
4/24/23

1

Software and Security Engineering
Computer Science Tripos Part 1a

Cambridge University
Ross Anderson

Easter 2023 CST 1a

1

Aims

• Introduce students to software engineering, and in
particular to the problems of building
– large systems
– real-time systems
– safety-critical systems
– systems to withstand attack by capable opponents

• Illustrate what goes wrong with case histories
• Study software and security engineering practices as a

guide to how mistakes can be avoided

Easter 2023 CST 1a

2

4/24/23

2

Objectives

• At the end of the course, you should know how
writing programs with tough assurance targets, or
in large teams, or both, differs from the
programming exercises you’ve done so far

• You should appreciate the waterfall, spiral and
agile models of development as well as the value
of development and management tools, and the
economics of the development lifecycle

Easter 2023 CST 1a

3

Objectives (2)

• You should understand the various types of
bugs, vulnerabilities and hazards, how to find
them, and how to avoid introducing them

• And be prepared for your 1b group project!
• And your part 2 project, and later courses in

security, systems etc.
• And you should start absorbing the lore!

Easter 2023 CST 1a

4

4/24/23

3

Resources

• Recommended reading: R Anderson,
‘Security Engineering’ (3nd edition 2020),
chapters 1–4, 7–9, and 27–28

• Other books in the syllabus booklet are
replaced by online material

• Each lecture was turned into several video
segments plus links to further reading, for
the pandemic – only minor updates since

Easter 2023 CST 1a

5

Outline
• Topics in logical order:

– Security policy, safety case
– Psychology and usability
– Protocols, software bugs of different types
– Safety engineering
– Scale: the software crisis, software economics
– Development: waterfall, agile, DevOps, …
– Critical systems: safety, security, sustainability
– Lecture from Richard Sharp on SaaS (May 10)

Easter 2023 CST 1a

6

4/24/23

4

What is Security Engineering?

Security engineering is about building
systems to remain dependable in the face of
malice, error and mischance. As a
discipline, it focuses on the tools, processes
and methods needed to design, implement
and test complete systems, and to adapt
existing systems as their environment
evolves.

Easter 2023 CST 1a

7

Design Hierarchy

• What are we
trying to do?

• How?
• With what?

Policy

Architecture,
protocols …

Hardware, crypto,
access control…

Easter 2023 CST 1a

8

4/24/23

5

Security vs Dependability
• The safety and security communities use

different languages
• For us, dependability = reliability + security
• Reliability and security are often strongly

correlated in practice
• But malice is different from error!

– Reliability: “Bob will be able to read this file”
– Security: “The Chinese Government won’t be

able to read this file”
Easter 2023 CST 1a

9

Clarifying terminology

• A system can be:
– a product or component (PC, smartcard,…)
– some products plus O/S, comms and

infrastructure
– the above plus applications
– the above plus internal staff
– the above plus customers / external users

• Common failing: policy drawn too narrowly

Easter 2023 CST 1a

10

4/24/23

6

Clarifying terminology (2)
• A subject is a physical person
• A person can also be a legal person (firm)
• A principal can be

– a person
– equipment (PC, phone, smartcard, car…)
– a role (the officer of the watch)
– a complex role (Alice or Bob, Bob deputising for Alice)

• Sometimes you need to distinguish ‘Bob’s
smartcard representing Bob who’s standing in for
Alice’ from ‘Bob using Alice’s card in her absence’

Easter 2023 CST 1a

11

Clarifying terminology (3)

• Secrecy is technical – mechanisms limiting
the number of principals who can access
information

• Privacy means control of your own secrets;
‘informational self-determination’

• Confidentiality is an obligation to protect
someone else’s secrets

• Thus your medical privacy is protected by
your doctors’ obligation of confidentiality

Easter 2023 CST 1a

12

4/24/23

7

Clarifying terminology (4)

• Anonymity has various meanings, from not being
able to identify subjects to not being able to link
their actions; it’s often about access to metadata

• An object’s integrity lies in its not having been
altered since the last authorised modification

• Authenticity has two common meanings –
– an object has integrity plus freshness
– you’re speaking to the right principal

• A cheque is an example of the first

Easter 2023 CST 1a

13

Clarifying Terminology (5)
• Trust is hard! It has several meanings:

1. a warm fuzzy feeling
2. a trusted system or component is one that can break

my security policy
3. a trusted system is one I can insure
4. a trusted system won’t get me fired when it breaks

• I’m going to use number 2 (the NSA definition)
• E.g. a GCHQ officer selling key material to a

Chinese diplomat is trusted but not trustworthy
(assuming their action was unauthorised)

Easter 2023 CST 1a

14

4/24/23

8

Clarifying Terminology (6)
• An error is

– a design flaw, or
– a deviation from an intended state

• A failure is a nonperformance of the system,
within specified environmental conditions

• Reliability is the probability of failure within a set
period of time (typically mtbf, mttf)

• An accident is an undesired, unplanned event
resulting in specified kind or level of loss

Easter 2023 CST 1a

15

Clarifying Terminology (7)
• A hazard is a set of conditions on a system / its

environment where failure can lead to an accident
• A critical system, process or component is one

whose failure will lead to an accident
• Risk is the probability of an accident
• Thus: risk is hazard level combined with danger

(probability hazard ® accident) and duration; one
metric is the micromort (10-6 risk of death)

• Uncertainty is where the risk is not quantifiable
• Safety is simple: freedom from accidents
Easter 2023 CST 1a

16

4/24/23

9

Clarifying Terminology (8)

• A security policy is a succinct statement of
protection goals – typically less than a page of
normal language

• A protection profile is a detailed statement of
protection goals – dozens of pages of semi-formal
language – for a type of system (e.g. smartcard)

• A security target is a detailed statement of
protection goals applied to a particular system –
and may be hundreds of pages of specification for
both functionality and testing

Easter 2023 CST 1a

17

Methodology 101
• Sometimes you do a top-down development. In

that case you need to get the safety / security
policy right in the early stages of the project

• Often it’s iterative. Then the safety / security
requirements can get ignored or confused

• In the safety-critical systems world there are
methodologies for maintaining the safety case

• In both security and safety, the big problem is
often maintaining dependability as the system –
and the environment – evolve. (More on this later)

Easter 2023 CST 1a

18

4/24/23

10

What often passes as ‘Policy’

1. This policy is approved by Management.
2. All staff shall obey this security policy.
3. Data shall be available only to those with

a ‘need-to-know’.
4. All breaches of this policy shall be

reported at once to Security.

What’s wrong with this?
Easter 2023 CST 1a

19

Traditional government approach

• Start from the threat model: an insider who is
disloyal (Burgess/MacLean, Aldrich Ames,
Edward Snowden, malware on PC...) or careless
(showing secret papers while walking along
Downing Street, discussing them on Discord...)

• So: limit the number of people you have to trust,
and make it harder for them to be untrustworthy

• Basic idea since 1940: a clerk with ‘Secret’
clearance can read documents at ‘Confidential’ and
‘Secret’ but not at ‘Top Secret’

Easter 2023 CST 1a

20

4/24/23

11

Multilevel secure systems (MLS)

• Multilevel secure (MLS) systems are widely used
in government

• They enforce standard handling rules for material
at ‘Confidential’ ‘Secret’, ‘Top Secret’ etc.

• Resources have classifications; principals have
clearances; clearance must equal or exceed
classification; and information flows upwards only

• Enforcement independent of actions for most users
• Recall ‘mandatory access control’ from OS course

Easter 2023 CST 1a

21

Formalising the Policy
• Bell-LaPadula (1973):

– simple security policy: no read up
– *-policy: no write down

• With these, one can prove that a system that
starts in a secure state will remain in one

• Ideal: minimise the Trusted Computing Base
(set of hardware, software and procedures
that can break the security policy)

Easter 2023 CST 1a

22

4/24/23

12

One problem: covert channels
• BLP lets malware move from Low to High, just

not to signal down again!
• But: what if malware at High modulates shared

resource (e.g. CPU usage) to signal to Low?
• And: how can you let messages from Low to

High, if a delayed ack could be used to signal?
• Such a covert channel is a complex emergent

property of whole systems. It limits the assurance
we can get from information flow policies

Easter 2023 CST 1a

23

Typical MLS system

• Use architecture to get
high assurance

• Idea: change a
complex emergent
property of the whole
system into a simple
property of a testable
component

• But this is often harder
than it looks!

Easter 2023 CST 1a

24

4/24/23

13

Multilateral Security

• Sometimes the aim is to
stop data flowing down

• Other times, you want
to stop lateral flows

• Examples:
– Intelligence, typically

with compartments
– Medical records
– Competing clients of an

accounting firm

Easter 2023 CST 1a

25

Safety via Multilevel Integrity

• The Biba model – data may flow only down
from high-integrity to low-integrity

• Dual of BLP: don’t read down, or write up
• Examples:

– Medical device with ‘calibrate’ and ‘operate’ levels
– grid control with safety as highest level,

operational control at next level, then billing etc
• Still about ‘insiders’ (errors, failures...)

Easter 2023 CST 1a

26

4/24/23

14

Architecture matters
• Lots of legacy protocols

trust all network nodes
• E.g. DNP3 in control

systems, CAN bus in cars
• IP address = trouble!
• Chrysler Jeep recall
• Bad node = trouble too
• So: separate subnets,

capable firewalls
Easter 2023 CST 1a

27

Safety policies
• Industries have their own standards, cultures,

often with architectural assumptions
• Over 180 regulations for cars – e.g. ABS

failure mustn’t cause asymmetric braking
• In more mature industries, safety standards

tend to evolve
• Two approaches, depending on where the

complexity is: top down or bottom up
Easter 2023 CST 1a

28

4/24/23

15

Fault tree analysis (top down)

• Work back from each outcome we must avoid, to identify
critical subsystems / staff / components

• This is the safety terminology; in security, a threat tree

Easter 2023 CST 1a

29

Failure modes and effects analysis

• The bottom-up approach is ‘failure modes and
effects analysis’ (FMEA) – developed by NASA

• If you only have a few critical components you
can just list all their failure modes: rocket motors,
navigation, heat shields…

• Figure out what you’ll do about each
– cut the probability by overdesign?
– redundancy?

