Randomised Algorithms
Lecture 1: Introduction to Course & Introduction to Chernoff Bounds

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2023

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction

1. Introduction © T. Sauerwald Introduction

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically. N

(But sometimes: simple algorithm at the cost of a complicated analysis!

1 N
7. W
$ IS 2

y %
',’,- /,

“.. If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms | would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”

- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if | (initially) don’t care about randomised algorithms?

Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

1. Introduction © T. Sauerwald Introduction

Some stuff you should know...

In this course we will assume some basic knowledge of probability:
* random variable
= computing expectations and variances
= notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

OREB8M
BDOEEEE

You should also be familiar with basic computer science, mathematics
knowledge such as:

= graphs
= basic algorithms (sorting, graph algorithms etc.)
= matrices, norms and vectors

1. Introduction © T. Sauerwald Introduction

Textbooks

Probability and
Computing

Randomization and Probabilistic Techniques
@ inAlgorithms and Data Analysis

A Dy v

-
~

The DESIGN of \§ \‘

APPROXIMATION

ALGORITHMS >\‘ \‘ N\

INTRODUCTION TO

ALGORITHMS

= (x) Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cambridge
University Press, 2nd edition, 2017
David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms, Cambridge University Press, 2011
= Cormen, T.H., Leiserson, C.D., Rivest, R.L. and Stein, C. Introduction to
Algorithms. MIT Press (3rd ed.), 2009
(We will adopt some of the labels (e.g., Theorem 35.6) from this book in
Lectures 6-10)

1. Introduction © T. Sauerwald Introduction

Outline

Topics and Syllabus

1. Introduction © T. Sauerwald Topics and Syllabus

1 Introduction (Lecture)
= Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2-3 Concentration (Lectures)
= Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.
4 Markov Chains and Mixing Times (Lecture)
= Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time
5 Hitting Times and Application to 2-SAT (Lecture)
= Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm
Lectures 6-8 introduce linear programming, a (mostly) deterministic but

very powerful technique to solve various optimisation problems.

6—7 Linear Programming (Lectures)
= Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming
8 Travelling Salesman Problem (Interactive Demo)

= Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs

1. Introduction © T. Sauerwald Topics and Syllabus

We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9-10 Randomised Approximation Algorithms (Lectures)

= MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-12 cover a more advanced topic with ML flavour:

11—12 Spectral Graph Theory and Spectral Clustering (Lectures)

= Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times

1. Introduction © T. Sauerwald Topics and Syllabus

Outline

A (Very) Brief Reminder of Probability Theory

Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (2, X, P).

Components of the Probability Space (2, %, P)

= The Sample Space €2 contains all the possible outcomes wy, ws, ...

of the experiment.

= The Event Space X is the power-set of Q containing events, which
are combinations of outcomes (subsets of Q including ¢ and Q).
* The Probability Measure P is a function from X to R satisfying
(i) 0<P[E]< 1, forallE e
(i) P[Q] =1
(iii) &1, &, ... € X are pairwise disjoint (£, N & = @ for all i # j) then

o[]S
i=1 i=1

1. Introduction © T. Sauerwald A (Very) Brief Reminder of Probability Theory

1. Introduction © T. Sauerwald A (Very) Brief Reminder of Probability Theory

Recap: Random Variables

A random variable X on (€2, X, P) is a function X : Q@ — R mapping each

sample “outcome” to a real number.
Intuitively, random variables are the “observables” in our experiment.

—— Examples of random variables

» The number of heads in three coin flips X1, X2, X5 € {0, 1} is:
X1+ X+ X3

= The indicator random variable 1¢ of an event £ € ¥ given by

1g(w)_{1 ifweé&

0 otherwise.

For the indicator random variable 1¢ we have E[1] =P [£].
= The number of sixes of two dice throws Xi, Xo € {1,2,...,6}is

1x,=6 + 1x,-6

Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

J

Union Bound

Let &,...,&n be a collection of events in . Then

P |\OS;| Sip[&]

1. Introduction © T. Sauerwald A (Very) Brief Reminder of Probability Theory

A Proof using Indicator Random Variables:
1. Let 1¢, be the random variable that takes value 1 if & holds, 0 otherwise
2. E[1¢]=PJ[&i] (Check this)

3. Itisclearthat 1, ¢ < 357, 1¢ (Check this)
4. Taking expectation completes the proof.

1. Introduction © T. Sauerwald A (Very) Brief Reminder of Probability Theory

Outline

Basic Examples

1. Introduction © T. Sauerwald Basic Examples 13

A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E(S, V \ S) | is maximised.

Applications:

= network design, VLSI design

= clustering, statistical physics 9'0

Comments:

= This example will appear again in the course e

= MAX-CUT is NP-hard 0 0
= It is different from the clustering problem, where we G
want to find a sparse cut

= Note that the MIN-CUT problem is solvable in e(S, 8% =6
polynomial time!

1. Introduction © T. Sauerwald Basic Examples 14

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G) [This kind of “random guessing” will appear often in this course! j

1: Start with S+ 0 —
2: For each v € V, add v to S with probability 1/2
3: Return S

. i imati ' I
Proposition _(More details on approximation algorithms from Lecture 9 onwards!)

RANDMAXCUT(G) gives a 2-approximation using time O(n).

broof LLater: learn stronger tools that imply concentration around the expectation!]
roofr:

—_—
= We need to analyse the expectation of e (S, S°):

E[e(5S°)] =E| > 1uesvesciuuese,ves)
{u,v}e€E

= > E[1{esvesciu{uese,vesy]

{u,v}eE

= > P[{ueSveS}u{ue s veS}]

{u,v}eE

=2 Z P[UGS,VESC]:2 Z P[UES]'P[VGSC]I\EVZ
{u,v}eE {uvyeE

= Since forany S C V, we have e (S, S°) < |E|, concluding the proof.

1. Introduction © T. Sauerwald Basic Examples 15

Example: Coupon Collector

Source: https://wwv.express.co.uk/life-style/1ife/567954/Discount- codes-money- saving- vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. j

Coupon Collector Problem \\\\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4‘ Example Sequence forn=8: 7,6,3,3,3,2,5,4,2,4,1,4,2/1,4,3,1,4,8 / j

Exercise (Super\”Slon) [In this course: |0g n=Inn J
: z
1. Prove it takes n>"}_, 1 ~ nlog n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than

nlog n + cn boxes to collect all n coupons is < e °.

Hint: It is useful to remember that 1 — x < e~ for all x

1. Introduction © T. Sauerwald Basic Examples 16

Outline

Introduction to Chernoff Bounds

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 17

Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour

= |t gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 18

Chernoff Bounds: A Tool for Concentration

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

= easy to apply, but requires independence
= have found various applications in:

= Randomised Algorithms

= Statistics Hermann Chernoff (1923-)
* Random Projections and Dimensionality Reduction

= Learning Theory (e.g., PAC-learning)

|
|
|
|
|
|
|
|
(=8 n (1+)u

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 19

Recap: Markov and Chebyshev

Markov’s Inequality
If X is a non-negative random variable, then for any a > 0,

P[X >a]<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

P[IX -E[X]|>a] <V[X]/a&"

= Let f: R — [0, 00) and increasing, then f(X) > 0, and thus
PIX > a] <P[f(X) > f(a)] < E[f(X)]/f(a).

= Similarly, if g : R — [0, c0) and decreasing, then g(X) > 0, and thus
P[X < a] <P[g(X) > 9(a)] < E[900)] /g(a).

[Chebyshev’s inequality (or Markov) can be obtained by J

chosing f(X) := (X — p)? (or f(X) := X, respectively).

