — Semantics

(letrecfn) (let val rec z:T7 — T2 = (fn y:T1 = e1)in ex end, s)
—

({(fn y:T7 = let val rec z:T7 — T2 = (fn y:T1 = e1)in e; end)/x}ea, s)

Recursive Functions — Minimization Example

Below, in the context of the let val rec, x [7 finds the smallest n” > n for which [n’

/
evaluates to some m' < 0.

let val rec x:(int — int) — int — int
=fn f:int » int = fn z:iint=if(fz) > 1 then xf (z+ 1) else z
in
let val f:int — int
= (fn z:int = if z > 3 then (if 3 > z then 0 else 1)else 1)
in
x 0
end

end

More Syntactic Sugar

Do we need ¢;; €57

No: Could encode by ¢1; ¢5 ~~ (fn y:unit = ey)e;

Do we need while ¢; do ¢,?

No: could encode by while ¢; do ¢y ~~

let val rec w:unit — unit =

fn y:unit = if e; then (ey; (W skip)) else skip
in

w skip

end

tar frech w and 7/ notin fvle:) | fvl ea)

OTOH, Could we encode recursion in the language without?

We know at least that you can'’t in the language without while or store, as
had normalisation theorem there and can write

let val rec x:int — int =fn y:int = x(y+1)in x0 end

here.

Implementation

There is an implementation of L2 on the course web page.

See especially Syntax.sml and Semantics.sml. It uses a front
end written with mosmllex and mosmlyac.

Implementation — Scope Resolution

datatype expr_raw =
Var_raw of string

Fn_.raw of string *x type_expr * expr_raw

App_raw of expr_raw * exXpr_raw

datatype expr =
| Var of 1int
| Fn of type_expr * expr
| App Oof expr * expr

rroaaoAn | vt a~rATA @ ° AT T AW —S At

Implementation — Substitution

subst : expr —-> 1nt —-> expr —-> expr

subst e 0 e’ substitutes e for the outermostvarine’.

(the definition is only sensible if e is closed, but that's ok — we only

evaluate whole programs. For a general definition, see [Pierce, Ch. 6])

fun subst e

subst e
subst e

subst e

n

n

n

n

(Var nl) = if n=nl then e else Var nl
(Fn(t,el)) = Fn(t,subst e (n+l) el)
(App (el,e?2)) = App(subst e n el,subst e n e2)

(Let (t,el,e2))

= Let (t,subst e n el,subst e (nt+l) e2)

subst e

= Letrectn

n

(Letrecfn (tx,ty,el,e2))

(tx,ty,subst e (nt2) el,subst e (nt+tl) e2)

Implementation — CBV reduction

reduce (App (el,e2),s) = (case el of
Fn (t,e) =>
(Lf (1s_value e2) then
SOME (subst e2 0 e, s)
else
(case reduce (e2,s) of
SOME (e2’,s”) => SOME (App (el,e2’),s’)
| NONE => NONE))
_ => (case reduce (el,s) of
SOME (el’,s’)=>SOME (App (el’,e2),s")
| NONE => NONE))

Implementation — Type Inference

type typeknv
= (locxtype_loc) 1list * type_expr 1list

inftype gamma (Var n) = nth (#2 gamma) n
inftype gamma (Fn (t,e))
= (case inftype (#1 gamma, t:: (#2 gamma)) e of
SOME t’ => SOME (func(t,t’))
| NONE => NONE)
inftype gamma (App (el,e2))
= (case (1nftype gamma el, 1nftype gamma e2) C

(SOME (func(tl,tl’”)), SOME t2) =>

A F +1 =+ +hern CNOAME + 17 Aol ca NONE

Implementation — Closures

Naively implementing substitution is expensive. An efficient
implementation would use closures instead — cf. Compiler Construction.

We could give a more concrete semantics, closer to implementation, in
terms of closures, and then prove it corresponds to the original
semantics...

(if you get that wrong, you end up with dynamic scoping, as in original
LISP)

Aside: Small-step vs Big-step Semantics

Throughout this course we use small-step semantics, (e, s) — (¢’, s").

There is an alternative style, of big-step semantics (¢, s) |} (v, s’), for
example

(e1,8) I (n1,s") (e, ") | (na, s")
(n,s) | (n,s) (e1 + eg,) I} (n,s"y n=mn + ny

(see the notes from earlier courses by Andy Pitts).

For sequential languages, it doesn’t make a major difference. When we
come to add concurrency, small-step is more convenient.

Data — L3

Products

’ T1>|< TQ

..’(61,62)‘#16’#26

Products — typing

(pair) ['F €1ZT1 '+ BQITQ

' (er, e): Ty % T

I'Fe: Ty % T5

(proji)
[' #1 62T1

['FeTyx Ty
FF#Z GITQ

(proj2)

Products — reduction
vooi= ... ‘ (Ul,vg)

(e1,8) — (e, s)

<(617 62)7 S> — <(6{7 62)7 8,>

(pairt)

<€27 8> — <€é, S/>

P oy e2),) — (00,),)

(proj1) <#1('Ul, UQ)? S> — <'Ul, S> (proj2) <#2(’U1, ?}2), S> — <,027 S>

])
L7 ey 7 s S 7 S Sy 7 QR

Sums (or Variants, or Tagged Unions)

T = .. T1—|—T2

e == ..|inl eT |inr e:T |

case ¢ of inl (z:7T1) = e | inr (22:T5) = e

Those x's are binders, treated up to alpha-equivalence.

Sums - typing

(lnl) [I' - €:T1
[' - inl €IT1 -+ TQ:Tl -+ T2

(inr) [+ €:T2
I'=inr €IT1—|— T21T1—|— TQ

' - 63T1—|— TQ
F,ZEITl - 61:T
F,yITQ - 62:T

(case)
['tcase e of inl (z:T}) = e |inr (y:Ty) = ex: T

Sums — type annotations

case ¢ of inl (z:7T7) = ¢ |inr (25:T5) = e

Why do we have these type annotations?