• Then work out how to deal with any interactions

Easter 2023 CST 1a

30

4/24/23

16

Example – nuclear weapon safety

• Don’t want Armageddon caused by a mad
pilot, a stolen bomb, or a mad president

• So: for nuclear yield, we require
– Authorisation: president/PM releases code
– Environment: N seconds zero gravity
– Intent: pilot puts key in bomb release

• Independent, simple, technical mechanisms
tied to a control point

Easter 2023 CST 1a

31

Bookkeeping, c. 3300 BC

Easter 2023 CST 1a

32

4/24/23

17

Genizah Collection – c. 1100 AD

Easter 2023 CST 1a

33

Double-entry bookkeeping

• How do you manage a business that’s grown too
big to staff with your own family members?

• Double-entry bookkeeping – each entry in one
ledger is matched by opposite entries in another
– E.g. firm sells £100 of goods on credit – credit the sales

account, debit the receivables account
– Customer pays – credit the receivables account, debit

the cash account

• If everything balances, fraud requires collusion?

Easter 2023 CST 1a

34

4/24/23

18

Separation of duties in practice
• Serial:

– Lecturer gets money from EPSRC, charity, …
– Lecturer gets Old Schools to register supplier
– Gets stores to sign order form and send to supplier
– Stores receives goods; Accounts gets invoice
– Accounts checks delivery and tell Old Schools to pay
– Lecturer gets statement of money left on grant
– Audit by grant giver, university, …

• Parallel: two signatures (e.g. where transaction
large, irreversible – as in bank guarantee)

• How would you design such a system?
Easter 2023 CST 1a

35

The Post Office scandal

• Its ‘Horizon’ accounting system was buggy
• Its franchisees – sub-postmasters and sub-postmistresses –

– were subjected to arbitrary charges to balance accounts
• Thousands were surcharged, and over 700 wrongly

prosecuted over 2000–14; at least two killed themselves
• Ministers and Post Office executives denied and covered

up errors for years, until 555 victims won a court action
• Balancing isn’t enough! You need accountability – good

enough information that credits and debits can be tracked
• Paper ledgers and statements used to do that
Easter 2023 CST 1a

36

4/24/23

19

Role-Based Access Control (RBAC)
decouples policy and mechanism

Alice

Bob

Charlie

Examiner

Lecturer

Student

Past exam
questions

Future exam
questions

Subjects Roles Actions

Easter 2023 CST 1a

37

Scaling to big organisations

• Role-Based Access Control (RBAC) adds an extra
indirection layer: ‘officer of the watch’, ‘branch
accountant’, ‘charge nurse’

• Instead of managing 100,000 staff, you write a
policy to manage a few dozen roles

• You still need to devise policy – i.e. design, or
redesign, your bureaucracy!

• Many operating systems offer support for RBAC,
MLS etc – and there’s also internal technical use

Easter 2023 CST 1a

38

4/24/23

20

Summary: security / safety policy

• What are we trying to do?
• Security: threat model, security policy
• Safety: hazard analysis, safety standard
• Refine to protection profile, safety case
• Typical mechanisms: usability engineering,

firewalls, protocols, access controls...
• Make sure they work together!
Easter 2023 CST 1a

39

Defence in Depth

• Reason’s ‘Swiss cheese’ model
• Stuff fails when holes in defence layers line up
• Thus: ensure human factors, software, and

procedures complement each other (more later!)
Easter 2023 CST 1a

40

4/24/23

21

Safety, security and human
behaviour

• It can be tempting to ignore ‘user error’
• Most car crashes involve ‘user error’, but

we still provide seat belts, airbags and
crumple zones

• Compare 1959, 2009 Chevrolets in video
• Banks for years told victims of fraud “Our

systems are secure so it must be your fault”
• Bank regulators too are now pushing back!
Easter 2023 CST 1a

41

Hierarchy
of

harms
Targeted
attacks

Generic
malware

Bulk password
compromise

Abuse of mechanism

So
ph

is
tic

at
io

n
Vo

lu
m

e
of

 h
ar

m

Easter 2023 CST 1a

42

4/24/23

22

Abuse of standard mechanisms
• Just as a car crash is ‘abuse of mechanisms

provided’, so are most scams and abuses
• Cambridge problem: crook runs website

offering flat to let, so you send some money
• What can we do about cyber-bullying?
• Or doxxing?
• Or scammer emailing your uncle about a

lottery win?
Easter 2023 CST 1a

43

Bulk password compromise
• In June 2012, 6.5m LinkedIn passwords

stolen, cracked (encryption did not have a
salt) and posted on a Russian forum

• Method: SQL injection (will discuss later)
• Passwords reused on other sites, from mail

services to PayPal, were exploited there
• There have been many, many such exploits!
• What can we do about password reuse?
Easter 2023 CST 1a

44

4/24/23

23

Phishing and social engineering
• Card thieves call victims to ask for PINs
• Generic phishing has been around since 2005
• A well-crafted lure sent to company staff

(e.g. ‘from’ the boss) can get 30% yield
• Personalized to target: can be over 50%
• Some big consequences, e.g. John Podesta
• During analysis, try to think like a crook!

Easter 2023 CST 1a

45

Usability of security / privacy advice

• Privacy law (summary): consent or
anonymise (more in 1b ELE course)

• Both are much harder than they look, and
get harder still as systems get more complex

• Automated collection by IoT devices, other
people’s phones etc makes it all harder still

• Look for privacy policies. How many give
you any real choice?

Easter 2023 CST 1a

46

4/24/23

24

Easter 2023 CST 1a

47

Easter 2023 CST 1a

48

4/24/23

25

Easter 2023 CST 1a

49

Medical device safety
• Usability problems with medical devices

kill about the same number of people as
cars do

• Biggest killer nowadays: infusion pumps
• Nurses typically get blamed, not vendors
• Avionics are safer, as incentives are more

concentrated
• Read Harold Thimbleby’s paper!

Easter 2023 CST 1a

50

4/24/23

26

Psychology of safety and security

• Errors arise at different levels of the ‘stack’
– We deal with novel problems in a conscious way
– Frequently encountered problems are dealt with using

rules we evolve, and are partly automatic
– Over time, the rules give way to skill

• Conscious problem solving is vulnerable to risk
misperception and other complex errors

• When we automatise routine actions, we cut the
total error rate, but introduce new kinds of errors:
absent-minded slips, or following a wrong rule

Easter 2023 CST 1a

51

Error types
• Slips and lapses

– Forgetting plans, intentions; strong habit intrusion
– Misidentifying objects, signals (often Bayesian)
– Retrieval failures; tip-of-tongue, interference
– Premature exits from action sequences, e.g. ATMs

• Rule-based mistakes; applying wrong procedure
• Knowledge-based mistakes
• Heuristics and biases based on how brains work!
• E.g. prospect theory models risk misperception
Easter 2023 CST 1a

52

4/24/23

27

Risk misperception

People offered £10 or a 50% chance of £20 usually
prefer the former; if offered a loss of £10 or a 50%
chance of a loss of £20 they tend to prefer the latter!

Easter 2023 CST 1a

53

Framing decisions about risk
• Decisions are heavily influenced by framing. E.g. the
‘Asian disease problem’ where the subject is making
decisions on vaccination. Two options put to subjects. First:

A: “200,000 lives will be saved”
B: “with p=1/3, 600,000 saved; but p=2/3 none saved”

• Here 72% choose A over B!
• Second option is

C: “400,000 will die”
D: “with p =1/3, no-one will die, p=2/3, 600,000 die”

• Here 78% prefer D over C!
• This is also why marketers talk ‘discount’ or ‘saving’ – and

fraudsters know that people facing losses take more risks
Easter 2023 CST 1a

54

4/24/23

28

Prisoners’ dilemma
• Two prisoners are arrested on suspicion of planning a robbery.

The police tell them separately: if neither confesses, one year
each for gun possession; if one confesses he goes free and the
other gets 6 years; if both confess then each will get 3 years

Benjy

Alfie

• (confess, confess) is optimal for each, if acting selfishly
• It’s obviously not optimal for them collectively!
• Is this a problem? If so, what’s the solution?

confess deny

confess -3, -3 0, -6
deny -6, 0 -1, -1

Easter 2023 CST 1a

55

Prisoners’ dilemma (2)
• In this case maybe it ‘serves them right’!
• But many other dilemmas have different valence

– Defence spending
– Reducing carbon emissions
– …

• If the game is truly as described, there is no escape.
• To fix it, you need to change the game somehow!

– Animals evolved tit-for-tat: if you were mean to me last
time, I’ll get back at you this time

– Humans have evolved many institutions such as states,
religions, and markets, plus supporting social norms

– ... (see Economics, Law and Ethics course, part 1b)
Easter 2023 CST 1a

56

4/24/23

29

Social psychology
• The social brain hypothesis
• Conformity: Solomon Asch showed most

people would deny obvious facts (like relative
line length) to conform with others in a group

• Authority: Stanley Milgram showed that over
60% of all subjects would inflict a potentially
fatal shock on a ‘student’ if ordered to do so by
a ‘teacher’

• Philip Zimbardo’s Stanford Prison Experiment
suggested that roles alone might be enough!

Easter 2023 CST 1a

57

Integrative complexity

• Competent decision-making involves seeing
multiple perspectives (differentiation) and finding
courses of action all can live with (integration)

• Rising integrative complexity in discourse can
signal peace; a fall can signal conflict

• Individuals with low IC prone to authoritarianism,
extremism (left, right or religious), terrorist
radicalization, violent crime...