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 20

From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

* Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds

Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)
Suppose X, ..., X, are independent Bernoulli random variables with pa-
rameter pi. Let X = Xi +...+ X, and p = E[X] = Y7, pi. Then, for
any 6 > 0 it holds that

& n
P[X>(1+0)u] < [WW] . (%)

This implies that for any t > p,

t

PIX>t]<e ™ (it”)

N
AN\
While (%) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 21

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 22

Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
* Xi€{0,1}, X=>7",XiandE[X]=n-1/2=n/2
» The Chernoff Bound gives for any § > 0,

66 n/2
PIX= (140002 < | 555w |
= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)
= The inequality is exponential in n, (for fixed ¢) which is much better than
Chebyshev’s inequality.
N
[What about a concrete value of n, say n = 100? j

Example: Coin Flips (2/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[X] = 100/2 = 50.
P[X>3/2-E[X]] <2/3=0.666.
» Chebyshev's inequality: V[X] = 1% V[X;] =100 - (1/2)? = 25.

ViX]
©?

PIIX—ul=t] <

and plugging in t = 25 gives an upper bound of 25/25% = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

* Chernoff bound: setting 6 = 1/2 gives
gl/2
(3/2)3/2

* Remark: The exact probability is 0.00000028 ...

50
P[Xz3/2~E[X]]§() = 0.004472.

[Chernoff bound yields a much better result (but needs independence!)]

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 24

Example: Coin Flips (3/3)

P[Bin(100,1/2) = x]

0.10 |

0.08 |

0.00 L : :

80

90

100

1. Introduction © T. Sauerwald

Introduction to Chernoff Bounds

25

Randomised Algorithms
Lecture 2: Concentration Inequalities, Application to Balls-into-Bins

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2023

UNIVERSITY OF
CAMBRIDGE

Outline

How to Derive Chernoff Bounds

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of indepen-
dent random variables X = X; + --- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, A > 0 and apply Markov’s inequality ~ E [e** |

2. Compute an upper bound for E [e*x] (using independence)
3. Optimise value of X to obtain best tail bound

Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter pi. Let X = X; + ...+ Xy, and p = E[X] = X7, pi. Then, for
any ¢ > 0 it holds that

P[X2(1+6)N]§ [U:S)UW] .

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

Proof:
1. For A > 0,

PIX>(1+8u] < P [exx > eMH‘s)”} < e M+imE [eAX}

e X is incr Markov

2. E[eM] =E {exz,-"ﬂx,-}
3.

- H7=1 E [eAXi]

indep

E|:e/\Xij| :e’\p;+(1 *[3,'):1 +pi(e>*1) < epi(e)\71)

1+x<eX

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

Chernoff Bound: Proof

1. For A > 0,
PIX>(1+0)u] = P[eM>en] < g g []
e X is incr Markov

AX T)\Zln: X,' — n /\X,'
2. Ele]_E{e f }indepH,:1E[e]
3. N

E[e¥]=ep+(1-p)=1+pe-1) < &
14x<eX

4. Putting all together

n
P[X > (1+8)u] < e M1 [[eole 1) = g 21 ohgre’ 1
i=1

5. Choose X = log(1 + §) > 0 to get the result.

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Chernoff Bounds (General Form, Lower Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter pi. Let X = Xi + ...+ Xy, and p = E[X] = X7, pi. Then, for
any ¢ > 0 it holds that

e’ M
<(1- < |l —
PIX< (-l < | o] -
and thus, by substitution, for any t < g,

t

PIX<t]<e™" (37“)

Exercise on Supervision Sheet
Hint: multiply both sides by —1 and repeat the proof of the Chernoff Bound

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter pi. Let X = X; +... + Xpand u = E[X] = Y7, pi. Then,
= Forall t >0,

PIX>E[X]+t]<e2/
P[X<E[X]-t]<e 2/
=ForO0<d <1,

P[X>(1+6)E[X]] <exp <_5253[X]

P[X < (1-8)E[X]] < exp <_552[X]>

N

\

All upper tail bounds hold even under a relaxed independence assumption:

Forall1 <i<nand xi,%,...,x—1 € {0,1},

P[Xi=1|Xi=xXq,....,Xi-1 =xi—1] < pi.

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds

Outline

Application 1: Balls into Bins

2. Concentration © T. Sauerwald Application 1: Balls into Bins

Balls into Bins

Balls into Bins: Bounding the Maximum Load (1/4)

JLslglaLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model

= In computer science, there are several interpretations:
1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.

JLGlglLI

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

* Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; = P[X;=1] =1/n.

* The total balls in the bin is given by X := "7, X;.
= Since m=2nlogn,then u = E[X]=2logn

here we could have used
the “nicer” bounds as well!

]

P[X >t] < e "(eu/t)
= By the Chernoff Bound,

6logn
P[X > 6Blogn] < e 21" (%een) ™ < g 2loen — -2

2. Concentration © T. Sauerwald Application 1: Balls into Bins 9

2. Concentration © T. Sauerwald Application 1: Balls into Bins

Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

n n
PIUE| <D PlgI<n-n?=n"".
=1 =

» Therefore whp, no bin receives at least 6 log n balls

= By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability:
An event £ (that implicitly depends on an input parameter n) occurs whp if
P[] > 1asn— .
This is a very standard notation in randomised algorithms
but it may vary from author to author. Be careful!

Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

= Using the Chernoff Bound: [P[X>1t] < e *(eu/t)]

Pix=0Ze ()< ()

= By setting t = 4log n/ log log n, we claim to obtain P[X > t] < n™=.
* Indeed:

eloglogn 4'°g”/'°g'°g”_ex 4logn (eloglogn
4logn P loglogn & 4logn

= The term inside the exponential is

4logn
loglog n

loglogn

obtainingthat P[X > t] < n™%2 = n72, This inequality only
works for large enough n.

-(log(4/e) + logloglog n — loglog n) < 4logn (—; log log n) ,

2. Concentration © T. Sauerwald Application 1: Balls into Bins 11

2. Concentration © T. Sauerwald Application 1: Balls into Bins

Balls into Bins: Bounding the Maximum Load (4/4)

Conclusions

We just proved that

P[X > 4logn/loglogn] < n~?,

thus by the Union Bound, no bin receives more than Q (log n/ log log n) balls
with probability at least 1 — 1/n. O

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach

For any m > n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

= for m = nthis gives a maximum load of log, logn+©(1) w.p. 1—1/n.

/1
/L

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms (cov-
ered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14

ACM Paris Kanellakis Theory and Practice Award 2020

ACM Paris Kanellakis Theory and Practice Award Recipients

Eli

Broder Karlin Mitzenmacher Upfal

Yossi ‘ Andrei Anna ‘ Michael

For “the discovery and analysis of balanced allocations, known as the
power of two choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft
and Dropbox, which are all based on variants of the power of two
choices paradigm. There are many other software systems that use
balanced allocations as an important ingredient.”

2. Concentration © T. Sauerwald Application 1: Balls into Bins

Simulation

Sampled two bins ua.r.

» Nextstep Advance by so Go Trim Interval (ms):1 g Sort in each round © Auto-trim g Draw mean
Number of bins: 3 Capacity:3 Reset Process: (Two-croice %) Batch size: 3 Noise (g):5
Plot: add Initialise configuration: init

https://www.dimitrioslos.com/balls_and_bins/visualiser.html

2. Concentration © T. Sauerwald Application 1: Balls into Bins 16

Randomised Algorithms
Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2023

Outline

Application 2: Randomised QuickSort

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

QuickSort

=y

QO oo NGO AN 2

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot
: f |[Aj=0or |A| =1 then

return A
else
Create two subarrays A and A, (without the pivot) such that:
A1 contains the elements that are smaller than the pivot
A> contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A = (2,1,5,374) and A; = (8,9,7)

Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
2.

[We will now give a proof of this “well-known” result!]

QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

8,9,7

8.9)
® ®

[What is the number of comparisons?]
71

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the height of all nodes in the tree (why?). In this case:

O+1+14+2+2+3+3+3+4=19.

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element j appears in the tree.
Then the number of comparisonis H = >, H;

3. We will prove that exists C > 0 such that
P[H < Cnlogn]>1—-n"".

4. Actually, we will prove sth slightly stronger:

P

i=1

({H < Clogn}] >1-n".

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (2/4)

» Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.

2,8,9,1,7,5,6,3,4)s0 = 9

8,9,7

2,534] 2= 4 (8,9)

23) 2 ® ®
84*1

* Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

» For P to proceed from level k to k + 1, the condition s > 1 is necessary

How far could such a path P possibly run until we have s, — 1?