To maintain the unique typing property. Otherwise

inl 3:int 4+ Int

and
inl 3:int + bool

Sums - reduction
v = .. |inl v:T |inr v:T

(e,s) — (e, s)

(inl)
(inl e:T,s) — (inl €T, s

(e,s) — (e, s")

(casel) (case e of inl (z:T7) = ¢ |inr (y:T5) = e, 8)

— <case e’ of inl (ZEITl) = €] ‘ inr (yTg) = €9, 8/>

(case2) (case inl v:T of inl (z:T)) = e |inr(y:T5) = €3, 5)

— ((v/zjer, s)

(inr) and (case3d) like (inl) and (case2)

Constructors and Destructors

type constructors destructors
T'— T |ftn z:1 = _ _e
TxT |(.2) #1_ #2_

T+ T [inl(_) inr(_) | case

bool true false if

Proofs as programs: The Curry-Howard correspondence

(var) 1, z: 17"+ a:T I'"PEFHP
(fn) I'z:T F e T’ P+ P
I'fn 2:T =¢e: T — T '-P — P
(app) I'Fe:T — T TI'Fe:T '-P—-P T'FP
F|_61622T/ '~ P

Proofs as programs: The Curry-Howard correspondence

(var) I, z:T F x:T

'e:TFe:T’

(fn)
I'Ffnz:T=e:T— T

F|—61:T—> T’ Fl—eg:T
I'F e ex: T’

(app)

I'Feg:T I'F eg:To
' (e1,e2): T x To

(pair)

I,PFP

I,PF P!

'-P— P

I'-P— P’ I'-P

'+ P’

I'P1 T'F Po

I'E P1 A P2

F'—Pl/\Pg F|_P1/\P2

(proj1) I' - 6:T1 * T2 (pr0j2) I' - 6:T1 ES T2
' #1 e:Th I'= #2 e:To
I'Ee:'Tq

I'Finl e: T + T9:T71 + To

(inr), (case), (unit), (zero), etc.. — but not (letrec)

I'E Py I'E Po

' P

I'E P1v Po

ML Datatypes
Datatypes in ML generalize both sums and products, in a sense

datatype IntList = Null of unit
| Cons of Int x IntList
Is (roughly!) like saying

IntList = unit + (Int * IntList)

Records

A generalization of products.

Take field labels
Labels lab € ILAB foraset LAB = {p,q,...}

T == .| {laby:Ty, .. laby: Tk}
e == ..|{laby = e,..,laby = e} | #lab e

(where in each record (type or expression) no [ab occurs more than once)

Records — typing
I'Fe:Ty .. T'Foep:Th

(record)
' {laby = ey, .., laby = ex}:{labyi:TY, .., laby: Ty}

' e:{labi: Ty, .., laby: Ty}
[' - #labz GITZ'

(recordproj)

Records — reduction

v o= .| {laby = vy, .. laby = v}

<6i7 8> — <6,£, S/>

(recordl) ({laby = vy, .., lab; = e;, .., laby, = e}, s)
— ({laby = vy, .., lab; = €], .., laby, = e}, s")
(record2) (F#lab; {laby = vy, .., laby = v}, s) — (v;,)

(e,s) — (e, s)
(#lab; e,s) — (#lab; €', s")

(record3)

Mutable Store
Most languages have some kind of mutable store. Two main choices:

1 What we've got in L1 and L2:

e = ..|l:=¢elll|x

e |ocations store mutable values
e variables refer to a previously-calculated value, immutably

e explicit dereferencing and assignment operators for locations
fn xiint = [:= (1) +x

2 In C and Java,

e variables let you refer to a previously calculated value and let you
overwrite that value with another.

vold foo(x:1int) {
e implicit dereferencing, 1 = 1 + x

.}

e have some limited type machinery to limit mutability.

— pros and cons:

References

| T ref
tatref T ref

e

n‘l
|2 U

le1:=ex|le| refe |l

References — Typing

(ref) ['FeT
'~ refe: T ref

F|_€12T ref Fl_GQIT
I'F e := ey:unit

(assign)

(derefy L —e:T ref
['Hle:T

References — Reduction

A location is a value:
von= LA

Stores s were finite partial maps from L to Z. From now on, take them to
be finite partial maps from L to the set of all values.

(refl) (ref v,s) — ({,s+{l+— v}) (£ ¢ dom(s)

(e,s) —> (e, s)

(ref2)
(ref e, s) — (ref €', s)

(deref1) (0, s) — (v,s) ifl{ & dom(s)ands(/)=wv

(e,s) — (e, s")
(le,s) — (e, s")

(deref2)

(assign1) ((:= v, s) — (skip,s + {(+— v}) if{ & dom(s)

(assign2) <67 S> — <6/7 3/>
(0 :=e,8) — (L := €5
(assign3) <€7 8> — <€/7 8/>

Type-checking the store

For L1, our type properties used dom(I") C dom(s) to express the
condition ‘all locations mentioned in 1" exist in the store s’.

Now need more: for each /€ dom(s) need that s(/) is typable.
Moreover, s() might contain some other locations...

Type-checking the store — Example
Consider
e = let val x:(int — int) ref = ref(fn z:int = z) in
(x ;= (fn z:iint = if z > 1 then z+ ((!x) (z+ —1)) else (
(x) 3) end
which has reductions

(e 1}) —
(

e1, {h — (fn ziint = z)}) —*
o, {l — (fn ziint = if z>1 then z+ ((!}) (z 1)) else 0)}

—* (6, ...)

So,say ' siftV/{ €dom(s)d T.1'(0) =T ref A' = s(0): T

The statement of type preservation will then be:

Theorem 18 (Type Preservation) /f ¢ closed and1' — e:'["and 1 - s

and (e,s) — (e', s") then for some I'" with disjoint domain to I" we
have ', 1" F ¢ T andI', 1" - s’

Definition 19 (Well-typed store) Let " - s if dom(1") = dom(s) and if
forall{ € dom(s), if'(¢) = T ref thenl't= s({):T.