• Male IC can fall when depleted
Easter 2023 CST 1a

58

4/24/23

30

Fraud psychology

• Conformity, authority and focus plus
– Appeal to the mark’s kindness
– Appeal to the mark’s dishonesty
– Distract them so they act automatically
– Arouse them so they act viscerally

• See Stajano and Wilson on hustling, and
“The Real Hustle” videos on YouTube

Easter 2023 CST 1a

59

Users’ mental models
• Explore how your users see the problem –

the ‘folk beliefs’
– threats may be seen as ‘viruses’ which could be

mischievous, or crime tools;
– ‘hackers’ may be seen as graffiti artists or

burglars or targeting only big fish;
– Or is it just ‘bad neighbourhoods’ online!

• People are more likely to follow security
advice consistent with their mental model

Easter 2023 CST 1a

60

4/24/23

31

Affordances: Johnny Can’t
Encrypt

Easter 2023 CST 1a

61

Where should the path be?

Easter 2023 CST 1a

62

4/24/23

32

The power of defaults
• What actions do you make natural?
• Most people won’t opt in, or opt out; they go

with the default
– Governments try to set socially optimal defaults

(e.g. you must opt out of pensions)
– Facebook privacy settings: advertiser-friendly
– What else? (discuss in supervisions)

• What might be done about this?

Easter 2023 CST 1a

63

Economics versus psychology
• Most people don’t worry enough about

computer security
• How could this be fixed, and why is it not

likely to be?
• Most people worry too much about

terrorism
• How could this be fixed, and why is it not

likely to be?
Easter 2023 CST 1a

64

4/24/23

33

The compliance budget
• ‘Blame and train’ is not the best approach!
• It’s often rational to ignore warnings
• People will spend only so much time obeying

rules, so choose the rules that matter
• Rule violations are often an easier way of

working, and sometimes necessary, so watch
them, measure them and adapt to them

• The ‘right’ way of working should be easiest;
the defaults should be safe

Easter 2023 CST 1a

65

Differences between people

• Both risk appetite and the ability to perform
certain tasks varies widely across subgroups
of the population, including by
– age
– gender
– education

• Have diverse testers, to make sure that you
don’t discriminate illegally!

Easter 2023 CST 1a

66

4/24/23

34

Passwords
• Cheapest way to authenticate, but 3 issues:

– Will users enter passwords correctly?
– Will they remember them, or will they choose

weak ones or write them down?
– Can they be tricked into revealing them?

• Advice is often like ‘choose something you
can’t remember and don’t write it down’

• We know lots about password / PIN choice!
Easter 2023 CST 1a

67

Can you train users?
• Experiment with first-year NatScis

– Control group of 100 (+ 100 more observed)
– Green group: use a memorable phrase
– Yellow group: choose 8 chars at random

• Expected strength Y > G > C; got Y=G > C
• Expected resets Y > G > C; got Y=G=C
• But we had 10% noncompliance
• So if it matters, maybe measure entropy?
Easter 2023 CST 1a

68

4/24/23

35

XKCD

Easter 2023 CST 1a

69

Password guessing
• Sometimes you can limit guessing
• E.g. bank card PINs – 3 guesses in the card

and 3 online
• Enforced by hardware tamper-resistance

and software in both card and bank server
• But: if the typical person has five cards with

the same PIN, how many wallets do you
need to find before you get lucky?

Easter 2023 CST 1a

70

4/24/23

36

Password guessing (2)
• Bad guys sometimes get the password file

anyway
• Salt: don’t store {0}P, but [Np, {Np}P]
• Slow attacks further by multiple encryption
• Add breach reporting laws
• Externalise problem using Oauth protocol?
• So is authentication a natural cloud service?

(after all, Google knows where you are)
Easter 2023 CST 1a

71

Externalities
• One firm’s action has side-effects for others
• Password sharing a conspicuous example;

we have to enter credentials everywhere
• Everyone wants recovery questions too
• Many firms train customers in unsafe

behaviour, from clicking on external links
to entering payment data in frames

• Much ‘training’ amounts to victim blaming
Easter 2023 CST 1a

72

4/24/23

37

Incremental guessing
• Of Alexa top 500 websites, 26 use primary

account number + exp date
• 37 use PAN + postcode (numeric digits only

for some, add door number for others)
• 291 ask for PAN + expdate + CVV2
• Aamir Ali et al: iterated guessing works!
• Some paper receipts have PAN + expdate
• Some websites whitelist good customers
Easter 2023 CST 1a

73

Easter 2023 CST 1a

74

4/24/23

38

Mat Honan hack
• Get Mat’s billing address from whois
• Call Amazon to add a credit card (then you see

last 4 digits of others), then again to add email
• Apple password reset needs billing address plus

last 4 digits of credit card
• Gmail password reset: sends a message to the

backup email (Matt’s apple @me.com account)
• Hackers wiped Matt’s phone, Macbook and

Gmail, then sent racist tweets from his Twitter
Easter 2023 CST 1a

75

Security Protocols
• Security protocols are a second intellectual

core of security engineering
• They are where cryptography and system

mechanisms (such as access control) meet
• They introduce an important abstraction, and

illustrate adversarial thinking
• They often implement policy directly
• And they are much older than computers…
Easter 2023 CST 1a

76

4/24/23

39

Real-world protocol

• Ordering wine in a restaurant
– Sommelier presents wine list to host
– Host chooses wine; sommelier fetches it
– Host samples wine; then it’s served to guests

• Security properties?

Easter 2023 CST 1a

77

Real-world protocol

• Ordering wine in a restaurant
– Sommelier presents wine list to host
– Host chooses wine; sommelier fetches it
– Host samples wine; then it’s served to guests

• Security properties
– Confidentiality – of price from guests
– Integrity – can’t substitute a cheaper wine
– Non-repudiation – host can’t falsely complain

Easter 2023 CST 1a

78

4/24/23

40

Real-world attack: SIM swapping

• ECB orders: add a second factor to the password
• Easiest fix: send an auth code by SMS
• Attack: intercept the target’s SMS traffic
• Simplest: impersonate them at a phone shop (now

the standard way to hack Coinbase accounts)
• Tech firms moving to authenticator apps, and

hardware devices (Yubikey, etc)
• State actors: SS7 hacking, rogue base stations...

Easter 2023 CST 1a

79

Car unlocking protocols
• Principals are the engine controller E and the car key

transponder T
• Static (T ® E: KT)
• Non-interactive

T ® E: T, {T,N}KT

• Interactive
E ® T: N
T ® E: {T,N }KT

• N is a ‘nonce’ for ‘number used once’. It can be a sequence
number, a random number or a timestamp

• Can include a command, e.g. ‘lock’, ‘unlock’, ‘open boot’

Easter 2023 CST 1a

80

4/24/23

41

Identify Friend or Foe (IFF)

• Basic idea: fighter challenges bomber
F ® B: N
B ® F: {N}K

• What can go wrong?

Easter 2023 CST 1a

81

Identify Friend or Foe (IFF)

• Basic idea: fighter challenges bomber
F ® B: N
B ® F: {N}K

• What if the bomber reflects the challenge back at
the fighter’s wingman?
F ® B: N
B ® F: N
F ® B: {N}K
B ® F: {N}K

Easter 2023 CST 1a

82

4/24/23

42

IFF (2)

Easter 2023 CST 1a

83

Two-factor authentication

S ® U: N
U ® P: N, PIN
P ® U: {N, PIN}KP

Easter 2023 CST 1a

• How do you go about hacking this?

84

4/24/23

43

Card Authentication Protocol
• Lets banks use EMV

cards in online banking
• Users compute codes for

access, authorisation
• A good design would take

PIN and challenge / data,
encrypt to get response

• But the UK one first tells
you if the PIN is correct

• What can go wrong with
this?

Easter 2023 CST 1a

85

Key management protocols

• Suppose Alice and Bob each share a key
with Sam, and want to communicate?
– Alice calls Sam and asks for a key for Bob
– Sam sends Alice a key encrypted in a blob only

she can read, and the same key also encrypted
in another blob only Bob can read

– Alice calls Bob and sends him the second blob
• How can they check the protocol’s fresh?
Easter 2023 CST 1a

86

4/24/23

44

Kerberos
• Uses ‘tickets’ based on encryption with

timestamps to manage authentication in
distributed systems (Windows, Linux, ...)
A ® S: A, B
S ® A: {TS, L, KAB, B, {TS, L, KAB, A}KBS}KAS

A ® B: {TS, L, KAB, A}KBS, {A, TA}KAB

B ® A: {TA+1}KAB

• Here S is the ticket-granting server giving
access to the resource B

Easter 2023 CST 1a

87

Europay-MasterCard-Visa (EMV)

• C ® M: sigB{C, card_data}
• M ® C: N, date, Amt, PIN (if PIN used)
• C ® M: {N, date, Amt, trans_data}KCB

• M ® B: {{N, date, Amt, trans_data}KCB,
trans_data}KMB

• B ® M ® C: {OK}KCB

How might you attack this?
Easter 2023 CST 1a

88

4/24/23

45

What about a false terminal?

• Replace a terminal’s
insides with your own
electronics

• Capture cards and PINs
from victims

• Use them to do a man-
in-the-middle attack in
real time on a remote
terminal in a merchant
selling expensive goods

Easter 2023 CST 1a

89

The relay attack

PIN

$2000$20

PIN

attackers can be on opposite
sides of the world

Dave

Carol

Alice
Bob

$

Easter 2023 CST 1a

90

4/24/23

46

Attacks in the real world

• The relay attack is almost unstoppable, but
it was too hard to scale!

• What the bad guys did initially was mag-
strip fallback fraud

• PEDs tampered at Shell garages by‘service
engineers’ (PED supplier went bust)

• BP Girton: 200+ customers found their
cards cloned and used in Thailand, 2008

Easter 2023 CST 1a

91

The No-PIN attack (2010)

• C ® M: sigB{C, exp}
• M ® Ć: N, date, Amt, PIN
• Ć ® C: N, date, Amt
• C ® M: {N, date, Amt, trans_data}KCB

• M ® B: {{N, date, Amt, trans_data}KCB,
trans_data’}KMB

• B ® M: {OK}KCB

Easter 2023 CST 1a

92

4/24/23

47

Fixing the ‘No PIN’ attack

• In theory: might compare card data with terminal
data at terminal, acquirer, or issuer

• In practice: it has to be the issuer (terminal and
acquirer incentives are poor)

• Barclays introduced a fix July 2010; removed Dec
2010 (too many false positives?); banks asked for
student thesis to be taken down from web instead

• Eventually fixed for UK transactions in 2016!
• Real problem: EMV spec now far too complex

Easter 2023 CST 1a

93

The preplay attack (2014)
• In EMV, the terminal sends a random

number N to the card along with the date d
and the amount Amt

• The card authenticates N, d, X using the key
it shares with the bank, KCB

• What happens if I can predict N for date d?
• Answer: given access to your card, I can

precompute an authenticator for Amt, d!

