
Software as a Service
Engineering

Richard Sharp
Director of Studies for Computer Science, Robinson College

1

What is SaaS?

2

SaaS (Software as a Service) refers to
software that is

hosted centrally and licensed to customers on
a subscription basis.

Users access SaaS software via thin clients,
(often web browsers).

3

Traditional software distribution (pre SaaS)

PoC Purchasing
Decision Deploy Manage/

upgrade

PoC Purchasing
Decision Deploy Manage/

upgrade

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

4

Traditional software distribution (pre SaaS)

PoC Purchasing
Decision Deploy Manage/

upgrade

PoC Purchasing
Decision Deploy Manage/

upgrade

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

High Total Cost of Ownership (TCO)

Expensive duplication

Lack of specialization
5

SaaS

Deploy Manage/
Upgrade

Build
software

PoC Purchasing
Decision

Provision
accounts

PoC Purchasing
Decision

Provision
accounts

Access to centrally
managed, on-line
services

Lower TCO

Much less duplication of operating activities

Much better specialisation in this division of labour

Software company

Customer_1

Customer_n

6

Impact of SaaS on the
Software Engineering

Process

7

Impact on the ‘software company’

Deploy Manage/
Upgrade

Build
software

Software company

Build
software

Release
versioned
binaries

Software company

Binary distribution SaaS

8

Impact on the ‘software company’
● Now have to worry about building software and running it
● Have to continue evolving/upgrading the software with zero downtime

But the good news:

● ‘Software release’ no longer an all-or-nothing discrete event
○ Provides new ways to manage quality and reduce risk

● Continuous visibility into user behavior
○ Provides user/commercial insights back into iterative software development process

9

Managing Continuous
Deployment Without

Downtime

10

Continuous Integration (CI):
short integration cycles lead to greater throughput

Shared
code repo

Developers commit to shared
dev ‘mainline’ branch
frequently (e.g. at least once a
day)

Build on
every

commit

Run
automated
unit tests

Immediate alerting/feedback
on fail condition

Built
artifacts

11

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

12

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

How to do this while reducing risk?
How to do this while ‘always on’?

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

13

Rolling deploy

Load Balancer

x.y x.y x.y x.y

25% of traffic each

Note: these resources are
usually running in a cloud
platform. So virtual
machines, load balancers,
storage, network etc. can
all be provisioned and
configured through the
cloud platform’s APIs.

14

Rolling deploy: 1) Deploy ‘canary’ (limit exposure/risk)

Load Balancer

x.(y+1)

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

x.y x.y x.y x.y

15

Rolling deploy: 2) Automated monitoring of error rates - OK?

Load Balancer

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

Centralised logging

Automated
alerts

x.(y+1)x.y x.y x.y x.y

16

Rolling deploy: 3) Move traffic from old instance to new

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.y

17

Rolling deploy: 4) Upgrade 0% instance

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

18

Rolling deploy: 5) Move traffic from old instance to new etc.

Load Balancer

25%

Centralised logging

Automated
alerts

25%0%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

19

Rolling deploy: Repeat {move traffic old->new; upgrade old}

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%0%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

20

Rolling deploy: …

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

Destroy last x.y instance

(If anything
unexpected
happens then
can pause at any
point; aim to ‘roll
forward’ rather
than ‘rolling
back’...)

21

Rolling deploy with service dependencies

Load Balancer

x.y x.y x.y x.y

a.b Dependent service

Challenge:

How do we upgrade the
dependent service while keeping
everything running?

And how do we handle this if we
need to make a ‘breaking change’
to the dependent service’s API?

22

Load Balancer

x.y x.y x.y x.y

a.(b+1) Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)

Rolling deploy with service dependencies

23

Load Balancer

x.(y+1)

a.(b+1) Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)

Rolling deploy with service dependencies

x.y x.y x.y x.y

24

Load Balancer

Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
3. Finish deploy of x.(y+1)

Rolling deploy with service dependencies

x.(y+1)x.(y+1)x.(y+1)x.(y+1)

a.(b+1)

25

Load Balancer

Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

(a+1).0 supports x.(y+1)
(a+1).0 doesn’t support x.y

We say:

a.(b+1)’s API is backwards
compatible (wrt a.b)

(a+1).0’s API introduces a
breaking change

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
3. Finish deploy of x.(y+1)
4. Deploy (a+1).0

Rolling deploy with service dependencies

(a+1).0

x.(y+1)x.(y+1)x.(y+1)x.(y+1)

26

On Automation: Infrastructure-as-Code
● Problem:

○ Manual deployments are time-consuming and error-prone. Subtle environmental differences
cause bugs.