= We start with s — n

. . ~ 2
» First Case, node: i1 = 5 Sk. (* This even holds always,]

= Second Case, bad node: s, 1 < s. i.e., deterministically!

= There are at most T = %67 < 3log n many

= Assume |P| > Clognfor C := 24
= number of bad vertices in the first 24 log n levels is more than 21 log n.
N
[Let us now upper bound the probability that this “bad event” happens!]

nodes on any path P.

Randomised QuickSort: Analysis (4/4)

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

» Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X:
= X; = 1if the node at level j is bad
= X; = 0if the node at level j is . ! bad , bad

'P[X':1|X0:X0,...7)(j_1:)(j_1]§% 1 6/3 2£/3 14
= X =Y 7 e X satisfies relaxed indepgndence assumption (Lecture 2)

[Question: But what if the path P does not reach level j?]

L
Answer: We can then simply define X; as the result
of an independent coin flip with probability 2/3.

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

8.1

Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X:
= X; = 1 if the node at level j is bad
= Xj = 0 if the node at level j is . F bad } } bad
“P[Xi=1|Xo=Xo,...,X1=x1]<} 1 /3 2¢/3

0
« X = Y281 X satisfies relaxed independence assumption (Lecture 2)

j=0

We can now apply the “nicer” Chernoff Bound!

* We have E[X] < (2/3) - 24logn = 16logn
= Then, by the “nicer” Chernoff Bounds {P [X>E[X]+1] < 6_2[2/"]

P[X >21logn] <P[X > E[X]+5logn] < g 26en*/(241en)
— o (50/24)10gn -2

* Hence P has more than 24 log n nodes with probability at most n—2.

= As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n='. [

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
ANN
[Supervision Exercise: Our upper bound of O(nlog n) whp also immediately}

implies a O(nlog n) bound on the expected number of comparisons!

= |t is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

= The latter requires to compute the median of the array in linear time,
which is not easy...

= The presented randomised algorithm for QUICKSORT is much easier to
implement!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 9

Outline

Extensions of Chernoff Bounds

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds

Hoeffding’s Extension

= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to com ing function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X — E[X]

Hoeffding’s Extension Lemma 4
Let X be a random variable with mean 0 such that a < X < b. Then for

all A e R,
AX (b— a)2>\2
E {e } S exp (8

We omit the proof of this lemmal

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds 11

Hoeffding Bounds

Hoeffding’s Inequality

Let Xi,..., X, be independent random variable with mean p; such that
a<X<b.LetX=Xi+...+Xnpandlety=E[X]=>", u. Then
forany t >0

PIX> it 1] <ex (_2")
AT EEP TS (b—a))
and

Proof Outline (skipped):
sletX =Xi—pand X' =X{+...+ X, thenP[X > pu+t]=P[X >1t]
“P[X >t]< e M][I,E [eAX/] < exp [—At+ 23 (b — a)?

* Choose A = ——=— to get the result.

N (bi—aj)?

(This is not magic! you just need to optimise A!j

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds 12

Method of Bounded Differences

Framework

to study the random variable:

(X, .., Xn)

Suppose, we have independent random variables X, ..., X,. We want

Some examples:

1. X=Xi+...+ X,

2. In balls into bins, X; indicates where ball i is allocated, and f(X, ...

is the number of empty bins

3. X indicates if the i-th edge is present in a graph, and (X, ..., Xm)
represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f(Xi,..., X,) around its mean by
the so-called Method of Bounded Differences.

7Xm)

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds

Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢, .. ., ¢,) if for all
i=1,2,...,n,
|f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,;1,)7,',X,‘+1,...,Xn)| <c,

where x; and X; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., Xh be independent random variables. Let f be Lipschitz with
parameters ¢ = (c1, ..., Cn). Let X = f(Xi,..., Xn). Then for any t > 0,

2
P[X>p+t]<exp (—?)
and

21
P[X<u—t]<exp _W .
i=1 Ci

= Notice the similarity with Hoeffding’s inequality!
= The proof is omitted here (it requires the concept of martingales).

Outline

Applications of Method of Bounded Differences

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds 14

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences

Application 3: Balls into Bins (again...)

UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

» Let Z be the number of empty bins (after assigning the m balls)

» Z=2(X1,...,Xm)and Z is Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[|IZ-E[Z]|>t] <2 2/
/1

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences 16

Application 4: Bin Packing

0.85

0.2

= We are given nitems of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]

Let B= B(Xi, ..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore
P[IB-E[B]|>t]<2-e 2"
2

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences 17

Outline

Appendix: Moment Generating Functions

3. Concentration © T. Sauerwald Appendix: Moment Generating Functions 18

Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E {e’x} . whereteR.

71

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.v’s with Mx(t) = My(t) for all t € (=4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Mx+y(t) = Mx(t) . My(t).

Proof of 2:
My v(t) = E [e’(X”’] —E [e’X : e”} OE [e’X] E [e’Y] = Mx(OMy(t) O

3. Concentration © T. Sauerwald Appendix: Moment Generating Functions 19

Outline

Recap of Markov Chain Basics

Randomised Algorithms
Lecture 4: Markov Chains and Mixing Times

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023
§ UNIVERSITY OF
» CAMBRIDGE
4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics
Applications of Markov Chains in Computer Science Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);=, is @ Markov Chain on State Space Q with Initial Dis-
tribution w and Transition Matrix P if:

1. Forany x € Q, P[Xo = x] = pu(x).
2. The Markov Property holds: for all t > 0 and any X, ..., Xtr1 € Q,

Google

P Xt+1 = Xt41 Xt:X[,...,X0:X01| :P|:X[+1 = Xt+1 ‘X[:X[i|

= P(Xt, Xt41)-

7 From the definition one can deduce that (check!)
10
SR EOL ERE E — = Forall t, xo, X1,...,X € Q,
soosomioLy oflo
Al rogooo ey 0% 9 o° P[Xt=xt,Xt—1 = Xt—1,..., X0 = Xo]
S —
L SRR % :M(Xo)'P(XO,X1)'...'P(Xt_z,Xt_1)'P(Xt_1,Xt).
Clustering Sampling and Optimisation Particle Processes s Forall0<t < t,x€Q,
P[X, :X]:ZP[X& =x|Xy=y]-P[Xy =y].
yeQ

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics 3 4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics

What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

Rice Pasta Potato

0 1/2 1/2 Rice
P=11/4 0 3/4| rasta

3/5 2/5 0

Potato

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics 5

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on Q = {1,...n} is given by
P(1,1) ... P(1,n)
P=|
P(n,1) ... P(n,n)
ot = (p'(1),0'(2),. .., p'(n)): state vector at time t (row vector).
= Multiplying p' by P corresponds to advancing the chain one step:

P =>_p""(x)-P(x,y) andthus p'=p""-P.
jeQ
= The Markov Property and line above imply that for any { > 0
p'=p-P7" andthus P'(x,y)=P[Xi=y | Xo=x].

Thus p'(x) = (uP")(x) and so p' = pP' = (uP'(1), uP'(2),..., uP'(n)).

= Everything boils down to deterministic vector/matrix computations
=- can replace p by any (load) vector and view P as a balancing matrix!

)

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics

Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),s, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. -

Example - College Carbs Stopping times:
v “We had rice yesterday” ~ 7:=min{t>1: Xi_1 = “rice”}
x “We are having pasta next Thursday”

For two states x, y € Q we call h(x, y) the hitting time of y from x:

h(x,y) :=Ex[ry] =E[7y | Xo = x] wherery =min{t>1:X;=y}.
S

[Some distinguish between 7,7 = min{t > 1: X; = y} and 7, = min{t > 0: X; = y}]

— A Useful Identity

Hitting times are the solution to a set of linear equations:

hoy) " ST P(x,z)-h(zy) Yx#yeq.
zeQ\{y}

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics 7

Outline

Irreducibility, Periodicity and Convergence

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence

Irreducible Markov Chains

A Markov Chain is irreducible if for every state x € Q there is an integer k > 0
such that P¥(x, x) > 0.