Easter 2023 CST 1a

94

4/24/23

48

Public key crypto revision

• You saw Diffie-Hellman in Discrete Maths
• Public key encryption lets you encrypt data using

the public encryption key of some user, say Alice
• We’ll write {X}A in our protocol notation
• She can decrypt it using her private decryption key
• Digital signatures are the other way round; only

the holder of the private signature key can sign but
anyone can verify

Easter 2023 CST 1a

95

Public key crypto revision (2)
• Anthony sends a message in a box to Brutus
• But the messenger’s loyal to Caesar, so

Anthony puts a padlock on it
• Brutus adds his own padlock and sends it

back to Anthony
• Anthony removes his padlock and sends it

to Brutus who can now unlock it
• Is this secure?

Easter 2023 CST 1a

96

4/24/23

49

Public key crypto revision (3)

• Naïve electronic version (doing arithmetic mod p):
A ® B: MrA

B ® A: MrArB

A ® B: MrB

• But encoding messages as group elements can be
tiresome so instead Diffie-Hellman goes:

A ® B: grA

B ® A: grB

A ® B: {M}grArB

Easter 2023 CST 1a

97

Public key crypto revision (4)

• Developing Diffie-Hellman into El Gamal public
key encryption: start with a generator g mod p

• Alice chooses her private key xA
• She publishes her public key yA = gxA (mod p)
• Bob encrypts message M under yA by choosing a

session key r and forming
{M}yA = gr, yAr.M

• Alice decrypts by calculating (gr)xA = yAr and
divides out to get M

Easter 2023 CST 1a

98

4/24/23

50

Public-key Needham-Schroeder

• Proposed in 1978:
A ® B: {NA, A}KB

B ® A: {NA, NB}KA

A ® B: {NB}KB

• The idea is that they then use NAÅNB as a
shared key

• Is this OK?

Easter 2023 CST 1a

99

Public-key Needham-Schroeder (2)

• Attack found eighteen years later, in 1996:
A ® C: {NA, A}KC

C ® B: {NA, A}KB

B ® C: {NA, NB}KA

C ® A: {NA, NB}KA

A ® C: {NB}KC

C ® B: {NB}KB

• Fix: explicitness. Put all names in all messages
Easter 2023 CST 1a

100

4/24/23

51

Public key certification

• One way of linking public keys to principals is to
physically install them on machines (IPSEC, SSH)

• Another is trust on first use: set up keys, then
verify manually that you’re speaking to the right
principal (Signal, Bluetooth simple pairing)

• Another is certificates. Sam signs Alice’s public
key (and/or signature verification key)
CA = sigS{TS,L,A,KA,VA}

• This is the basis of SSL / TLS

Easter 2023 CST 1a

101

Transport Layer Security (TLS)
• Customer C calls server S

C ® S: C, C#, NC
S ® C: S, S#, NS, CS
C ® S: {K0}S
C ® S: crypto hash of K0, NC, NS, etc
S ® C: crypto hash of K0, NS, NC, etc

• This has been proved to be secure (Larry
Paulson, 1999)

• So what could possibly go wrong?
Easter 2023 CST 1a

102

4/24/23

52

What goes wrong
• Abstract TLS proven secure in 1998, but

real TLS broken about annually since then
• Attacks: send bad packets and observe error

messages, or measure the time it takes to
encrypt, or scavenge memory ...

• Writing crypto code is hard (the compiler
tries to optimise away your defensive code)

• Protocol extension, composition break stuff
• Later courses have many more details
Easter 2023 CST 1a

103

What goes wrong (2)
• Governments may demand weak ciphers, or

attack or coerce the certification authority
• See if you can find the Turkish government

cert in your browser...
• More: read Snowden, Diginotar, certificate

pinning, ‘Keys under doormats’
• For critical stuff (your startup’s software

update key), do you need your own CA?
Easter 2023 CST 1a

104

4/24/23

53

What goes wrong (3)
• ‘Leverage’ – sharing infrastructure – can be

attractive but is often a snare
• Suppose that we had a protocol for users to

sign hashes of payment messages :
C ® M: order
M ® C: X [= hash(order, amount, date, …)]
C ® M: sigK{X}

• How might this be attacked?
Easter 2023 CST 1a

105

‘Chosen protocol attack’

The Mafia asks people to sign a random
challenge as proof of age for porn sites!

Easter 2023 CST 1a

106

4/24/23

54

Entomology
• What sort of bugs can we expect?
• Bugs in the code

– Arithmetic
– Syntactic
– Logic

• Bugs around the code
– Code injection
– Usability traps (for programmers)

Easter 2023 CST 1a

107

Arithmetic bug – Patriot missile

• Failed to intercept an Iraqi SCUD missile in Gulf
War 1 on Feb 25 1991; SCUD struck US barracks
in Dhahran; 28 dead

• Other SCUDs hit Saudi Arabia, Israel

Easter 2023 CST 1a

108

4/24/23

55

Patriot missile (2)
• It was a bug in the arithmetic

– measured time in 1/10 sec, truncated from
.0001100110011…

– when system upgraded from air-defence to anti-
ballistic-missile, accuracy increased

– but not everywhere in the (assembly language) code!
– modules got out of step by 1/3 sec after 100h operation
– not found in testing as spec only called for 4h tests

• Critical system failures are typically multifactorial
• Still, years later, the Boeing 787 must be rebooted

every 51 days or it becomes unsafe!
Easter 2023 CST 1a

109

Syntactic bugs
• By this we mean bugs that arise from the

features of a specific language.
• In java

– 1+2+""="3"

– ""+1+2="12"

• Can anyone explain the following?
– perl -e 'printf("%d\n", "information" == "")'
– perl -e 'printf("%d\n", "automation" == "")'

Easter 2023 CST 1a

110

4/24/23

56

Heartbleed, by XKCD

Easter 2023 CST 1a

111

Heartbleed (2)

Easter 2023 CST 1a

112

4/24/23

57

Logic bugs

• In April 2014, the Heartbleed bug forced
rapid reissue of most TLS certificates

• Missing bounds check in the OpenSSL
code for the heartbeat TLS extension

• A buffer over-read can leak the private key,
as well as user data, passwords, cookies etc

• White House tussle on NSA ‘equity issue’:
they had exploited the bug for 2 years

Easter 2023 CST 1a

113

Notification / clean-up

12th March 2012 Bug introduced (OpenSSL 1.0.1)
1st April 2014 Google secretly reports vuln
3rd April 2014 Codenomicon reports vuln
7th April 2014 Fix release, public announcement
9th May 2014 57% of website still using old

TLS certificates
20th May 2014 1.5% of 800,000 most popular

websites still vulnerable

Easter 2023 CST 1a

114

4/24/23

58

Intel AMT Bug
• AMT allows sysadmins remote access to a

machine, even when switched off (so long as
mains power still on)

• Provides full access to machine, regardless of OS
• A sketch of the authentication protocol between

machine and remote party is as follows:
C ® S: “Hi. I’d like to connect”
S ® C: “Please encrypt X with our secret key”
C ® S: “Here are the first x bytes of {X}KCS”

• It also worked for x = 0
Easter 2023 CST 1a

115

Concurrency bugs

• Recall the preplay attack on EMV?
• A generic security failure is “time of check to time

of use” flaw (TOCTTOU)
• Race conditions: See Therac-25 case, later
• Another issue is synchronisation. See “The bug

heard round the world”: the first Shuttle launch
aborted when they couldn’t sync the five guidance
computers (more on redundancy later)

Easter 2023 CST 1a

116

4/24/23

59

Analogue code injection

• Clallam Bay jail had inmate payphones
• Inmate dials number to which recorded

voice says: “If you will accept a collect call,
please press the number 3 on your handset
twice. The caller will now say his name”

• This can be sent in English or Spanish

Easter 2023 CST 1a

117

Analogue code injection

• Clallam Bay jail had inmate payphones
• Inmate dials number to which recorded

voice says: “If you will accept a collect call,
please press the number 3 on your handset
twice. The caller will now say his name”

• Hack: select Spanish then speak your name
as “To hear this message in English, please
type 33.”

Easter 2023 CST 1a

118

4/24/23

60

Code injection

• Is it ethical for Burger King to run an ad
that says “OK Google, what is the Whopper
Burger?”

Easter 2023 CST 1a

119

Code injection

• Is it ethical for Burger King to run an ad
that says “OK Google, what is the Whopper
Burger?”

• Their ad people had changed the wikipedia
page; it was then defaced, then locked down

• Google then blacklisted that specific phrase
• (Back in the 80s – demo of ‘FORMAT C:’)

Easter 2023 CST 1a

120

4/24/23

61

Buffer overflows

• In 1988, the Morris worm brought down the
Internet by spreading rapidly in Unix boxes

• It had a list of passwords to guess, but also
used three buffer overflow attacks

• These used a remote command (finger, rsh)
with a long argument that overran the stack

• The extra bytes were interpreted as code
• Full details later in 1b Security course
Easter 2023 CST 1a

121

SQL injection

• $sql = "INSERT INTO Students (Name) VALUES ('" .
$studentName . "');"; execute_sql($sql);

• So, “sanitize all inputs” or ”don’t create SQL statements
that include outside data”?