Theorem 20 (Progress) If ¢ closed and 1" = e:'I" and 1" = s then either
e is a value or there exist ¢’, s" such that (¢, s) — (e’ s").

Theorem 21 (Type Preservation) /f ¢ closed and1' — e:'["and 1 - s
and (e, s) — (€', s") then ¢’ is closed and for some "’ with disjoint
domainto ' we have ', 1" = ¢": T and ", 1" - &'.

Theorem 22 (Type Safety) /f ¢ closedand 1 = e¢:["and 1 = s and
(e, s) —* (€', s") then either ¢’ is a value or there exist ¢”, s" such
that (¢’ s") — (", s").

Implementation

The collected definition so far is in the notes, called L3.

It is again a Moscow ML fragment (modulo the syntax for /" + 1), so you
can run programs. The Moscow ML record typing is more liberal than that
of L3, though.

Evaluation Contexts

Define evaluation contexts

E == _op e|v op _|if _ then ¢ else ¢ |
e
e|wv]
let val :7 = _ in ey end |
(o) | (v | #1_ [#2_)
inl 7 |inr 27T |
case _ of inl (z:T) = e |inr(2z:T) = e |
{laby = v, .., lab; = _, .., laby, = ey} | #lab _ |

=e|v:i=_|1_| ref _

and have the single context rule

(e,s) — (e, s")

o B, sy — (B[], 9)

replacing the rules (all those with > 1 premise) (op1), (op2), (seq?2), (if3),
(app1), (app2), (let1), (pairl), (pair2), (proj3), (proj4), (inl), (inr), (casel),
(record1), (record3), (ref2), (deref2), (assign2), (assigna3).

To (eval) we add all the computation rules (all the rest) (op +), (op >),
(seql), (if1), (if2), (while), (fn), (let2), (letrectn), (proj1), (proj2), (case2),
(case3l), (record2), (refl), (derefl), (assigni).

Theorem 23 The two definitions of —> define the same relation.

A Little History

Formal logic 1880—
Untyped lambda calculus 1930s
Simply-typed lambda calculus 1940s
Fortran 1950s

Curry-Howard, Algol 60, Algol 68, SECD machine (64) 1960s

Pascal, Polymorphism, ML, PLC 1970s
Structured Operational Semantics 1981—
Standard ML definition 1985

Haskell 1987

Subtyping 1980s
Module systems 1980—
Object calculus 1990-
Typed assembly and intermediate languages 1990-

And now? module systems, distribution, mobility, reasoning about objects, security, typed compilation,.......

Operational semantics

| 11234

(assignment and while) Type systems

Implementations

25,6

(functions and recursive definitions) L g Language design choices

Inductive definitions

8 Inductive proof — structural; rule
(products, sums, records, references) L3°

e

Subtyping Semantic
and Objects® Equivalence™

Abstract syntax up to alpha

Concurrency 2

Subtyping and Objects

Polymorphism
Ability to use expressions at many different types.

e Ad-hoc polymorphism (overloading).

e.g. in Moscow ML the built-in + can be used to add two integers or to
add two reals. (see Haskell type classes)

e Parametric Polymorphism — as in ML. See the Part Il Types course.

can write a function that for any type « takes an argument of type

o list and computes its length (parametric — uniform in whatever cv is)

e Subtype polymorphism — as in various OO languages. See here.

Dating back to the 1960s (Simula etc); formalized in 1980,1984,...

Subtyping — Motivation

Recall

I'Ee:T — T
[+ GQIT

(app)
[' - €1 €9. T/

SO can'’t type

7 (fn x:{p:int} = #px) {p=3,q=4} : int

even though we're giving the function a better argument, with more

structure, than it needs.

Subsumption
‘Better’? Any value of type {p:int, ¢:int} can be used wherever a value
of type {p:int} is expected. (*)

Introduce a subtyping relation between types, written 7" <: 1", read as
T"is a subtype of 7" (a 7" is useful in more contexts thana 7").

Will define it on the next slides, but it will include
{p:int, q:int} <: {p:int} <: {}
Introduce a subsumption rule

(sub) I'Ee:T T <: T
' e: T’

allowing subtyping to be used, capturing ().

Can then deduce {p = 3, q = 4}:{p:int}, hence can type the example.

Example

x{pint} b x:{pint} E\r/:cZZ)r dor0) {} F 3int) U - dint (Var)(record)
x:{pint} - #p xint : J(fn) {}{p=3,q=4}:{pint, q:int} (%) (sub)
(1 0 efpin] = £t 0Fb=ta=Rlpin ™

{}F (fn x{piint} = #p x){p = 3,q = 4}:int

where (¥) is {p:int, q:int} <: {p:int}

The Subtype Relation| 7" <: T"

(s-refl)

T <: T

(strans) L <: 1" "< 1"
T < T

Subtyping — Records

Forgetting fields on the right:

{laby:Th, .., labg: Ty, laby1: Thiq, .., labgyp: Thop }
<: (s-record-width)

{laby:Th, .., labg: T} }

Allowing subtyping within fields:
< T, .. Ty< T,

(s-record-depth)
{laby:Ty, .., labg: Ty} <: {laby: Ty, .., laby: T}

Combining these:

s-record-width

- d-width
{p:int, q:int} <: {p:int} () {rint} <: {} (s-record-width)

{x:{p:int, q:int}, y:{r:int}} <: {x:{p:int},y:{}}

(s-record-depth)

Allowing reordering of fields:

(s-record-order)
7 a permutation of 1, ... &

{laby:Ty, .., laby: Ty} <: {labray: Trry, - labagry: Tugiy }

(the subtype order is not anti-symmetric — it is a preorder, not a partial
order)