1/4 1/4

3/4

1 3/4 1 3/4
2/5
2/5

3/5 1/4 3/5 @'Q 1

v irreducible x not-irreducible (thus reducible)

Finite Hitting Time Theorem

For any states x and y of a finite irreducible Markov Chain h(x, y) < oc.

Stationary Distribution

A probability distribution = = (7(1),...,w(n)) is the stationary distribution of
a Markov Chain if 7P = = (7 is a left eigenvector with eigenvalue 1)

College carbs example:

4 4 5 0 1/2 1/2 4 4 5

w1a1s) e s) T \is1e s
< 3/5 2/5 0

P

= A Markov Chain reaches stationary distribution if p' = 7 for some t.
» If reached, then it persists: If p! = 7 then p'** = 7 for all k > 0.

Existence and Uniqueness of a Positive Stationary Distribution

Let P be finite, irreducible M.C., then there exists a unique probability
distribution 7 on Q such that # = 7P and =(x) = 1/h(x, x) > 0, Vx € Q.

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 10

Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{f > 1: Pf(,x >0} =1.
» Otherwise we say it is periodic.

1/2 1/2

1/2
1/2 1/2 1/2 1/2 1/2 1/2
1/2
1/4 1/2
v Aperiodic x Periodic

A Exercise: Which of the two chains (if any) are aperiodic?

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence

Convergence Theorem

Ergodic = Irreducible + Aperiodic]

Convergence Theorem
Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution 7. Then for any x,y € Q,

. t
lim Py, = my.
tooo Y y

= mentioned before: For finite irreducible M.C.s 7 exists, is unique and

7Ty = L > 0.
h(y,y)

= We will prove a simpler version of the Convergence Theorem after
introducing Spectral Graph Theory.

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 12

Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

/ 0000 \
0.000 0.000
0.000 0.000
0.000 Step: 0
0.000 0.000

0.000

Convergence to Stationarity (Example)

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

'/ 0.000 .\:

0.000 0.062

_- O

0.000 0.250

0.000 Step -2 0375

0.000

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13

Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=1

:/ 0.083 .\D

0.069 0.098

- =

0.058 0.109

J \m

0.054 Step: 25 0113

o o

0.058 0.109

= =

0.098

0.083

Convergence to Stationarity (Example)

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

I:l/ 0.083 \:l
0.081 0.086

0.079 0.088

0078 Step: 50 e

0.079 0.088

0.081 \:l/ 0.086
0.083
4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13

Outline

Total Variation Distance and Mixing Times

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 14

How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

x |1 2 3 4 5 6

P[A=x] | 1/3 | 112 | 1A2 | 1A2 | 112 | 1/3
P[B=x| | 1/4 | 1/8 | 1/8 | 1/8 | 1/8 | 1/4
P(C—x| |1/6 | 1/6 | 1/8 | 1/8 | 1/8 | 9/24

= Question 1: Which dice is the least fair? Most of you choose A. Why?

= Question 2: Which dice is the most fair? Dice B and C seem “fairer”
than A but which is fairest?

_[We need a formal “fairness measure” to compare probability distributions!]

P [= X]
-]
-]
@
©
- -]
-]
o 0
4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 15

Total Variation Distance

The Total Variation Distance between two probability distributions 1 and 7 on
a countable state space Q is given by

=l = 3 7) = ().

wEN

Loaded Dice: let D = Unif{1,2,3,4,5,6} be the law of a fair dice:

1 1 1 1 1 1
”D‘”w—2<26‘3+4%‘1J>—3

1 1 1 1 1 1
|DBN—2(264 +4‘6 8‘) 3

1 1 1 1 9 1
Dcw—z<3es+% zJ)—s

Thus
|D-B|,=|D-Cl, and |[D-Bl,,||D-Cl, <|D—Al4-

So Ais the least “fair”, however B and C are equally “fair” (in TV distance).

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
* Let i be a prob. vector on Q (might be just one vertex) and t > 0. Then

P,:=P[Xi="|Xo~pu],

is a probability measure on .
= For any p,

HPL—ﬁ P.—

< max‘
tv XEN

tv

Convergence Theorem (Implication for TV Distance)

For any finite, irreducible, aperiodic Markov Chain

=0.

tv

t
P, —

lim max‘
t—oo XEQ

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 16

~-
[We will see a similar result later after introducing spectral techniques!]

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 17

Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time N
The Mixing time 7x(e) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

7x(€) = min {t: ‘

t
P, —7

and,
T(e) = max 7x(€).

» This is how long we need to wait until we are “=-close” to stationarity
= We often take ¢ = 1/4, indeed let tyy := 7(1/4)

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 18

Outline

Application 1: Card Shuffling

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 19

What is Card Shuffling?

Source: wikipedia

[Here we will focus on one shuffling scheme which is easy to analyse.]

v

How long does it take to shuffle a deck of 52 cards?

A\
[How quickly do we converge to the uniform distribution over all n! permutations?]

Markov Chains and Algebra.

& <p
%@ His research revealed beau-
7, A tiful connections between
‘ \ ! (‘

Persi Diaconis (Professor of Statistics and former Magician)

Source: www.soundcloud. com

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 20

The Card Shuffling Markov Chain

ToPTORANDOMSHUFFLE (Input: A pile of n cards)

1: Fort=1,2,...
2: Pick i € {1,2, ..., n} uniformly at random
3 Take the top card and insert it behind the i-th card

N
[This is a slightly informal definition, so let us look at a small example...]

3 II
III <We will focus on this “small” set of cards (n = 8) }

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 21

[Even if we know which set of cards come after 8, every permutation is equally likely!]

~» the deck of cards is perfectly mixed after the last card
“8” reaches the top and is inserted to a random position!

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 22

Analysing the Mixing Time (Intuition)

~» deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability ‘5 at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
* One final step to randomise card “n” (with probability 1)

This is a “reversed” coupon collector process
with n cards, which takes nlog n in expectation.

[Using the so-called coupling method, one could prove tqix < nlogn.]

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling

23

Analysis of Riffle-Shuffle

—— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

The Annals of Applied Probability
1992, Vol. 2, No. 2, 204-313

a 819 [0 [J g K TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR
D2 (@) (@ @ (¢ e |@|e|®|le L
By DAVE BaYEr' AND PERs1 Diaconis?
b Columbia University and Harvard University
We analyze the most commonly used method for shuffling cards. The
A 2 3 2[5 ‘main result is a simple expression for the chance of any arrangement after
c r ® ® o |® any number of shuffies. This is used to give sharp bounds on the approach
9 10] J 3 K to randomness: £ log n + 8 shuffles are necessary and sufficient to mix up
® o||le ® @ ® n cards.
Key ingredients are the analysis of a card trick and the determination of

d 8][9 10| [4](5][J][6 8 K the idempotents of a natural in the
LN ENENED Q| o || |@ @ group algebra.

t | 1 2 3 4 5 6 7 8 9 10

|[PT— |l | 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Figure: Total Variation Distance for t riffle shuffles of 52 cards.

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 24

Outline

Application 2: Markov Chain Monte Carlo (non-examin.)

4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.)

25

A Markov Chain for Sampling Independent Sets (1/2)

S = {1,4} is an independent set v

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).

How can we take a sampl\e&m the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!

4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.) 26

A Markov Chain for Sampling Independent Sets (2/2)

INDEPENDENTSETSAMPLER
1: Let Xp be an arbitrary independent setin G
2. Fort=1,2...:
3: Pick a vertex v € V(G) uniformly at random
4: If v € X; then Xiq < X;\ {v}
5: elif v ¢ X; and X; U {v} is an independent set then X; 1 < X; U {v}
6: else X1 < X

Xo ={1,4}

X1 ={1,4,8} Xi={1,4}

4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.) 27

A Markov Chain for Sampling Independent Sets (2/2)

INDEPENDENTSETSAMPLER
1: Let Xy be an arbitrary independent setin G
2. Fort=1,2...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X1 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X; 1 < X; U {v}
else X;.1 <+ X;

o g »

Remark

= This is a local definition (no explicit definition of P!)