Easter 2023 CST 1a

122

4/24/23

62

Software countermeasures
• Operating system

– Address space layout randomisation
– Data execution prevention

• Tool choice
– Strongly typed languages

• Defensive programming
– 1949: EDSAC coders check arithmetic
– Now: assertions

Easter 2023 CST 1a

123

Software countermeasures (2)
• Secure coding standards

– MS standards for C, Bjarne Stroustrup for C++
– Google: set libraries of user-facing code

• Contracts (in the Eiffel language)
• API analysis (can less trusted code that calls

your libraries manipulate them?)
• Fuzzing, Coverity and other analysis tools
• Move to safer languages (Rust, Golang, C#)
Easter 2023 CST 1a

124

4/24/23

63

Coordinated disclosure

• A bug may be accidental or deliberate
• When found it may be reported to the

maintainer, sold to a bug bounty program,
sold to a cyber-arms manufacturer...

• Keeping it secret for 90 days is the default
• It may affect multiple products
• Complex process, many conflicts of interest

Easter 2023 CST 1a

125

The ‘Software Crisis’
• Big software projects – and the maintenance

of big systems – are really hard!
• Cost and risk scale nonlinearly with size

and complexity
• Many large projects are late, over budget, or

don’t work well or at all (NPfIT, DWP…)
• Some cost billions (Ariane 5, NPfIT)
• Others cost lives (Therac 25, Boeing 737)
• Some combine the above (LAS)
Easter 2023 CST 1a

126

4/24/23

64

The London Ambulance Service disaster

• Attempt to automate ambulance dispatch in
1992 failed conspicuously with London
being left without service for a day

• Hard to say how many deaths could have
been avoided; estimates ran as high as 20

• Led to CEO being sacked, public outrage
• Widely cited example of project failure

because it was thoroughly documented (and
the pattern’s been repeated again and again)

Easter 2023 CST 1a

127

The manual implementation

resource
mobilisation

call taking
resource identification

resource management

Control
Assistant

Map
Book

Resource
Controller

Incident
Form Resource

Allocators

Allocations
Box

Radio
Operator

Dispatcher
Incident
form'

Incident
Form''

Easter 2023 CST 1a

128

4/24/23

65

Original dispatch system
• 999 calls written on paper tickets; map reference

looked up; conveyor to central point
• Controller deduplicates tickets and passes to three

divisions – NW / NE / S
• Division controller identifies vehicle and puts

note in its activation box
• Ticket passed to radio controller
• This all takes about 3 minutes and 200 staff of

2700 total. Some errors (esp. deduplication), some
queues (esp. radio), call-backs tiresome

Easter 2023 CST 1a

129

Project context

• Attempt to automate in 1980s failed – system
failed load test

• Industrial relations poor – pressure to cut costs
• Public concern over service quality
• SW Thames RHA decided on fully automated

system: responder would email ambulance
• Consultancy study said this might cost £1.9m and

take 19 months – provided a packaged solution
could be found. AVLS would be extra

Easter 2023 CST 1a

130

4/24/23

66

Computer-aided dispatch system

call
taking

resource
mobilisation

resource
identification

resource
management

dispatch
worksystem

• Large

• Real-time

• Critical

• Data rich

• Embedded

• Distributed

• Mobile
components

Easter 2023 CST 1a

131

Tender process
• Idea of a £1.5m system stuck; idea of AVLS

added; proviso of a packaged solution forgotten;
new IS director hired

• Tender 7/2/1991 with completion deadline 1/92
• 35 firms looked at tender; 19 proposed; most said

timescale unrealistic, only partial automation
possible by 2/92

• Tender awarded to consortium of Systems Options
Ltd, Apricot and Datatrak for £937,463 – £700K
cheaper than next lowest bidder!

Easter 2023 CST 1a

132

4/24/23

67

First phase
• Design work ‘done’ July
• Main contract signed in August
• LAS told in December that only partial

automation by January deadline – front end
for call taking, gazetteer, docket printing

• Progress meeting in June had already
minuted a 6 month timescale for an 18
month project, a lack of methodology, no
full-time LAS user, and SO’s reliance on
‘cozy assurances’ from subcontractors

Easter 2023 CST 1a

133

From phase 1 to phase 2

• Server never stable in 1992; client and server lockup
• Phase 2: radio messaging with blackspots and congestion.

Couldn’t cope with ‘established working practices’
• Yet management decided to go live 26/10/92
• CEO: “No evidence to suggest that the full system software,

when commissioned, will not prove reliable”
• Independent review had called for volume testing,

implementation strategy, change control … It was ignored!
• On 26 Oct, the room was reconfigured to use terminals, not

paper. There was no backup…

Easter 2023 CST 1a

134

4/24/23

68

LAS disaster
• Vicious circle on 26/7 October:

– system progressively lost track of vehicles
– exception messages scrolled up off screen and were lost
– incidents held as allocators searched for vehicles
– callbacks from patients increased causing congestion
– data delays ® voice congestion ® crew frustration ®

pressing wrong buttons and taking wrong vehicles ®
many vehicles sent to an incident, or none

– slowdown and congestion leading to collapse
• Switch back to semi-manual operation on 26th and

to full manual on Nov 2 after crash
Easter 2023 CST 1a

135

Easter 2023 CST 1a

136

4/24/23

69

Easter 2023 CST 1a

137

Collapse

• Entire system descended into chaos:
– e.g., one ambulance arrived to find the patient

dead and taken away by undertakers
– e.g., another answered a ‘stroke’ call after 11

hours, 5 hours after the patient had made their
own way to hospital

• People probably died as a result
• Chief executive resigns
Easter 2023 CST 1a

138

4/24/23

70

What went wrong – specification

• LAS ignored advice on cost and timescale
• Procurers insufficiently qualified and experienced
• No systems view
• Specification was inflexible but incomplete: it was

drawn up without adequate consultation with staff
• Attempt to change organisation through technical

system
• Ignored established work practices and staff skills

Easter 2023 CST 1a

139

What went wrong – project
• Confusion over who was managing it all
• Poor change control, no independent QA,

suppliers misled on progress
• Inadequate software development tools
• Ditto datacomms, with effects not foreseen
• Poor interface for ambulance crews
• Poor control room interface

Easter 2023 CST 1a

140

4/24/23

71

What went wrong – go-live
• System went live with known serious faults

– slow response times
– workstation lockup
– loss of voice comms

• Software not tested under realistic loads or
as an integrated system

• Inadequate staff training
• No back up, short of full manual operation!
Easter 2023 CST 1a

141

LAS as a case study

• Maybe a third of all big projects go wrong
• You’ll work on some for sure!
• They’re usually hushed up
• The London Ambulance Service disaster

could not be, so we have a full report
• Read it!
• And read lots of other case studies too
Easter 2023 CST 1a

142

4/24/23

72

NHS National Programme for IT
• Like LAS, an attempt to centralise power

and change working practices
• Earlier failed attempt in the 1990s
• The February 2002 Blair meeting
• Five LSPs plus national contracts: £12bn
• Most systems years late and/or didn’t work
• Coalition government: NPfIT ‘abolished’
• See case history written by MPP students in

2014 (linked from course materials page)
Easter 2023 CST 1a

143

Smart meters
• Idea: expose consumers to market prices, get peak

demand shaving, make use salient
• EU Electricity Directive 2009: 80% by 2020
• Labour 2009: £10bn centralised project to save the

planet and help fix supply crunch in 2017
• 2010: became part of the coalition agreement
• Escaped controls as ‘not an IT project’
• Government couldn’t take tech decisions
• Incentives wrong, tech getting obsolete, £20bn+...
• A similar Ontario project didn’t save any energy

Easter 2023 CST 1a

144

4/24/23

73

Managing complexity
• Software engineering is about managing

complexity at a number of levels
– At the micro level, bugs arise in protocols etc because

they’re hard to understand
– As programs get bigger, interactions between

components grow at O(n2) or even O(2n)
– Systems are built of ever more components
– With complex socio-technical systems, we can’t predict

reactions to new functionality
• Most failures of really large projects are down to

wrong, changing, or contested requirements
Easter 2023 CST 1a

145

Project failure, c. 1500 BC

Easter 2023 CST 1a

146

4/24/23

74

Complexity, 1870 – Bank of England

Easter 2023 CST 1a

147

Complexity 1876 – Dun, Barlow & Co

Easter 2023 CST 1a

148

4/24/23

75

Nineteenth century view

• Charles Babbage, ‘On Contriving
Machinery’
– “It can never be too strongly impressed upon

the minds of those who are devising new
machines, that to make the most perfect
drawings of every part tends essentially both to
the success of the trial, and to economy in
arriving at the result”

Easter 2023 CST 1a

149

Complexity 1906 – Sears, Roebuck

• Continental-scale mail order meant specialization
• Big departments for single bookkeeping functions
• Beginnings of automation

Easter 2023 CST 1a

150

4/24/23

76

Complexity 1940 –
First National Bank of Chicago

Easter 2023 CST 1a

151

1960s – the ‘software crisis’

• In the 1960s, large powerful mainframes made
even more complex systems possible

• People started asking why project overruns and
failures were so much more common than in
mechanical engineering, shipbuilding…

• ‘Software engineering’ was coined in 1968
• The hope was that we could things under control

by using disciplines such as project planning,
documentation and testing

Easter 2023 CST 1a

152

4/24/23

77

How is software different?