Subtyping — Functions

(s-11) T < Ty Ty <: T}

T1%T2<ZT1/%T2/

contravariant on the left of —

covariant on the right of — (like (s-record-depth))

If /.1 — I, then we can give | any argument which is a subtype of
T ; we can regard the result of |/ as any supertype of 75. e.g., for

f =t x{p:int} = {p = #p x,q = 28}

we have
{} F f{p:int} — {p:int, q:int}
{} F f{p:int} — {p:int}
{} F fAp:int, q:int} — {p:int, q:int}
{} F fAp:int, q:int} — {p:int}

{p:int, q:int} <: {p:int}

On the other hand, for

fn x:{p:int,q:int} = {p = (#p x) + (#q x)}
we have
{} F fAp:int, q:int} — {p:int}
{}/ fAp:int} — T forany T
{}F f:T — {p:int,q:int} forany T

Subtyping — Products

Just like (s-record-depth)

. / . /
spain) 1<l T < T

Ty« Ty < T % T,

Subtyping — Sums

Exercise.

Subtyping — References

Are either of these any good?

T <: T’ T <: T
T ref <: T ref T ref <: T ref

No...

Semantics
No change (note that we've not changed the expression grammar).
Properties
Have Type Preservation and Progress.
Implementation

Type inference is more subtle, as the rules are no longer syntax-directed.

Getting a good runtime implementation is also tricky, especially with field

re-ordering.

Subtyping — Down-casts

The subsumption rule (sub) permits up-casting at any point. How about
down-casting? We could add

e == .| (T)e

with typing rule
' e: T’
'+ (T)e:T

then you need a dynamic type-check...

This gives flexibility, but at the cost of many potential run-time errors.
Many uses might be better handled by Parametric Polymorphism, aka
Generics. (cf. work by Martin Odersky at EPFL, Lausanne, now in Java
1.5)

(Very Simple) Objects

let val c:{get:unit — int, inc:unit — unit} =
let val x:int ref = ref O in
{get = fn y:unit =x,
inc = fn y:unit = x := 14Ix}
end
in
(#inc ¢)(); (#get c)()

end

Counter = {get:unit — int, inc:unit — unit}.

Using Subtyping
let val c:{get:unit — int, inc:unit — unit, reset:unit — unit} =
let val x:int ref = ref O in
{get = fn y:unit =X,
inc = fn y:unit = x := 1+x,
reset = fn y:unit = x := 0}
end
in
(##ine ©)(); (#get ©)(

end

ResetCounter = {get:unit — int, inc:unit — unit, reset:unit — unit}

< Counter — {oet-uunit — int inc-unit — unitl

Object Generators

let val newCounter:unit — {get:unit — int, inc:unit — unit} =
fn y:unit =
let val x:int ref = ref 0 in
{get = fn y:unit =!x,
inc = fn y:unit = x := 14Ix}
end
in
(#inc (newCounter ())) ()

end

and onwards to simple classes...

Reusing Method Code (Simple Classes)

Recall Counter = {get:unit — int, inc:unit — unit}.

First, make the internal state into a record.

CounterRep = {p:int ref}.

let val counterClass: CounterRep — Counter =
fn x:CounterRep =
{get = fn y:unit =!(#p x),
inc = fn y:unit = (#p x) := 1+!(#p x)}

let val newCounter:unit = Counter =
fn y:unit =
let val x:CounterRep = {p = ref 0} in

counterClass x

Reusing Method Code (Simple Classes)

let val resetCounterClass: CounterRep — ResetCounter =
fn x:CounterRep =
let val super = counterClass x in
{get = #get super,
inc = #inc super,

reset = fn y:unit = (#p x) := 0}

CounterRep = {p:int ref}.
Counter = {get:unit — int, inc:unit — unit}.

ResetCounter = {get:unit — int, inc:unit — unit, reset:unit —
unit}.

Reusing Method Code (Simple Classes)

class Counter
{ protected int p;
Counter () { this.p=0; }
int get () { return this.p; }
volid inc () { this.pt++ ; }
b

class ResetCounter
extends Counter
{ void reset () {this.p=0;}
}

Subtyping — Structural vs Named

A/
A/l
A///

0
|

{p:int}

{} with {p:int}

A" with {q:bool}

A" with {r:int}

" S

{p:int, q:bool}

{p:int, r:int}

A//

Object (ish!)

A/

PN

A//

Concurrency

Our focus so far has been on semantics for sequential computation. But
the world is not sequential...

e hardware is intrinsically parallel (fine-grain, across words, to
coarse-grain, e.g. multiple execution units)

e multi-processor machines
e multi-threading (perhaps on a single processor)

e networked machines

Problems

e the state-spaces of our systems become /arge, with the combinatorial
explosion — with . threads, each of which can be in 2 states, the

system has 2" states.
® the state-spaces become complex

e computation becomes nondeterministic (unless synchrony is
iImposed), as different threads operate at different speeds.

e parallel components competing for access to resources may deadlock
or suffer starvation. Need mutual exclusion between components

accessing a resource.

More Problems!

e partial failure (of some processes, of some machines in a network, of

some persistent storage devices). Need transactional mechanisms.

e communication between different environments (with different local

resources (e.g. different local stores, or libraries, or...)
® partial version change

e communication between administrative regions with partial trust (or,
iIndeed, no trust); protection against mailicious attack.

e dealing with contingent complexity (embedded historical accidents;
upwards-compatible deltas)

Theme: as for sequential languages, but much more so, it's a complicated
world.

Aim of this lecture: just to give you a taste of how a little semantics can
be used to express some of the fine distinctions. Primarily (1) to boost
your intuition for informal reasoning, but also (2) this can support rigorous
proof about really hairy crypto protocols, cache-coherency protocols,
comms, database transactions,....