» This chain is irreducible (every independent set is reachable)

* This chain is aperiodic (Check!)

» The stationary distribution is uniform, since P,,v = P, (Check!)

N
A

N\

1\

[Key Question: What is the mixing time of this Markov Chain?]

[not covered here, see the textbook by Mitzenmacher and Upfal

4. Markov Chains and Mixing Times © T. Sauerwald Application 2: Markov Chain Monte Carlo (non-examin.) 27

Outline

Application 2: Ehrenfest Chain and Hypercubes

Randomised Algorithms
Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

UNIVERSITY OF

CAMBRIDGE
5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes 2
The Ehrenfest Markov Chain Analysis of the Mixing Time
Ehrenfest Model
n i _ 7
A simple model for the exchange of molecules Prg =% (Non-Lazy) Random Walk on the Hypercube
between two boxes T
= We have d particles labelled 1,2, ..., d | = For each particle an indicator variable = Q = {0,1}7
= At each step a particle is selected uniformly at ® e : © * At each step: pick a random coordinate in [d] and flip it
random and switches to the other box @@ Qi o N
= [fQ={0,1,...,d} denotes the number of ® | ® Problem: This Markov Chain is periodic, as the
particles in the red box, then: ____“ number of ones always switches between odd to even!
X d—x Pre = % - \ = .
Pyx_1= 5 and Py xi1 = g [Solutlon: Add self-loops to break periodic behaviour!]
Lazy Random Walk (1st Version) Lazy Random Walk (2nd Version)
Let us now enlarge the state space by looking at each particle individually! = Ateachstept=0,1,2... = Ateachstept=0,1,2...
= Pick a random coordinate in [d] = Pick a random coordinate in [d]
Random Walk on the Hypercube = With prob. 1/2 flip coordinate. = Set coordinate to {0, 1} uniformly.
= For each particle an indicator variable = Q = {0,1}¢ g
= At each step: pick a random coordinate in [d] and flip it — \/
o These two chains are equivalent!

5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes 3 5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes 4

Example of a Random Walk on a 4-Dimensional Hypercube

t Coord. Xi
0 2 0 0 0 O
R
1 3 0O 1 0 O
@ 2 3 0 1 0 O
3| 4 01 10
4 2 o 1 1 1
2
5 4 o 1 1 1
: 6 2 0O 1 1 0
7 4 00 10
Once all coordinates have been picked at least 8 3 0O 0 1 0
once, the state is uniformly at random in {0,1}¢.
72 1 0O 0 1 O
Coupon Collector ~ mixing time should be O(d log d
[()] 10 | done! 0 0 1 0
(We won'’t formalise this argument (3 related exercise question)j
5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes

Total Variation Distance of Random Walk on Hypercube (d = 22)

0.4

1Px = 7l

0.2}

dlogd ~ 68.00 |
0 20 40 60 80 100

5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes

Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

1

0.8
0.6
>

0.4+

0.2+

0 1
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10"

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 102
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:
= Distance remains close to its maximum value 1 until step %nlog n—0(n)
= Then distance moves close to 0 before step %n log n+ ©(n)

5. Hitting Times © T. Sauerwald Application 2: Ehrenfest Chain and Hypercubes

Outline

Random Walks on Graphs, Hitting Times and Cover Times

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

() = deg(u)

and = E]

1 .
P(u,v) = { %@ it{uv} £,
0 if {u,v} ¢ E.

[Recan: h(u,v) = Ey[min{t > 1: X; = v}] is the hitting time of v from u.]

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

9 .
Taem T{U, v} E€E,

P - SRW matrix

5 _Ji Lo
Puv = 2 ifu= ‘_/’ I - Identity matrix.
0 otherwise

Fact: For any graph G the LRW on G is aperiodic.

1
2

nI—=

1 1
2 4

SRW on C4, Periodic LRW on Cq4, Aperiodic

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 10

Outline

Random Walks on Paths and Grids

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
o (o3 o Q o (o3 @
O o
(o] o
L
o) o FT o
o Q
o o

2 ”

“A drunk man will find his way home, but a drunk bird may get lost forever.”
£S5

[But for any regular (finite) graph, the expected return time to uis 1/7(u) = n]

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 12

SRW Random Walk on Two-Dimensional Grids: Animation

Random Walk on a Path (1/2)

For animation, see full slides.

The n-path Pj is the graph with V(P,) = [n] and E(P») = {{i,j} :j =i+ 1}.

X
O—0—~0—~CE—~0©

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k < n.

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 13

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hy) "= N h(zy) - Px,z) Yx#yelV.
ze\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

f(k—1) . flk+1)
2 2
System of n independent equations in n unknowns, so has a unigue solution.

fori <k<n-1.

f(0)=1+f(1) and f(k)=1+

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
fO)=1+f1)=1+n"—12=n?,

and for any 1 < k < n— 1 we have,

2 _ 2 2 2
f(k):1—|—n (k—1) L7 (k+1) - 0
2 2
5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 15

Outline

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 V72V73)A (71\/73)/\ (X1 V Xo \/X4)/\ (X4V73)/\ (X4V71)
Solution: Xy = True, x> — False, X3 =False and x4 = True.

= If each clause has k literals we call the problem k-SAT.
* In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:
— Model checking and hardware/software verification
— Design of experiments

— Classical planning

— ...

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 17

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
: Start with an arbitrary truth assignment
. Repeat up to 21 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

QRN

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
* Let a be any solution and X; = |variable values shared by A; and «.
Example 1 : Solution Found

(x1 VX)) A(GVX3)A (X1 VX)) A(Xa VX3) A (Xa V X7)
T F F T T T T T T F

o= (T,T,F,T).

Lt [[] x| x]

0 F F F F

1 F T F F

2 T T F F

O—0—@—@—@® Ll
5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 18

2-SAT

RANDOMISED-2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n° times
3 Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «.
Example 2 : (Another) Solution Found

aVX)ATVXE) AV X)A (X V X3) A (Xa V X7) o = (T,F,F,T).

T F F T T T T F T F
Lt [xa]x|x]x]
0 F F F F
1 F F F T
2 F T F T
O—0—@—6—0® Ghan
5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 19

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution «, thenforany i > 0and 1 < k< n-1,

(i) P[Xis =1]X =0]=1

(i) P[Xpn=k+1 | Xi=k]>1/2
(i) P[X =k —-1| Xi= k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The stochastic process X; is complicated to describe in full; however by

(i) — (iii) we can bound it by Y; (SRW on the n-path from 0). This gives

E [time to find sol] < Eq[min{t : X; = n}] < Eo[min{t: Y; = n}] = h(0, n) = r*.
U

Proposition _[Running for 2n? time and using Markov’s inequality yields:
[

Provided a solution exists, RANDOMISED-2-SAT will return a valid solu-
tion in O(n?) time with probability at least 1/2.

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 20

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, [% - log n| repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e™” for all real p. Let t = [% log n] and observe

P[trunsallfail] < (1 — p)'
<e™”
c

<n"

thus the probability one of the runs succeeds is at least 1 — n~C.

RANDOMISED-2-SAT

There is a O(n? log n)-time algorithm for 2-SAT which succeeds w.h.p.

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT

21

Randomised Algorithms
Lecture 6: Linear Programming: Introduction

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

] UNIVERSITY OF
CAMBRIDGE

Outline

Introduction

6. Linear Programming © T. Sauerwald

Introduction

Introduction

Al

fus
m ﬂ;}
© ©(8,4,0) % /r! /j ol
0 (8.25,0,1.5) & 28 ¢
27.75 " 3
-~ x i P e

L]
@/ w

= linear programming is a powerful tool in optimisation

= inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

= we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

6. Linear Programming © T. Sauerwald Introduction

Outline

A Simple Example of a Linear Program

6. Linear Programming © T. Sauerwald

A Simple Example of a Linear Program

What are Linear Programs?