• Many things that make writing software fun also
make it complex and error-prone:
– joy of solving puzzles and building things from

interlocking moving parts
– stimulation of a creative task with continuous learning
– pleasure of working with a tractable medium, ‘pure

thought stuff’
– satisfaction of making stuff that’s useful to others
– you can improve the world by making the output

depend on the inputs in any novel way you can imagine

Easter 2023 CST 1a

153

How is software different? (2)

• Large systems become qualitatively more complex, unlike
big ships or long bridges

• The tractability of software leads customers to demand
‘flexibility’ and frequent changes

• This makes systems more complex to use over time as
‘features’ accumulate, and interactions have odd effects

• The structure can be hard to visualise or model
• The hard slog of debugging and testing piles up at the end,

when the excitement’s past, the budget’s spent and the
deadline’s looming

Easter 2023 CST 1a

154

4/24/23

78

The software life cycle

• Software economics can be very messy
– Consumers buy on sticker price, businesses on

total cost of ownership
– vendors try to lock customers in, so bargains

are followed by ripoffs
• But let’s consider the simplest case, of a

company that develops and maintains
software entirely for its own use

Easter 2023 CST 1a

155

Cost of software: development
10%, maintenance 90%

cost

development operations legacy time

Easter 2023 CST 1a

156

4/24/23

79

How can you measure code cost?
• First IBM measures (60s)

– 1.5 KLOC/person year (operating system)
– 5 KLOC/person year (compiler)
– 10 KLOC/person year (app)

• AT&T measures
– 0.6 KLOC/person year (compiler)
– 2.2 KLOC/person year (switch)

• Alternatives
– Halstead (entropy of operators/operands)
– McCabe (graph entropy of control structures)
– Function point analysis

Easter 2023 CST 1a

157

First-generation lessons learned
• There are huge variations in productivity between

individuals
• The main systematic gains come from using an

appropriate high-level language
• High level languages take away much of the

accidental complexity, so the programmer can
focus on the intrinsic complexity

• Extra effort getting the specification right usually
pays for itself by reducing the time spent coding
and testing

Easter 2023 CST 1a

158

4/24/23

80

Development costs

• Barry Boehm, 1975

• So – the toolsmith should not focus just on code!

Spec Code Test
C3I 46% 20% 34%
Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%

Easter 2023 CST 1a

159

‘The Mythical Man-Month’
• Fred Brooks debunked interchangeability
• Imagine a project at 3 developers by 4 months

– Suppose the design work takes an extra month. So we
have 2 months to do 9 person-months work

– If training someone takes a month, we must add 6 devs
– But the work 3 devs did in 3 months can’t be done by 9

devs in one! Interaction costs maybe O(n2)

• Hence Brooks’ law: adding manpower to a late
project makes it later!

Easter 2023 CST 1a

160

4/24/23

81

Software project economics
• Barry Boehm data, 1981: Project duration in

person-months
PM = A. KLOCB

– A is code type, B expresses diseconomy of scale

• Cost-optimal time to first shipment
T = 2.5. (PM)1/3

– With more time, cost rises slowly
– With less time, it rises sharply

• Yet some projects fail despite huge resources!
Easter 2023 CST 1a

161

The software project ‘Tar Pit’

• You can pull any one of your legs out of the tar …
• Individual software problems all soluble but …

Easter 2023 CST 1a

162

4/24/23

82

Structured design

• Only practical way forward is modularization
• Chop complex systems into simpler components
• Define clear APIs between them
• Sometimes task division seems straightforward

(bank = tellers, ATMs, dealers, …)
• Sometimes it isn’t, or it turns out to be deceptive
• Many methodologies have been developed to deal

with this (Jackson, Yourdon, SSADM, UML…)

Easter 2023 CST 1a

163

The waterfall model
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

Easter 2023 CST 1a

164

4/24/23

83

The waterfall model (2)

• Requirements are written in the user’s language
• The specification is written in system language
• There can be many more steps than this – system

spec, functional spec, programming spec …
• The philosophy is progressive refinement
• Warning! When Winton Royce published this in

1970 he cautioned against naïve use
• But it become a US DoD standard, and UK too –

not to mention sector safety standards (e.g.health)

Easter 2023 CST 1a

165

The waterfall model (3)
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify
Easter 2023 CST 1a

166

4/24/23

84

The waterfall model (4)

• People often suggest adding an overall feedback
loop from ops back to requirements

• However the essence of the waterfall model is that
this isn’t done

• It would erode much of the value that
organisations get from top-down development

• Very often the waterfall model is used only for
specific development phases, e.g. adding a feature

• But sometimes people use it for whole systems

Easter 2023 CST 1a

167

Waterfall – advantages
• Compels early clarification of system goals and is

conducive to good design practice
• Lets the developer charge for each requirements

change – key for outsourcing business model
• It works well with many management tools, and

technical tools
• Where it’s viable it’s usually the best approach
• The really critical factor is whether you can define

the requirements in detail in advance. Sometimes
you can (Y2K bugfix); sometimes you can’t (HCI)

Easter 2023 CST 1a

168

4/24/23

85

Waterfall – objections
• Iteration can be critical in the development process:

– requirements not yet understood
– the technology is changing
– the environment (legal, competitive) is changing
– an existing product is getting regular small enhancements

• The attainable quality improvement may be
unimportant over the system lifecycle

• It’s used to loot naïve customers like governments:
when the system doesn’t work it’s the customer’s
fault as they signed off the specification

Easter 2023 CST 1a

169

Iterative development

Develop
outline spec

Build system Use system

Deliver system

OK?
Yes

NoProblem: this algorithm
might not terminate!

Easter 2023 CST 1a

170

4/24/23

86

Spiral model

Easter 2023 CST 1a

171

Spiral model (2)
• The essence is that you decide in advance

on a fixed number of iterations
• E.g. engineering prototype, pre-production

prototype, then product
• Each of these iterations is done top-down
• “Driven by risk management”, i.e. you put

your energy into prototyping the bits you
don’t understand yet

Easter 2023 CST 1a

172

4/24/23

87

Evolutionary model

• By the 1990s, products like Windows and Office
were so complex that they had to evolve (MS tried
to rewrite Word from scratch twice and failed)

• The big change that made code evolution possible
was the arrival of automatic regression testing

• Firms now have huge suites of test cases against
which daily builds of the software are tested

• The development cycle is to add changes, check
them in, and test them

Easter 2023 CST 1a

173

Evolutionary model (2)
• A modern integrated development

environment has several components
– Code and documentation version control (git)
– Code review (gerrit)
– Automated build (make)
– Continuous integration (Jenkins)

• This technology has had a huge effect on
industry over the last 20 years as it evolved

• Think how you’ll set up your group project!
Easter 2023 CST 1a

174

4/24/23

88

Dependability
• Many systems must avoid a certain class of failures

with high assurance
– safety critical systems – failure could cause death, injury

or property damage
– security critical systems – failure could allow leakage of

confidential data, fraud, …
– real time systems – software must accomplish certain

tasks on time
• Critical computer systems have much in common

with mechanical systems (bridges, brakes, locks)
• Key insight: engineers study how things fail
Easter 2023 CST 1a

175

Tacoma Narrows, Nov 7 1940

Easter 2023 CST 1a

176

4/24/23

89

Hazard elimination

• Which motor reversing circuit above is the safe one?
• Some architecture and tool choices can eliminate whole

classes of software hazards, e.g. using a strongly-typed
language to limit syntax errors and memory leaks...

• But usually hazards involve more than just one program

Easter 2023 CST 1a

177

Ariane 5, June 4 1996

• Ariane 5 accelerated faster than Ariane 4
• This caused an operand error in float-to-integer conversion
• The backup inertial navigation set dumped core
• The core was interpreted by the live set as flight data
• Full nozzle deflection ® 20o angle of attack ® booster
separation

Easter 2023 CST 1a

178

4/24/23

90

Multi-factor failure
• Many safety-critical system failures involve

multiple things going wrong at once
• It would be great to have no arithmetic or

bounds errors, but you have to be careful
with exception handling

• Redundancy is also difficult to manage
• Criticality of timing tests the limits of

simple verification techniques
• Testing can also be really hard
Easter 2023 CST 1a

179

Emergent properties
• As safety is a system property, it has to be

dealt with holistically
• The same goes for security, and real-time

performance too
• As we mentioned in lecture 1, a very

common error is not getting the scope right
• As we discussed in lecture 3, designers

often don’t do enough work on human
factors such as usability and training

Easter 2023 CST 1a

180

4/24/23

91

The Therac accidents

• The Therac-25 was a
radiotherapy machine sold
by AECL

• Between 1985 and 1987
three people died in six
accidents

• Example of a fatal coding
error, compounded with
usability problems and
poor safety engineering

Easter 2023 CST 1a

181

The Therac accidents (2)

• 25 MeV ‘therapeutic
accelerator’ with two
modes of operation
– 25MeV focused electron

beam on target to generate
X-rays

– 5-25MeV spread electron
beam for skin treatment
(with 1% of beam current)

• Safety requirement: don’t
fire 100% beam at human!

Easter 2023 CST 1a

182

4/24/23

92

The Therac accidents (3)

• Previous model (Therac 20) had mechanical
interlocks to prevent high-intensity beam use
unless X-ray target in place

• The Therac-25 replaced these with software
• Fault tree analysis arbitrarily assigned probability

of 10-11 to ‘computer selects wrong energy’ and
10-4 to software bugs

• Code was poorly written, unstructured and not
really documented

Easter 2023 CST 1a

183

The Therac accidents (4)

• Marietta, GA, June 85: woman’s shoulder
burnt. Settled out of court. FDA not told

• Ontario, July 85: woman’s hip burnt. AECL
found microswitch error but could not
reproduce fault; changed software anyway

• Yakima, WA, Dec 85: woman’s hip burned.
‘Could not be a malfunction’

Easter 2023 CST 1a

184

4/24/23

93

The Therac accidents (5)

• East Texas Cancer Centre, Mar 86: man burned in
neck and died five months later of complications

• Same place, three weeks later: another man burned
on face and died three weeks later

• Hospital physicist managed to reproduce flaw: if
parameters changed too quickly from x-ray to
electron beam, the safety interlock failed

• Yakima, WA, Jan 87: man burned in chest and
died – due to different bug now thought to have
caused Ontario accident

Easter 2023 CST 1a

185

The Therac accidents (6)

• East Texas deaths caused by editing ‘beam type’ too quickly
• This was due to poor software design

Easter 2023 CST 1a

186

4/24/23

94

The Therac accidents (7)

• Datent sets turntable
and ‘MEOS’, which
sets mode and energy
level

• ‘Data entry complete’
can be set by datent, or
keyboard handler

• If MEOS set (& datent
exited), then MEOS
could be edited again

Easter 2023 CST 1a

187

The Therac accidents (8)
• AECL had ignored safety aspects of software
• Confused reliability with safety
• Lack of defensive design
• Inadequate reporting, followup and regulation – didn’t

explain Ontario accident at the time
• Unrealistic risk assessments
• Inadequate software engineering practices – spec an

afterthought, complex architecture, dangerous coding,
little testing, careless HCI design…

• AECL got out of the medical equipment business. But
similar accidents are still happening! (NY Times article)

Easter 2023 CST 1a

188

4/24/23

95

Redundancy

• Some vendors, like Stratus, developed redundant
hardware for ‘non-stop processing’

CPU

CPU CPU

CPU

? ?