Going to define the simplest possible concurrent language, call it L1,, and
explore a few issues. You've seen most of them informally in C&DS.

Booleans b € B = {true, false}
Integers n € Z ={...,—1,0,1,...}
Locations ¢ € L ={l,ly, l, 5, ...}

Operations op 1=+ |>

Expressions

e == n|ble op e |if e then e, else e; |
(:=¢e|ll
skip\el;eg\

while ¢; do e

e1 | e

int | bool | unit | proc

Intref

Parallel Composition: Typing and Reduction

(thread) L I e:unit

[' = e:proc
(parallel) I' - €:proc [' = ey:proc
I'F e1]eq:proc
(parallel) (e1,8) — (€1, ')
(e1| e, s) — (e1]ea, s")
(parallel2) (€2,8) — (€3, 8)

(e1l ez, 8) — (e1ley, s')

Parallel Composition: Designh Choices

e threads don't return a value

e threads don’t have an identity

e termination of a thread cannot be observed within the language
e threads aren’t partitioned into ‘processes’ or machines

e threads can't be killed externally

Threads execute asynchronously — the semantics allows any interleaving
of the reductions of the threads.

All threads can read and write the shared memory.

(Ol :=2,{l—=1}) ——= (010, /= 2})

////////7

(I :=1]1:=2,{l — 0})

\\\\\\\\&

(=10, U= 2 ——(010: Ul = 1})

But, assignments and dereferencing are atomic. For example,

(1 := 3498734590879238429384 | | := 7, {l — 0})

will reduce to a state with [either 3498734590879238429384 or 7, not

something with the first word of one and the second word of the other.
Implement?

But but, in ([:= ¢)| ¢/, the steps of evaluating ¢ and ¢’ can be
interleaved.

Think of ([:= 1+![)| ([:= 7+!l) — there are races....

The behaviour of ([:

(1= 1)1(1 := 74+1), {I — 0})

\
/
\
/

((1:=1+0)1(L:= 7+), {l —~ 0})

/

(1 == 141) | (1 := T+10), {I — 0})

e

/
X
/
\

\
/
X
/

(1= 1411 (1 := 7+ 0), {I — 0})

/
\
/
\

(L= 141)1(1 := 7), {I — 0})

1+

|

)| (1 := T+!1) for the initial store {/ > 0}:

(O1(== T410), {1 = 1}) r . + . .

(010, {1 — 8})

|

((Il:=14+0)|1(1l:=740),{l— 0})

(O1(:=T7+0), {L 1})
(1= DIl = T40), {L— 0}) (O = 7), {1 1)) = (010, {L = T})
(1= 1)I(L:=7), {1 0})

(=110, {L = 7)) —— (010, {1 = 1})

((I1:=14+0)|(1:=7),{l— 0})

(1:=14010,{l— T}

/

r + w

(L= 14110, {l = 7}) . . (010, {t — 8})

Morals

e There is a combinatorial explosion.

e Drawing state-space diagrams only works for really tiny examples — we
need better techniques for analysis.

e Almost certainly you (as the programmer) didn’t want all those 3
outcomes to be possible — need better idioms or constructs for

programming.

So, how do we get anything coherent done?

Need some way(s) to synchronize between threads, so can enforce
mutual exclusion for shared data.

cf. Lamport’s “Bakery” algorithm from Concurrent and Distributed
Systems. Can you code that in L1,? If not, what’s the smallest extension
required?

Usually, though, you can depend on built-in support from the scheduler,
e.g. for mutexes and condition variables (or, at a lower level, tas or
cas).

Adding Primitive Mutexes

Mutex names m € M = {m,my,...}
Configurations (e, s, M) where M :IV[— B is the mutex state

Expressions ¢ ::= ... | lock m | unlock m

(lock) _ (unlock) _
[' - lock m:unit [' = unlock m:unit

(lock) (lock m, s, M) — ((),s, M + {m — true}) it =M (m)

(unlock) (unlock m,s, M) — {((),s, M + {m — false})

Need to adapt all the other semantic rules to carry the mutex state /\/
around. For example, replace

(€2,5) —> (€3, 5)
(v op e,5) —> (v 0p €,5)

(0p2)

(eg, 8, M) — (e}, s', M")

(0p2) S
(v op ey, 5, M) — (v op ey, M')

Using a Mutex

Consider
e = (lock m; [:= 1+4!/;unlock m)]|(lock m;/ := 7+!l; unlock m)

The behaviour of (¢, s, M), with the initial store s = {/ > 0} and initial
mutex state /My = Am € W .false, is:

((I :== 1+!l; unlock m)]|(lock m;[:= 7+!/;unlock m)

<€SM() {ZHS} M>

N

((lock m; [:= 1+!l;unlock m)|(l := 7+!l/;unlock m), s, M")

(where M'" = My + {m + true})

Using Several Mutexes

lock m can block (that’s the point). Hence, you can deadlock.

e = (lock my;lock my;l; :=!l;unlock mi;unlock my)

| (lock mg;lock my;ly :=!l;;unlock mj;unlock ms,)

Locking Disciplines

S0, suppose we have several programs ¢y, ..., ¢, all well-typed with
[' = e;:unit, that we want to execute concurrently without ‘interference’
(whatever that is). Think of them as transaction bodies.

There are many possible locking disciplines. We’'ll focus on one, to see
how it — and the properties it guarantees — can be made precise and
proved.

An Ordered 2PL Discipline, Informally

Fix an association between locations and mutexes. For simplicity, make it
1:1 — associate [with m, [; with m, etc.

Fix a lock acquisition order. For simplicity, make it m, mg, my, mo,

Require that each ¢;
e acquires the lock m ; for each location /; it uses, before it uses it
® acquires and releases each lock in a properly-bracketed way
e does not acquire any lock after it's released any lock (two-phase)
® acquires locks in increasing order

Then, informally, (e, |...| ;) should (a) never deadlock, and (b) be
serializable — any execution of it should be ‘equivalent’ to an execution of
€r(1)s ---5 Ex(k) fOor some permutation 7.