Linear Programming (informal definition)

= maximise or minimise an objective, given limited resources
(competing constraint)

= constraints are specified as (in)equalities
= objective function and constraints are linear

6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program

A Simple Example of a Linear Optimisation Problem

= Laptop “ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

W ==
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: W W W
= glass: 20 units
= copper: 10 units . ool alle alleale ale ale ale ale ale o
= rare-earth elements: 14 units P alealeale
= (and enough of everything else...)
How to maximise your daily earnings?
6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program 6

The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4.x4 + X2 < 20
2X1 + X2 < 10
Xy + 2% < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule.]—

Formal Definition of Linear Program

= Given ay, a, ..., an and a set of variables xi, xo, ..., xp, a linear
function f is defined by

f(x1,x2,...,xn):a1x1 —+ aXo + - - - 4+ anXn.

= Linear Equality: f(x1,X2,..., X)) = b

Linear Constraints
» Linear Inequality: f(x1, X, ..., Xa) b {]

» Linear-Progamming Problem: either minimise or maximise a linear
function subject to a set of linear constraints

6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program

Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4xq + X2 < 20
2X1 + X2 < 10
X1 + 2X < 14
X1, X2 > 0
N

all constraints is a feasible solution

[Any setting of x; and x» satisfying J

Question: Which aspect did we ignore in the formulation of the
linear program?

6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program 8.1

Finding the Optimal Production Schedule

maximise X+ X2 x1 >0

subject to
4 + X2 < 20
2X1 + Xo < 10
X1 + 2X < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program 8.2

Outline

Formulating Problems as Linear Programs

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t ¢ V

= Goal: Find a path of minimum weight
fromstotin G
N

I X

[p = (Vo = S V,..., VW% = t) such that}

w(p) = 3K, w(vk_1, v) is minimised.

Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise ai all these inequalities are satisfied.
subject to =
Yy d < d, + w(u,v) foreachedge (u,v)e€E,
- - d = 0.
this is a maximi- ~_
[Sa“o” prodEl Solution d satisfies d, = miny. (u,v)ce{du + w(u, v)}]

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs 10

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) =0 if (u,v) & E), pair of vertices s,t € V

» Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
® ® ® ®

Maximum Flow as LP

maximise Zvev for — Zvev fus
subject to
fw < c(u,v) foreachu,veV,
Yveviu = > ,eyfw foreachue V\ {s,t},
> 0 foreachu,veV.

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem £
= Given: directed graph G = (V, E) with capacities ¢ : E — R*, pair of
vertices s, t € V, cost function a: E — R™, flow demand of d units

= Goal: Findaflow f: V x V — R from s to { with |f| = d while
minimising the total cost >, ¢ a(u, v)fu incurrred by the flow.

u,v

[Optimal Solution with total cost:

2uwyee @Us V) = (2-2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to . (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to 7. For each edge, the flow and capacity are written as flow/capacity.

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs

Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise > wwyee AU, V)fuy
subject to
fw < c(uv) foruveV,
Yoveviu =D eyfr = 0 forue V\ {s,t},
Yvevlv = Xevhs = d,
fw > 0 foru,ve V.

Real power of Linear Programming comes
from the ability to solve new problems!

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs

Outline

Standard and Slack Forms

6. Linear Programming © T. Sauerwald Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximise » gx; {Objective Function]
j=1

subject to

n
E ajx; < b; fori=1,2,....m
j=1

)

n+ m constraints]7

Xxi >0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximise
subject to

c'x {Inner product of two vectors]

Ax<b {Matrix-vector product]
x>0

6. Linear Programming © T. Sauerwald Standard and Slack Forms

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program

which is in standard form

/1

[Equivalence: a correspondence (not necessarily a bijection) between solutions.]

6. Linear Programming © T. Sauerwald Standard and Slack Forms 16

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise -2x1 + 3%

subject to
X1 =+ Xo = 7
X1 — 2X2 < 4
X1 > 0

Negate objective function

<-----

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2x1 — 3x
subject to
Xq + Xo = 7
Xq — 2X2 < 4
X > 0]

Replace x> by two non-negative
variables x} and x5’

<-----

maximise 2x; —
subject to
X1+ X, = x| = 7
X — 23 + 2x5| < 4
X1, X5, X3 > 0]
6. Linear Programming © T. Sauerwald Standard and Slack Forms 18

maximise 2x1 — 3x
subject to
Xq + X2 = 7
Xy — 2x < 4
X1 > 0
6. Linear Programming © T. Sauerwald Standard and Slack Forms 17
Converting into Standard Form (3/5)
Reasons for a LP not being in standard form:
3. There might be equality constraints.
maximise 2 - 3 + 3x
subject to
x + x4 - x = 7]
Xy — 2x% + 2x < 4
X, Xg, X3/ > 0
I
' Replace each equality
\:(by two inequalities.
maximise 2 — 3x + 3x)
subject to
Xy + x5, - xy < 7
X+ x5 - x5 > 7
Xy — 2x3 + 2x5 < 4
X1, X2/’ Xé/ > 0

6. Linear Programming © T. Sauerwald Standard and Slack Forms 19

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise
subject to

maximise
subject to

2xy — 3x, + 3xy
X+ x5 — x5 < 7
o + xb - x> 7]
X1 — 23 + 2x5 < 4
X1, X5, X5 > 0
I
I
i Negate respective inequalities.
|
\4
2 3 ! 1!
X1 — X2 + 3
X+ x5 — x5 < 7
- X, + X < -7
Xy — 2x3 + 2x5 < 4
X1, X5, X5 > 0

Converting into Standard Form (5/5)

6. Linear Programming © T. Sauerwald

Standard and Slack Forms

20

[Rename variable names (for consistency).]

N
maximise 2x; — 33X + 3x3
subject to
X1+ Xo — X3 <
-X1 - Xo + X3 <
X1 — 2% + 2x3 <
X1, X2, X3 >

6. Linear Programming © T. Sauerwald Standard and Slack Forms

21

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

J

Introducing Slack Variables

[

S measures the slack between
the two sides of the inequality.

= Let Z;; ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—> ax
=1
s>

= Denote slack variable of the i-th inequality by x,;

Converting Standard Form into Slack Form (2/3)

6. Linear Programming © T. Sauerwald

Standard and Slack Forms

22

maximise 2x7 — 3x + 3x3
subject to
X1+ X2 — X3 <
-xi - X + X3 <
Xy — 2% + 2x3 <
X1, X2, X3 >

<-----

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 — X1 — Xo
X5 = -7 + X1+ X2
X6 = 4 — Xy + 2X
X1, X2, X3, X4, X5, Xp > 0

Introduce slack variables

|

X3

6. Linear Programming © T. Sauerwald Standard and Slack Forms

23

Converting Standard Form into Slack Form (3/3) Basic and Non-Basic Variables

z = 2Xq — 3x2 + 3x3
X4 = 7 - X1 - X2 + X3
X5 = -7 4+ xx + X - X3
maximise 2x; — 3x2 + 3x3 Xe = 4 - Xy + 2% - 2x3
subject to
X« = 7T - x5 - x + X [BasicVariabIes:B:{4,5,6}] [Non-BasicVariabIes:N:{1,2,3}]
X5 = -7 + X1+ Xo - X3
X6 = 4 — Xq + 2X — 2X3
X1,X2,X?,X4,X5,X6 > 0

Slack Form (Formal Definition)
! Use variable z to denote objective function

k © . Slack form is given by a tuple (N, B, A, b, ¢, v) so that
v and omit the nonnegativity constraints.

z = 2x1 — 3x + 3x | zZ=V+ Z GiX;
Xy = 7 - X7 — Xo + X3 JEN
Xs = -7 + X1 + Xo — X3 Xi = bj — Z ajiX; fori € B,
X6 = 4 — Xy + 2X — 2X3 JEN
/1

and all variables are non-negative. N
4[Variables/Coefficients on the right hand side are indexed by B and N.]

[This is called slack form.]