Easter 2023 CST 1a

189

Redundancy (2)

• Stratus users found that the software is then
where things broke

• The ‘backup’ IN set in Ariane failed first!
• Next idea: multi-version programming
• But: errors are correlated, dominated by failure

to understand requirements (Leveson)
• Implementations often give different answers
• With both types of errors, redundancy is hard!
Easter 2023 CST 1a

190

4/24/23

96

Redundancy management – 737

Easter 2023 CST 1a

191

Panama crash, June 6 1992

• Need to know which way up!
• New EFIS (each pilot), WW2

artificial horizon (top right)
• EFIS failed – loose wire
• Both EFIS fed off same IN set
• Pilots watched EFIS, not AH
• 47 fatalities
• And again: Korean Air cargo

747, Stansted Dec 22 1999
Easter 2023 CST 1a

192

4/24/23

97

Kegworth crash, Jan 8 1989

• BMI London-Belfast, fan
blade broke in port engine

• Crew shut down starboard
engine and did emergency
descent to East Midlands

• Opened throttle on final
approach: no power

• 47 dead, 74 injured
• Initially blamed wiring

technician! Later: cockpit
design

Easter 2023 CST 1a

193

Complex socio-technical systems
• Civil aviation is a relatively simple case for a

number of reasons
– It’s been running since 1919, in modern form since 1945
– Stable components: aircraft design, avionics design, pilot

training, air traffic control …
– Interfaces are stable too
– Crew capabilities are well known
– There are better incentives for learning than with

medical devices!
• But institutional failures can still happen, as with

the LAS
Easter 2023 CST 1a

194

4/24/23

98

The Boeing 737 Max
• Two crashes, in Indonesia in 2018 and in Ethiopia

in 2019, killing 346
• 737 Max fleet grounded, then production halted
• Boeing lost $18.7bn in lost sales / compensation

by March 2020; market cap over $60bn down
• The world’s biggest software failure yet in terms

of lost lives and economic damage
• Boeing and the FAA made a lot of the mistakes

we’ve seen already, and then some
Easter 2023 CST 1a

195

MCAS
• The Boeing model 737 just evolved for 60 years to

save costs of certification, pilot retraining
• It needed bigger engines to save fuel and compete

with Airbus, so engines were moved forward to fit
• Test pilots discovered they couldn’t easily trim the

plane at high speed
• The fix was the Maneuvering Characteristics

Augmentation System (MCAS) – software added
to an existing flight control computer

Easter 2023 CST 1a

196

4/24/23

99

The fatal design error
• The flight control computer got input from two

angle of attack (AoA) sensors, but the MCAS
software used only one of them

• AoA sensors are regularly damaged by bird
strikes, ground crew etc

• Uncommanded nose-down trim happened when
the single AoA sensor failed and the pilot used
electric trim (slightly flaky logic, like Therac)

• Pilots needed 40–50kg force to keep the nose up,
struggled, and eventually lost

Easter 2023 CST 1a

197

Aggravating factors
• In the safety analysis, ‘Unintended MCAS

activation’ was rated ‘major’ (= maybe someone
gets injured) rather than ‘catastrophic’ (= everyone
gets killed)

• So no proper FMEA was done
• MCAS was removed from the pilot manual
• Boeing also failed to anticipate cockpit chaos
• Some years before, accountants had taken over

company management from engineers…
Easter 2023 CST 1a

198

4/24/23

100

Institutional factors
• Boeing had taken over much of the safety

assurance from the FAA’s own staff
• After a slightly similar 2009 accident in the

Netherlands with the previous model 737, they got
Uncle Sam to arm-twist the Dutch investigators

• They hoped the Indonesia crash was pilot error
• The FAA realized by then that there was a

problem but let the US fleet continue flying
• Such arrangements are called ‘Regulatory capture’

Easter 2023 CST 1a

199

Pulling it together
• First, understand and prioritise hazards (see the

video on the 737 Max for what can go wrong here)
• Develop safety case: hazards, risks, and strategy

per hazard (avoidance, constraint)
• Who will manage what?
• Trace constraints to code, and identify critical

components / variables to developers
• Develop test plans, certification, training, etc
• Figure out how this fits with your development

methodology
Easter 2023 CST 1a

200

4/24/23

101

Pulling it together (2)

• If you possibly can, tie down the critical properties
(safety, security, performance) early

• ‘Shift left’
– In a waterfall development, get them in the spec
– In a spiral model, sort them at prototype stage
– In an evolutionary model, get them into code

(DevOps becomes DevSecOps)
• At least, that’s how you do it in an ideal world!
• Often reality is more challenging
Easter 2023 CST 1a

201

Pulling it together (3)
• Managing an emergent property – safety, security,

real-time performance – can be intrinsically hard
• Although some failures happen during the ‘techie’

phases of design and implementation, most
happen before or after

• The soft spots are requirements engineering,
certification, and then operations / maintenance

• These are interdisciplinary, involving systems
people, domain experts and users, cognitive
factors, politics and marketing

• We’ll have more on certification later
Easter 2023 CST 1a

202

4/24/23

102

Autonomous vehicles
• Falling asleep causes 30% of fatal road traffic

accidents, but 50% on motorways
• If cars have adaptive cruise control, automatic lane

keeping, and automatic emergency braking, this
should save lives

• Tesla reported fewer fatalities with ‘autopilot’
• Independent assessment: fatalities were actually

higher if measured properly. So what happened?
• ‘Autopilot’ hands over when it gets confused!
Easter 2023 CST 1a

203

Tools and methods

• Homo sapiens invents and uses tools when
some parameter of a task exceeds our native
capacity
– Heavy object: raise with lever
– Tough object: cut with axe
– …

• Software engineering tools are designed to
deal with complexity

Easter 2023 CST 1a

204

4/24/23

103

Tools and methods (2)

• There are two types of complexity:
– Incidental complexity dominated programming in the

early days, e.g. keeping track of stuff in machine-code
programs. Solution: high-level languages

– Intrinsic complexity is the main problem today, e.g.
complex system (such as a bank) with a big team.
‘Solution’: structured development, project management
tools, …

• We can aim to eliminate the incidental
complexity, but the intrinsic complexity must be
managed

Easter 2023 CST 1a

205

Incidental complexity (1)
• The greatest single improvement was the

invention of high-level languages like FORTRAN
– 2000 loc/year goes much farther than assembler
– Code easier to understand and maintain
– Appropriate abstraction: data structures, functions,

objects rather than bits, registers, branches
– Structure lets many errors be found at compile time
– Code may be portable; at least, the machine-specific

details can be contained
• Performance gain: 5–10 times. As coding = 1/6

cost, better languages give diminishing returns
Easter 2023 CST 1a

206

4/24/23

104

Incidental complexity (2)

• Thus most advances since early HLLs focus on
helping programmers structure and maintain code

• Don’t use ‘goto’ (Dijkstra 68), structured
programming, pascal (Wirth 71); info hiding plus
proper control structures

• OO: Simula (Nygaard, Dahl, 60s), Smalltalk
(Xerox 70s), C++, Java … covered elsewhere

• Don’t forget the object of all this is to manage
complexity!

Easter 2023 CST 1a

207

Incidental complexity (3)
• Early batch systems were very tedious for

developers … e.g. our school computer in 1972
• Time-sharing systems allowed online test – debug

– fix – recompile – test – …
• This still needed plenty scaffolding and carefully

thought out debugging plan
• Integrated programming environments such as

TSS, Turbo Pascal,…
• Some of these started to support tools to deal with

managing large projects – ‘CASE’
Easter 2023 CST 1a

208

4/24/23

105

Formal methods
• Pioneers such as Turing talked of proving

programs correct
• Pioneered by Floyd (67), Hoare (71), … now

many variants (Z for specifications, HOL for
hardware, various theorem provers…)

• Can find subtle bugs, especially in conceptually
difficult tasks

• Two basic approaches (academic v industrial)
– Find all the bugs in a small program
– Find many of the bugs in a large one

Easter 2023 CST 1a

209

Static analysis tools are a useful
result of formal methods

Easter 2023 CST 1a

210

4/24/23

106

Individual / group productivity

• ‘Chief programmer teams’ (IBM, 70–72):
capitalise on wide productivity variance

• Team of chief programmer, apprentice, toolsmith,
librarian, admin assistant etc, to get maximum
productivity from your staff

• Can be effective during implementation
• But each team can only do so much
• Why not just fire the less productive

programmers? Or only hire after a trial contract?