● Solution:
○ Write code to automate deployments, using Cloud APIs etc.
○ Put deployment code under version control, just like all other code
○ Have development teams write:

■ Application code
■ Code to test the application
■ Code to deploy the application and its associated cloud infrastructure
■ Code to monitor the application and generate alerts

● Frameworks like Terraform and CloudFormation help with this

27

Review
● Rolling deploy:

○ Technique for upgrading and developing SaaS software with zero downtime
○ Enables new ways of managing quality/risk, which changes the economics of testing

● Infrastructure-as-code:
○ Foundational technology for managing cloud-based SaaS services
○ Developers write code that enables applications to deploy and monitor themselves

28

Behavioural analytics
and experiments

35

Analytics collectors

Users; often each identified by unique ID

Behavioural ‘events’ (e.g. At time t, user u, clicked button b)

Big time
sequence
of events
for all users

Reporting

Queries run by
analysts

Processing/
Enrichment

SaaS company’s infrastructure

A simple behavioural analytics pipeline

36

What can we learn from the event logs?

● User/growth metrics:
○ Monthly Active Unique Users (MAU); Daily Active Unique Users (DAU)

● Engagement:
○ Time spent using the service

● Feature usage/growth/engagement metrics:
○ X% of users tried feature F at least once in the last month
○ Y% of users used feature F2 for at least 5 minutes last week
○ Feature F3 usage growing at Z% year-on-year

● Insights based on user segmentation:
○ Users who signed up in January 2018 exhibit an average 2% monthly churn
○ Female users aged between 20-25 are X% more likely to use feature F at least once

37

What else can we learn from the event logs?
● Correlations

○ Usage of feature F2 is correlated with usage of feature F1
○ Daily time spent on the platform is correlated with the number of days since sign-up

● But NOT cause and effect… At least not without an experiment framework.

38

How can we move from correlations to cause/effect?

● Run controlled experiments:
○ Determine hypothesis to test
○ Determine level of exposure, E, (% of users that will go into experiment group)
○ Bucket users into either experiment group (E%) or control group (100-E)%
○ Release a change to the experiment group only
○ Measure relevant metric(s) in both control group and experiment group and determine whether

the observed difference is statistically significant

● By measuring difference between control and experiment groups we can have
some confidence that the difference is due to our ‘change under test’

● Often pick low E and ramp up (e.g. 1%, 10%, 25%, 50%)
○ Similar to phased deploy alerting, but measures ‘do users like it’ rather than ‘are there errors’

● Experiment throughput can quickly become limited by traffic volume

39

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E THEN serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

40

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E THEN serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

● Users persistently in a control or
experiment group; don’t ‘flap’

● Users in existing experiment group remain
in experiment group as E increased

● Works for multiple concurrent experiments
(but be careful of independence
assumptions)

41

A/B test architecture

SaaS service

Users

Analytics collectors

Behavioural ‘events’:
At time t, user u, in experiment groups for EID1, EID5, clicked button b

For each experiment, e,
generate reports for metrics
of interest segmented by (i)
‘in EID_e’; and (ii) ‘not in
EID_e’. Compare these
results for each metric and
test statistical significance.

Big time-
sequence
of events
for all users

42

Summary

47

Summary
● Putting the manage/deploy/upgrade cycle into the software company is a

profound change with far-reaching consequences:
○ Economically:

■ Reduces customer TCO and barriers to purchasing
■ Leads to better specialisation, and less duplication; creates new business models

○ Operationally:
■ Enables new ways of doing QA, which changes the economics of testing
■ Phased releases (which can take place over days if required, with flexibility to pause and

fix at any time); live monitoring/alerting
○ Enables building of higher quality software through increased visibility of user behavior. (N.B.

with great power comes great responsibility!)
■ Behavioural analytics
■ Experiments

48