Problem: Need a Thread-Local Semantics

Our existing semantics defines the behaviour only of global configurations
(e, s, M). To state properties of subexpressions, e.g.

e ¢, acquires the lock m ; for each location /; it uses, before it uses it
which really means

e in any execution of ((e1]...]¢;|...|ex), s, M), e; acquires the lock

m ; for each location /; it uses, before it uses it

we need some notion of the behaviour of the thread ¢; on its own

Solution: Thread local semantics

Instead of only defining the global (e, s, M) — (', s", M’), with rules
(assign1) (£ :=mn,s, M) — (skip,s +{{+— n}, M) if¢ &€ dom(s)

(er,s, M) — {(e1,s", M")

(parallel) / / /
(e1]e2,s, M) — (e1]ea, s, M")

define a per-thread ¢ — ¢’ and use that to define
(e, s, M) — (e, s", M"), with rules like

(t-assign1) £ :=n “=y skip

a /
€1 — €1

(t-parallel) PR
e1lea — el e

l:=n /

e — e (€ dom(s)

(c-assign)
(e,s, M) — (€', s +{€— n}, M)

Note the per-thread rules don’t mention s or /. Instead, we record in the
label a what interactions with the store or mutexes it has.

a = T |L:=n|ll =n]|lock m |unlock m

Conventionally, 7 (tau), stands for “no interactions”, so ¢ — ¢’ if e does
an internal step, not involving the store or mutexes.

Theorem 24 (Coincidence of global and thread-local semantics) The
two definitions of — agree exactly.

Proof strategy: a couple of rule inductions.

Example of Thread-local transitions

For ¢ = (lock m; (] := 14!/;unlock m)) we have

lock m

e — skip;(/:= 1+!l;unlock m)

T

(I == 1+4!/; unlock m)

= ([:=1+4 n;unlock m) foranyn € Z
i (I :=n';unlock m) forn'=1+mn

ﬂ skip; unlock m

— unlock m

LT skip

Hence, using (t-parallel) and the (c-*) rules, for s’ = s+ {[— 1+ s(l)},
(ele’, s, My) ——>—>—>—>—>—— (skip| €', s", My)

Global Semantics

(op+) (mi+mn2,s, M) — (n,s,M) iftn=ni+n

(op>) (m1 > mna,s,M) — (b,s,M) ifb=(n1>n2)
oo (o1, 8, M) — (el o/, 1)

(er op ez, s, M) —> (€] op e2,s', M')
(0p2) (€2, s, M) —> (ey,s', M")

(v op ex, 8, M) — (v op €5, s, M)

(deref) (0, s, M) — (n,s, M) ifl & dom(s)ands({)=n

(assign) (¢ :=mn,s, M) —> (skip,s + {{ — n}, M) if{ € dom(s)

(e,5, M) — (e, s, M)

(assign2)
(l:=e,s, M) — (£:=¢',s',M')

(seql) (skip; ez, 5, M) — (ez,s, M)

(er,5, M) — (¢], ', M")

(seq2)
(e1; e2,8, M) — (ef; ea,s’, M)

(if1) (if true then e else es,s, M) — (e2, s, M)
(if2) (if false then ¢ else es,s, M) — (es, s, M)

(e1,8, M)y — (€1, s, M")

(if e1 then ey else e3, s, M) —> (if e] then eo else es,s', M’)

(if3)

(while)

(while e; do ez, s, M) —> (if e then (ez;while ¢ do e2) else skip,)

(er, s, M) —> (e1,s',M")

(parallel1)
erlea, s, M) — (efles, s’, M')

(e2,5, M) — (e, 5", M)

(parallel2)
(erlez, s, M) —> (e1les,s', M")

(lock) (lock m, s, M) — ((), s, M + {m > true}) if =M (m)

(t-op +)

(t-op =)

(t-op1)

(t-op2)

(t-deref)

Thread-Local Semantics

n1+n2L>n ifn=mn + ne

m>np —b

it = (n1 > n2)

a ’
e — e

.
e op ez —>ef op e

a s
€2 —> €y

o
v oop ez —> v op e

1=
0w =n

(t-assign1) (:=n L=y skip

a.
;% e
(t-assign2) € o & ;
=e—l:=¢
(t-seql) skip; e2 e

(t-seq?2)

f

(tif1)

f

(ti2)

(t-if3)

a ’
er — €

a 7
e1;ex — ey; e
true then e else e3 — eo
false then e> else e3 N es

.
er — e

=

(t-while)

while ¢;

(t-parallel1)

(t-parallel2)

e then ¢y else e3 —s if ¢f then e else e3

do e —if e then (e2;while e; do e) else skip

o
er — €

a ’
er]lea — eilex

a
€y — €y

a ’
erles — er]es

lock m

(t-lock) lock m —" ()

(t-unlock) unlock m unlock, m ()
(unlock) (unlock m, s, M) — ((), s, M + {m r> false})
N
(ctay) — € —7€¢
(er5, M) — (5, M)
) e 1€ dom(s) PRl U M(m)
(c-assign) (c-lock)
(e,s, M) — (€', s+ {l— n}, M) (e, s, M) — (€', s, M + {m — true})
=n , ,
o !y < s(0) =n unlock m
(c-deref) ¢ ¢ € dom(s) 1 5(f) = (c-unlock) L ——

e, s, M) — (€', s, M)

(e, s, M) — (e, s, M + {m r false})

Now can make the Ordered 2PL Discipline precise

Say ¢ obeys the discipline if for any (finite or infinite)
€ L €1 & €9 aﬁg

o if a;is ([; := n)or (!l; = n) then for some & < 7 we have
ay = lock 1m; without an intervening unlock m;.

e for each j, the subsequence of a;, as, ... with labels lock m; and
unlock m; is a prefix of ((lock m,)(unlock m;))*. Moreover, f
a .
—(e, —) then the subsequence does not end in a lock m;.

e if 4, = lock m; and a; = unlock mj then: < ¢’

e if 4; = lock m; and a; = lock my and i < ¢ thenj < 7’

... and make the guaranteed properties precise

Say ¢, ..., ¢, are serializable if for any initial store s, if

((er]...lex), s, My)y —* (€', s, M'") /— then for some permutation
T we have <67T(1);) Exn(k)y S, M0> —* <€”, s’ M/>.