6. Linear Programming © T. Sauerwald Standard and Slack Forms 24 6. Linear Programming © T. Sauerwald Standard and Slack Forms 25

Slack Form (Example)

x = 8 + ¥ + 2 - %
x4:18—%+)§5

Slack Form Notation
* B={1,2,4}, N={3,5,6}

a3z ais e -1/6 -1/6 1/3
A=|axs as as| = 8/3 2/3 —-1/3
asz Aass Qs 1/2 —1 /2 0

b1 8 C3 —1 /6
b= b2 = 4 , C=\|C | = —1 /6
8)- () () (25)

" v =28

6. Linear Programming © T. Sauerwald Standard and Slack Forms 26

Randomised Algorithms
Lecture 7: Linear Programming: Simplex Algorithm

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

UNIVERSITY OF
CAMBRIDGE

Outline

Simplex Algorithm by Example

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic Idea:
» Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while

the objective value will not decrease <[|n that sense, it is a greedy algorithm.

= Conversion (“pivoting”) is achieved by switching the roles of one

basic and one non-basic variable

Extended Example: Conversion into Slack Form

maximise 3x1 + Xo +
subject to

Xi + X2 +

2x1 + 2x2 +

4 + X +

X1, X2, X3

|

1

\Z

z =

X4 = 30
X5 = 24
X6 = 36

2X3

3X3
5X3
2X3

IV IAIAIA

30
24
36

0

Conversion into slack form

3X1

X1
2X1
4x4

+

X2
X2
2X2
X2

|

2X3
3X3
5X3
2X3

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example 3

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

Extended Example: lteration 1

z =
X, = 30 -—
Xs = 24 —
X6 = 36 —

A

3x1 + X2+

X1 - X2 —
2X1 — 2X2 —
4x; — X2 -

[Basic solution: (¥7,%, ..., X3) = (0,0,0,30, 24, 36)]

/|

[This basic solution is feasiblej [Objective value is 0.]

~

2X3
3X3
5X3

2X3

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

Extended Example: lteration 1

[Increasing the value of x4 would increase the objective value.]

v
z = 31 + X2 + 2x3
X2 = 30 — X1 — X2 — 3x3
Xs = 24 — 2X1 — 2X2 — 5x3
X = 36 — 4x; - Xo — 2X3

N

[The third constraint is the tightest and limits how much we can increase x;]

N

-
Switch roles of x; and xs:
» Solving for x; yields:

_g_Xe_ X3 _ X
=9-F -5

= Substitute this into x¢ in the other three equations
&

N

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

Extended Example: lteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 27 + % 4 g_%
X5:6—%—4X3+%
N

[Basic solution: (X1, X2, . . .

,X6) = (9,0,0,21,6,0) with objective value 27)

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example

5.3

Extended Example: Iteration 2

z = 27 + 2 4 g_%
X5:6—%—4X3+%
N

[The third constraint is the tightest and limits how much we can increase x3.]

A\N

(Switch roles of x; and xs:
= Solving for x3 yields:

X_§_%_E_&
*~ 278 a4 &

= Substitute this into x3 in the other three equations
(.

~

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

5.4

Extended Example: lteration 3

[Increasing the value of x, would increase the objective value.]

N
x;;:%_%_%_,_%
X4=%+%+%7f—%

N

)29 4

[Basic solution: (X, Xz, ..., %) = (2,0, 3

& 0,0) with objective value 1} = 27.75]

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example 5.5

Extended Example: lteration 3

- 111 X _ x _ 1lx
Z = 4 * 18 8 16
- 38 _ X X5 _ 5%
o= 7 6 + B 16
_ 3 _ 3 _ X5 X6
¥ = 3 8 4 * 3
_ 69 3xp 5Xs X
= 4 Tt 5 T 78 16
™N
[The second constraint is the tightest and limits how much we can increase xz.]
()
Switch roles of x> and x3:
» Solving for x, yields:
o 8X3 2X5 X6
e=4-3 -3 3
= Substitute this into x; in the other three equations
& J

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

5.6

Extended Example: lteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
X1=8+%+%7%
X4=18—%+%

N

[Basic solution: (X1, X2, ..., Xs) = (8,4,0,18,0,0) with objective value 28 j

7. Linear Programming © T. Sauerwald

Simplex Algorithm by Example 5.7

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ‘ e (8,4,0)
0 (8.25,0,15) @ 28
27.75
Xq
0.0.0)
27

Exercise: How many basic solutions (including non-feasible
ones) are there?

VAN

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

Extended Example: Alternative Runs (1/2)

2X3
3Xx3
5x3
2X3

z = 3Xx4 + Xo +
X4 = 30 — X1 — Xo —
X5 = 24 — 2x — 2Xo —
Xp = 36 — TLX1 — X2 —
! Switch roles of x, and xs
\4
z = 12 + 2x - % -
- _ _ 54 _
X2 = 12 Xq)
X4 = 18 — X2 — X3 +
Xs = 24 — 3x + % +
|
I Switch roles of x; and xg
\4
_ _ X3 _ X5 _
z = 28 6 6
_ X3 X5 _
X = 8 + s 6
_ _ X3 X5
X4 = 18 5 + >

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

X3

X4

Extended Example: Alternative Runs (2/2)

—_

z = 3xy + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2xq — 2Xo — 5x3
Xe = 36 — 4x4 — Xo — 2X3

|
! Switch roles of x3 and x5

_ 48 11x4 Xo _ 2Xs
z = 5 *t 5 * 7 5
X X X
x = B 5 R
_ 24 2x; 2% Xs
¥ = B - 5 - -
o132 18y ox 2x;
X = 5 5 5 T 75
Switch roles of x; and xg _ -~~~ T~ ~~___ Switch roles of X, and x3
<~ T
11 X2 X5 11X X Xe
Tt % - % ~ 1% z = 28 - F - F -
33 x x5 _ 5% _ X3 X5 _
T i t 3 16 x = 8 + F + %
3 3xa X5 Xe _ 8x: 2Xs
5 - & - 3 +t % X o= 4 - 5F - F 4+
69 3x2 5X X = _ X3 X5
¢ *t F& t 7B 16 X 18 2t 2

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example

Outline

Details of the Simplex Algorithm

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm

The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

// Compute the coefficients of the equation for new basic variable x,.
let A be anew m X n matrix

ge = bl/ale

for each j € N — {e} (Need that g, # 0!
Ziej = alj/ale -

ael = l/ale

Rewrite “tight” equation
for enterring variable xe.

// Compute the coefficients of the remaining constraints.
foreachi € B —{/}

bi = b; —a;.b,

for each j € N — {e}

Aij = ajj — Qjelle;

ail = _aieael
// Compute the objective function.
D = v+ cob,
for each j € N — {e}

Cj = ¢j = Cel;

Substituting xe into
other equations.

Substituting xe into
objective function.

Z;l = _ceael

// Compute new sets of basic and nonbasic variables.

N =N-—{euil} Update non-basic
B = B—{l}U{e} and basic variables

return (]\7,1?,2,}?, c,D)

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X; = 0 for each j € N.
2. Ye - b//ale.
3. X; = b — aibs for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = Bi — ZEUX/,
jeN
we have X; = b; for each i € B. Hence Xe = be = bj/a.
3. After substituting into the other constraints, we have

Y,' = B/ = b,’ — a;eBe. O

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm

Formalizing the Simplex Algorithm: Questions

Questions:
* How do we determine whether a linear program is feasible?
= What do we do if the linear program is feasible, but the initial basic

solution is not feasible?
= How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

[Example before was a particularly nice one!]

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 12

The formal procedure SIMPLEX

1 (N, B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) &4 feasible basic solution (if it exists)

SIMPLEX (4, b, ¢) { Returns a slack form with a
2 let A be_anew vector of length m

]

3, while some index j € N has c; >0

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
2 let A be a new vector of length m
3 while some index j € N hasc; > 0

4 choose an index e € N for which ¢, > 0
5 for each index i € B

6 ifa;, >0

7 A; = bifai.

8 else A, = ©

9 choose an index / € B that minimizes A;
10 if A; == 00
11 return “unbounded”

‘ \ N aye——

4 : choose an index e € N for which ¢, > 0 1 Main Loop:

5, for each index i € B : = terminates if all coefficients in

6! ifa;, >0 | objective function are negative

1
7 A; = bifaie :< ® Line 4 picks enterring variable
8 : else A; = c© 1 Xe With negative coefficient
. L _ .