Easter 2023 CST 1a

211

Capability maturity model

• Watts Humphrey, 1989: it’s best to keep teams
together, as productivity grows over time

• Nurture the capability for repeatable, manageable
performance, not outcomes that depend on
individual heroics

• CMM developed at Software Engineering Institute
at Carnegie Mellon University (also runs CERT)

• It identifies five levels of increasing maturity in a
team or organisation, and a guide for moving up

Easter 2023 CST 1a

212

4/24/23

107

Capability maturity model (2)
1. Initial (chaotic, ad hoc) – the starting point for

use of a new process
2. Repeatable – the process is able to be used

repeatedly, with roughly repeatable outcomes
3. Defined – the process is defined/confirmed as a

standard business process
4. Managed – the process is managed according to

the metrics described in the Defined stage
5. Optimized – process management includes

deliberate process optimization/improvement
Easter 2023 CST 1a

213

Trends in development methods
• Over the past 20 years, emphasis has shifted

from requirements to testing to people
• 1990s: put a lot of effort into the spec
• 2000s: the major effort is in an incremental

build system, with an automatic regression
test environment

• Can be simple, or an expensive “lab car”
• Foundation for the next step
Easter 2023 CST 1a

214

4/24/23

108

Agile development – beginnings
• ‘Extreme Programming’ (Beck, 99): aimed at

small teams working on iterative development
with automated tests and short build cycle

• ‘Solve your worst problem. Repeat’
• Focus on development episode: write tests first,

then the code. ‘The tests are the documentation’
• Programmers work in pairs, at one keyboard and

screen
• That didn’t survive, but episodes did, and people

added the ‘scrum’
Easter 2023 CST 1a

215

Agile development – now
• Start with a sound technical foundation:

languages, build environment, testing
• Agree processes: tickets, daily scrum, weekly

lunch, customer interaction...
• Break the development into short sprints
• Figure out what else is needed (e.g., updates to

security policy or safety case) and ‘move left’
• As infrastructure becomes a service, move site

reliability engineering left too
Easter 2023 CST 1a

216

4/24/23

109

Testing
• Testing is often neglected in academia, but it’s

typically about half the effort, and half the cost
• Bill G: “are we in the business of writing software,

or test harnesses?”
• Happens at many levels

– Design validation, UX prototyping
– Module test after coding
– System test after daily build
– Beta test / field trial
– Subsequent litigation

• Cost per bug rises dramatically down this list!
Easter 2023 CST 1a

217

Testing (2)

• The big advance: design for testability, automated
regression tests, continuous integration

• Regression tests check that new versions of your
software give same answers as older versions
– Before regression testing, 20% of bug fixes used to

reintroduce failures in already tested behaviour
– Customers more upset by failure of a familiar feature

than at a new feature that’s a bit flaky
– So test the inputs your users will actually generate!

• Add fuzzing too: test lots of random inputs
Easter 2023 CST 1a

218

4/24/23

110

Testing (3)
• Reliability growth models help us assess MTBF,

bugs remaining, economics of testing
• Failure rate due to one bug is e-k/T; with many

bugs these sum to k/T
• So for 109 hours mtbf, must test >109 hours
• New testers bring new bugs to light, as their test

focus is different
• Incentives matter: hostile testers used by military,

NASA etc; most large software and service firms
use bug bounty programmes

Easter 2023 CST 1a

219

More testers find more bugs

Bugs

Time

Tester 1 Tester 2 Tester 3 …

Easter 2023 CST 1a

220

4/24/23

111

Think about diversity & inclusion

“Today, I simply wanted to
renew my passport online.
After numerous attempts and
changing my clothes several
times, this example
illustrates why I regularly
present on Artificial
Intelligence/Machine
Learning bias, equality,
diversity and inclusion”
@CatHallam1

Easter 2023 CST 1a

221

The spec still matters!
• Classic study of failure of 17 large demanding

systems by Curtis, Krasner and Iscoe
• Causes of failure:

1. Thin spread of application domain knowledge
2. Fluctuating and conflicting requirements
3. Breakdown of communication, coordination

• They were very often linked, and the typical
progression to disaster was 1® 2 ® 3

• For large upgrades this is still a big deal
Easter 2023 CST 1a

222

4/24/23

112

Maintaining the spec is hard work
• Thin spread of application domain knowledge

– How many people understand everything about running
a hospital / building an airliner?

– Some fields try hard to be open, e.g. aviation
– But many details are jealously guarded turf
– Comms complexity for N people can be N2 or 2N!
– So you get mistakes with new products / big upgrades

• The spec may change in midstream anyway
– Competing products, new standards, new tech
– Changing environment (takeover, election, …)

• Don’t let the spec fragment! Someone must own it
Easter 2023 CST 1a

223

Safety case maintenance

• Big issue with medical devices – post-
market surveillance (being worked on)

• Vendors prefer to front-load certification,
whose costs deter new market entrants, and
dislike recalls, which are expensive

• Similar patterns with cars, aircraft…
• The move to autonomy is causing safety

and security to become entangled
Easter 2023 CST 1a

224

4/24/23

113

Vulnerability lifecycle

• An engineer introduces a bug
• Someone discovers it: now a ‘zero day’
• Disclose responsibly; or at once; or exploit
• Primary exploit window till patch shipped
• But many devices aren’t patched (orphan

products like old phones)
• What do we do about Mirai?
Easter 2023 CST 1a

225

Coordinated disclosure
• Bad old days: firms tried to deny existence

of bugs, and threatened people who
disclosed them – to save costs of fixing

• Reaction: hackers disclosed bugs anyway
leading to instant exploits

• Consensus arose in 2000s: vulnerabilities
should be disclosed after a time delay

• ‘Responsible’ or ‘coordinated’ disclosure
• Can use CERTs, regulators as channel
Easter 2023 CST 1a

226

4/24/23

114

How do you know when you’re done?
• The Cathedral

– safety: dozens of sectoral regulators (planes:
FAA/CAA, medical: FDA/MHRA…)

– security is messier because it’s adversarial but
has sectoral standards too (PCI for payments…)

• Or the Bazaar
– patch cycle, fed by
– breach reporting, coordinated disclosure

Easter 2023 CST 1a

227

• Outcomes
– Metrics easier for regular losses (risk)
– But people worry more about rare but

publicized bad things (recall bias)
– Rare catastrophes are harder still (uncertainty)
– So are attacks! (we fear hostile intent)
– Product liability (more in Economics, Law and

Ethics in 1b)

Easter 2023 CST 1a

Focus on outcomes, or process?

228

4/24/23

115

• Process
– Safety regulators are mostly strong on process
– Safety / security development lifecycle
– Public sector is keen on ‘compliance’ (blame

avoidance is what bureaucracies do)
– But standards must adapt as environment

changes: ‘always fighting the last war’
– Still a gap of residual risk / uncertainty

Easter 2023 CST 1a

Focus on outcomes, or process?

229

Project management

• A manager’s job is to
– Plan
– Motivate
– Control

• The skills involved are interpersonal, not techie;
but managers must retain respect of techie staff

• Growing software managers a perpetual problem!
‘Managing programmers is like herding cats’

• Nonetheless there are some tools that can help

Easter 2023 CST 1a

230

4/24/23

116

Project management trilemma
– right, quick or cheap (choose any two)

Dependability

Cost Time

Quality

Easter 2023 CST 1a

231

Gantt charts: tasks and milestones

Can be hard to visualise dependencies in large charts

T1

Weeks 1 2 3 4 5 6 7 8

T2

T3

T4

T5

T6

Complete

Today

75% complete

50% complete

0% complete

10% complete

0% complete

Easter 2023 CST 1a

232

4/24/23

117

PERT charts: show critical paths

T1 = 3
T4 = 3

T6 = 3T2 = 4

T5 = 2

T3 = 1

Which paths are critical?
Easter 2023 CST 1a

233

Keeping people motivated
• People can work less hard in groups than on their

own projects – ‘free rider’ or ‘social loafing’ effect
• Dan Rothwell’s ‘three C’s of motivation’:

– Collaboration – everyone has a specific task
– Content – everyone’s task clearly matters
– Choice – everyone has a say in what they do

• Many other factors: acknowledgement, attribution,
equity, discrimination, leadership, and ‘team
building’ (shared food / drink / exercise;
scrumming)

Easter 2023 CST 1a

234

4/24/23

118

Documentation

• Think: how will you deal with management
documents (budgets, PERT charts, staff schedules)

• And engineering documents (requirements, hazard
analyses, specifications, test plans, code)?

• CS tells us it’s hard to keep stuff in synch!
• Possible partial solutions:

– High tech: integrated development environment
– Bureaucratic: plans and controls department
– Social consensus: style, comments, formatting

Easter 2023 CST 1a

235

Change control and operations:
important and can be overlooked

• Change control and config are critical; often poor
• Objective: manage testing and deployment
• Someone must assess risk and be responsible for:

– Live running
– Updates, patches
– Manage backup, recovery, rollback
– …

• DevOps integrates development and operations
• DevSecOps integrates monitoring, incident response

Easter 2023 CST 1a

236

4/24/23

119

Shared infrastructure
• We share a lot of code through open source

operating systems, libraries and tools
• Huge benefits but also interaction costs!
• How do you coordinate disclosure?
• How do you negotiate fixes with others who

rely on your code / platform?
• How will you cope with an emergency bug

fix (like Heartbleed)?
• New mandate: Software Bill Of Materials
Easter 2023 CST 1a

237

The emerging challenge
• With the “Internet of Things”, safety now

includes security
• Things like cars, medical devices and grid

equipment have 10-year certification cycles
• Put software everywhere, and attacks scale!
• Expect many more devices to go to monthly

updates like phones and laptops
• This will stress test a lot of regulators!
Easter 2023 CST 1a

238

4/24/23

120

My big question (see 36C3 talk)
• Tesla has started monthly updates, like for laptops;

other car vendors will follow
• That costs real money. So legacy vendors wanted

to stop support after 6 years. But cars last 15+
• And: embedded carbon cost ~ lifetime fuel burn!
• Result: new EU Directive 2019/771
• So how will today’s car software get patches in

2030? In 2040? In 2050?
• What new tools and new ideas do we need?
Easter 2023 CST 1a

239

Conclusions
• Software engineering is about managing

complexity. That’s why it’s hard. That’s our trade
• We can cut incidental complexity using tools, but

the intrinsic complexity remains
• Top-down approaches can sometimes help, but

really large systems evolve
• Safety and security are often emergent properties
• Complex systems are usually socio-technical;

people come into play as users, and also as
members of development and other teams

Easter 2023 CST 1a

240

4/24/23

121

Conclusions (2)
• Scaling is hard! Large firms behave

differently from small dev teams. Once
many teams work on a project, coordination
scales poorly

• Architecture, tools, methods, culture and
incentives can help

• In future, the complexity of security and
safety may make maintainability the real
limit to what we can build!

Easter 2023 CST 1a

241