Say they are deadlock-free if for any initial store s, if
((er]...]en), s, My)y —* (€', s', M) #— thennot ¢/ =" ¢,
i.e.¢’ does not contain any blocked lock m subexpressions.

(Warning: there are many subtle variations of these properties!)

The Theorem

Conjecture 25 If each ¢; obeys the discipline, then ¢, ...¢;. are
serializable and deadlock-free.

(may be false!)
Proof strategy: Consider a (derivation of a) computation
<(€1 | | Gk), S, M()> — <€317 S1, M1> — <é2, So, M2> — ...

We know each ¢; is a corresponding parallel composition. Look at the
points at which each ¢; acquires its final lock. That defines a serialization
order. In between times, consider commutativity of actions of the different
e; —the premises guarantee that many actions are semantically
independent, and so can be permuted.

We’'ve not discussed fairness — the semantics allows any interleaving
between parallel components, not only fair ones.

Language Properties

(Obviously!) don’t have Determinacy.
Still have Type Preservation.

Have Progress, but it has to be modified — a well-typed expression of type

proc will reduce to some parallel composition of unit values.
Typing and type inference is scarcely changed.

(very fancy type systems can be used to enforce locking disciplines)

Semantic Equivalence

?
2+2 ~ 4

In what sense are these two expressions the same?
They have different abstract syntax trees.
They have different reduction sequences.

But, you'd hope that in any program you could replace one by the other

without affecting the result....

242 . 4 -
/ esm(a;)dx _ / esm(x)daj
0 0

How about ([:= 0;4) ~ (1 :=1;34!)

They will produce the same result (in any store), but you cannot replace
one by the other in an arbitrary program context. For example:

Cl] =+

Cll:=0;4] = (1 :=0;4)+!

s
Cll:=1;3+!U = (Il:=1;3+1)+!

On the other hand, consider

(=11 1) (1:=1—1) ~ (1:=I])

Those were all particular expressions — may want to know that some

general laws are valid for all ¢, e5, How about these:
?
e1; (€25 €3) = (e1; €); €3
(if e, then ey else e3);e ~ if e; then ey e else e3;e
e; (if e; then ey else e3) ~ if e; then ¢; ey else e;e3

e; (if e; then ey else e3) ~ if e;e; then ey else e3

let val x = ref 0 in fn yiint = (x :=Ix+y);!x

?

Y

let val x = ref 0 in fn y:int = (x :=Ix —y); (0—Ix)

Temporarily extend L3 with pointer equality

op =...|=
[I' - 612T ref
[+ GQIT ref
(0p =)
'+ €1 — GQIbOOl

p=) ([=10 s) — (bs) ifb=(l=10)

let val x = ref O in
let val y = ref O in
fn z:int ref = if z = x then vy else x

end end

let val x = ref O in
let val y = ref O in
fn z:int ref = if z=1y then y else x

end end

f= let val x= ref O in

let val y = ref O in

fn z:int ref = if z = x then y else x
g= let val x= ref O in

let val y = ref O in

fn z:int ref = if z =y then y else x

Consider (' = t _, where

t =fn h:(int ref — int ref) =
let val z= ref 0 in h (hz) =hz

(t f,{}) —* (false, ...)
(t g,{}) —* (true, ...)

With a ‘good’ notion of semantic equivalence, we might:
1. understand what a program is

2. prove that some particular expression (say an efficient algorithm) is
equivalent to another (say a clear specification)

3. prove the soundness of general laws for equational reasoning about
programs

4. prove some compiler optimizations are sound (source/IL/TAL)

5. understand the differences between languages

What does it mean for >~ to be ‘good’?

. programs that result in observably-different values (in some initial
store) must not be equivalent

(3 s, 81, 82, U1, Va.{€1,8) —* (v, $1) A (€3,8) —>* (1, So)
AU FE) = e E e

. programs that terminate must not be equivalent to programs that don't

. >~ must be an equivalence relation

e X~ e, €1 &~ € = €2 X~ €y, €1 =X € =X €3 — €1 XX €3

. >~ must be a congruence

if e, =~ e then for any context (' we must have C'|e;| >~ C'|es]

. =~ should relate as many programs as possible subject to the above.

Semantic Equivalence for L1

Consider Typed L1 again.

Define ¢, ~/ e, to hold iff forall s such that dom(I") C dom(s), we

have ' e 7, 1"+ e5: 71", and either
(@) (e1,s) —“ and (ey, s) —*, or

(b) for some v, s" we have (e, s) —* (v, s") and
(e, 8) —* (v, s').

If 7" = unit then C' = _;![.
If 7" = boolthen C' = if _ then!/ else!l.
If 7" = intthen C = [} := _;!l.

Congruence for Typed L1

The L1 contexts are:

C == _op e|e op _|

if _ then e, else e3 | if e; then _ else e;3 |

if e then ¢, else _
(= _|
- €2 ’ €1, - ’

while _ do e, | while ¢; do _

Say ~I has the congruence property it whenever ¢; :? co we have,

forall C'and 7",if ' = Cle|: T"and I' = C'les]: T" then
Clel] ~L Cley).

Theorem 26 (Congruence for L1) ~1" has the congruence property.

Proof Outline By case analysis, looking at each L1 context (' in turn.

For each (' (and for arbitrary e and s), consider the possible reduction
sequences

(Clel,s) — (e1,81) — (e, $9) —> ...

For each such reduction sequence, deduce what behaviour of ¢ was
involved

<€,8> — <é1,§1> — ...

Using ¢ ~{. ¢’ find a similar reduction sequence of ¢’.

Using the reduction rules construct a sequence of C'|¢].

Theorem 26 (Congruence for L1) ~1" has the congruence property.

By case analysis, looking at each L1 context in turn.

Case (' = (/ := _).Suppose ¢ ~{ ¢/, '/ :=¢e:T" and
' /¢ := ¢':T". By examining the typing rules 7" = int and
T" = unit.
To show (:= ¢) ~L (¢ := ¢’) we have to show for all s such that
dom(I') € dom(s),then ' =0 :=e:T" (), ' =1 := e"T" (1)),
and either
1. ((:=¢,5) —“and ({ := €', s) —“, or

2. for some v, s’ we have (/ := ¢,s) —* (v, s’) and

(:=¢e,s) —* (v,5).

Consider the possible reduction sequences of a state (¢ := ¢, s). Either:

Case: (/ :=¢,s5) —",l.e.
(0= e,s) —> (e1,5) — (€9, S9) —> ...
hence all these must be instances of (assign2), with
(e,s) — (€1,51) — (€9, 8) — ...

and ¢; = (Z L= él), €y — (é L= ég),...

Case: —((/ :=¢,s5) —"),ie.
(0= e,8) —> (e1,81) — (ea, S2)... —> (e€x, Sk) +—
hence all these must be instances of (assign2) except the last, which
must be an instance of (assigni), with
(e,s) —> (€1,8) —> (€9,8) —> ... —> {(€r_1, Sp_1)
and ey = (£ :=¢1),e0 = (L :=¢€3),, 1 = (£ := ¢€;,_1) and for

some 1 we have ¢, | = n, ¢, = skip,and s, = s, + {{ — n}.

Now, if ({ := ¢, s) —“ we have (¢, s) —“,soby ¢ ~1 ¢ we

have (¢’, s) —“, so (using (assign2)) we have (/ := ¢’ s) —*.
On the other hand, if =((/ := ¢, s) —*) then by the above there is

*

some 7 and s such that (e, s) —* (n, s,_1) and
(0 :=e,s) —> (skip, Sp_1 + {{ — n}).

By ¢ ~{ ¢ wehave (¢,s) —* (n,s._1).
Then using (assigni)
(=€ s) —* ({:=n,s_1) — (skip, sp_1 +{{ — n}) =

(ex, Si.) as required.

Back to the Examples

We defined ¢; ~{ ¢ iff for all s such that dom(I") C dom(s), we have
' e:T,1'F ey:T, and either

1. (e1,5) —“ and (ey, s) —“, or

2. for some v, s’ we have (¢, s) —* (v, s") and
<€278> —" <”U,S >

So:

2+ 2 ~ dforany I

(1:=0;4) 2" (] :=1;3+!]) forany I

(1:=1+1);(1:=—1) ~= (] :=!]) for any I including :intref

And the general laws?

Conjecture 27 ¢;; (ey; ¢3) ~1 (e1;ey); e3 forany ', T', ey, e and 3
suchthatl' = ej:unit, I' = es:unit, and ' = es: T

Conjecture 28

((if e, then ey else e3);¢e) ~i (if e, then ey; c else e3; ¢) for
anyl', T', e, ey, e and es such thatl' = e;:bool, I' = ey:unit,

[' es:unit,and ' = e: T

Conjecture 29

(e; (if e, then e, else e3)) ~i (if e, then e: e, else e; e3) for
anyl', T', e, e, e and es such thatl' = e:unit, I' - e;:bool,
['Fey: T, and]l = e5: T

Q: Is a typed expression I — e: 7, e.qg.
[:intref - if /] > 0 then skip else (skip;/ := 0):unit:

1. alistoftokens [IF, DEREF, LOC "1", GTEQ,

2. an abstract syntax tree ... ;

skip

3. the function taking store s to the reduction sequence
(e,s) — (e, 51) — (€9, 89) — ...;0r

: / ~ 1 /
4. e the equivalence class {¢' | ¢ ~; ¢’}

e the partial function | e[that takes any store s with

dom(s) = dom(I") and either is undefined, if (¢, s) —*, oris

(v,8),if (e, s) —* (v, s")

Suppose I' = e;:unitand I' = ey:unit.

When is ¢1; e5 >~ ey e ?

Contextual equivalence for L3

Definition 30 Consider typed L3 programs, I’ = ey:["and 1" = ey:T".
We say that they are contextually equivalent if, for every context C' such
that {} & C'|e;]:unit and {} = Cles]:unit, we have either

(@) (Cled], 1) — and (Clea), 1)) —%, or

(b) for some s, and s, we have (C'|e(|,{}) —" (skip, s;) and
(Cles],{}) —>* (skip, s2).

Low-level semantics

Can usefully apply semantics not just to high-level languages but to
e Intermediate Languages (e.g. Java Bytecode, MS IL, C——)
e Assembly languages (esp. for use as a compilation target)
e C-like languages (cf. Cyclone)

By making these type-safe we can make more robust systems.

(see separate handout)

Epilogue

Lecture Feedback

Please do fill in the lecture feedback form — we need to know how the
course could be improved / what should stay the same.

Good language design?

Need:

® precise definition of what the language is (so can communicate among
the designers)

e technical properties (determinacy, decidability of type checking, etc.)

e pragmatic properties (usability in-the-large, implementability)

What can you use semantics for?

1. to understand a particular language — what you can depend on as a
programmer; what you must provide as a compiler writer
2. as a tool for language design:
(a) for clean design

(b) for expressing design choices, understanding language features
and how they interact.

(c) for proving properties of a language, eg type safety, decidability of
type inference.

3. as a foundation for proving properties of particular programs

The End