9 : 'choose an index [€ B that minimizes A; X * Lines 6 — 9 pick the tightest
10| if A; == oo ! constraint, associated with x;
11, return “unbounded” : e -
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1 ine 11 returns “un SuCECR

N e R there are no constraints
13 fori = 1ton
14 ifi € B ® Line 12 calls P1voT, switching
15 X = b L roles of x; and xe
16 elsex;, =0

17 return (%1, %z, ..., %) ﬁ Return corresponding solution.]

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm

13.1

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. for each i € B, we have b; > 0,

3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 !,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm 13.2

Outline

Finding an Initial Solution

7. Linear Programming © T. Sauerwald

Finding an Initial Solution 14

Finding an Initial Solution

maximise 2x1 — Xo
subject to
2X1 — Xo < 2
Xy — 5x < -4
X1)X2 2 0
|
i Conversion into slack form
v
z = 2xy — Xo
X3 = 2 — 2X1 —+ X2
Xy = -4 - X1 4+ 5x
N

[Basic solution (x1, X2, X3, X4) = (0, 0,2, —4) is not feasiblelj

7. Linear Programming © T. Sauerwald Finding an Initial Solution 15

Geometric lllustration

maximise 2x1 — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2
X2

2
—4 | Questions:

0 * How to determine whether
there is any feasible solution?

IV IAIA

= |f there is one, how to determine
A an initial basic solution?

X1

7. Linear Programming © T. Sauerwald

Finding an Initial Solution 16

Formulating an Auxiliary Linear Program

maximise Y7 GX;

subject to
Siiap < b fori=1,2,....m,
X > 0 forj=1,2,...,n
| Formulating an Auxiliary Linear Program
v
maximise —Xo
subject to
Shiaix—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xp) satisfy L. [

7. Linear Programming © T. Sauerwald Finding an Initial Solution 17

« Let us illustrate the role of xg as “distance from feasibility”
« We'll also see that increasing xg enlarges the feasible region

7. Linear Programming © T. Sauerwald Finding an Initial Solution 18

Geometric lllustration

maximise —Xo
subject to
2x1 — X2 — X < 2
X1 — 5X2 — Xo < -4
Xo, X1, X2 > 0
For the animation see the full slides.
7. Linear Programming © T. Sauerwald Finding an Initial Solution 19

Now the Feasible Region of the Auxiliary LP in 3D

7. Linear Programming © T. Sauerwald Finding an Initial Solution 20

« Let us now modify the original linear program so that it is not
feasible

= Hence the auxiliary linear program has only a solution for a
sufficiently large xp > 0!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 21

Geometric lllustration

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, x; = b fori € B, X; = 0 otherwise.

1 let k be the index of the minimum b;

=—
2 ifh >0 // is the initial basic solution feasible?
3 return ({1,2,..., ny,{n+1,n+2,....,n+m}, A,b,c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x, - - -
let (N, B, A, b, c,v) be the resulting slack form for L,,, £ will be the leaving variable so
I =n+k that x, has the most negative value.

5

6

7 /I Ly hasn + 1 nonbasic variables and m basic variables.

g (N.B,A.b.c.v) = PIVOT(N. B. 4.,b,¢,.1,0) ‘(Pivot step with x, leaving and X, entering.]
0

// The basic solution is now feasible for L .
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L, is found

11 if the optimal solution to L,,, sets X, to 0 This pivot step does not change
12 if Xo is basic) ,) the value of any variable.
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic

variable in this objective function by the right-hand side of its

associated constraint
15 return the modified final slack form
16 else return “infeasible”

7. Linear Programming © T. Sauerwald Finding an Initial Solution

maximise —Xo
subject to
2X1 — Xo — X0 < -2
X1 + 5% - x < 4
Xo, X1, X2 > 0
For the animation see the full slides.
7. Linear Programming © T. Sauerwald Finding an Initial Solution
Example of INITIALIZE-SIMPLEX (1/3)
maximise 2x7 — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 S —4
X1, X2 > 0
|
| . e .
! Formulating the auxiliary linear program
\Z
maximise Xo
subject to
2x1 — X X <
Xy — 5% X <
X1, X2, Xo >

Basic solution
(0,0,0,2,—4) not feasible!

Y v

Z =
X3 = 2 — 2X1
X4 = —4 — Xq

X2

+ 5x

Example of INITIALIZE-SIMPLEX (2/3)

y4 = — X0
X3 = 2 — 2X1 + X2 + X0
X4 = -4 - Xq + 5x + X0

!
i Pivot with xo entering and xs leaving
v

7. Linear Programming © T. Sauerwald Finding an Initial Solution

V4 = -4 — X + B - x4
Xo = 4 4+ X — b5x + Xa
ﬂ X3 = 6 — Xq — 4x + Xa
[Basic solution (4,0,0,6,0) is feasible! || _.)))

! Pivot with x, entering and xp leaving
v

V4 = — X0

v - 14 4 99X X

s = 5. 7 5 5 T B

[Optimal solution has xo = 0, hence the initial problem was feasible!]

7. Linear Programming © T. Sauerwald Finding an Initial Solution

Example of INITIALIZE-SIMPLEX (3/3)

V4 = — X0
4 _ Xo X1 X4
T3 Y T
_ 1a A0 _ g1 A4
X = 5 T 3 5 + 3

Set xo = 0 and express objective function
by non-basic variables

[2X1—X2=2X1—(%—Xg°+%1+

ol
N
—/

I

l

v
~N
Z _ _ % + 9X1 _ X4
_ X1 X4
Xo = 5 + 5 + 1Y
X3 _ %4 . 9X1 + X4
1

[Basic solution (0, 7, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

7. Linear Programming © T. Sauerwald Finding an Initial Solution 26

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. isinfeasible, or
3. is unbounded.

N\
AN\

[

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns

“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

1

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

7. Linear Programming © T. Sauerwald Finding an Initial Solution

27

Workflow for Solving Linear Programs

[Linear Program (in any form)]

(Standard Form j

(Slack Form j

—

No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

-

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

7. Linear Programming © T. Sauerwald Finding an Initial Solution 28

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in

polynomial time, i.e., O(m + n)
= In theory: even with anti-cycling may

o

[

need exponential time o*
o~ .\):1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

= Interior-Point Methods: traverses the

interior of the feasible set of solutions
(not just vertices!)

7. Linear Programming © T. Sauerwald Finding an Initial Solution

29

Outline

Appendix: Cycling and Termination (non-examinable)

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable)

30

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1+ X2 + X3

X4 = 8 — X1 — Xo
X5 = X2 — X3

i Pivot with x4 entering and x4 leaving
Y

z = 8 + X3 - X4
X = 8 - X — X
Xs = Xo — X3
[Cycling: If additionally slack form at two] i Pivot with x3 entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! |v
z = 8 4+ X - X2 — X
XX = 8 - X - X
X3 = Xo - X5

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 31

Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable)

32

Termination and Running Time

It is theoretically possible, but very rare in practice.]

NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
AN

LRepIace each b; by bi = bj + ¢;, where ¢; > €ir1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-

bounded or returns a feasible solution in at most (") iterations.

Every set B of basic variables uniquely determines a slack
form, and there are at most (") unique slack forms.

7. Linear Programming © T. Sauerwald

Appendix: Cycling and Termination (non-examinable) 33

Randomised Algorithms

Lecture 8: Solving a TSP Instance using Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

Outline

Introduction

8. Solving TSP via Linear Programming © T. Sauerwald

Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
o)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
» Goal: Find a hamiltonian cycle of G with minimum cost.
O
)
Solution space consists of at most n! possible tours! 3
g

[Actually the right number is (n — 1)!/2]

2+44+1+1=8

——— Special Instances
= Metric TSP: costs satisfy triangle inequality:

equal to their (rounded) Euclidean distance

vu,v,we V: c(u,w) < c(u,

= Euclidean TSP: cities are points in the Euclidean space, costs are

Even this version is
NP hard (Ex. 35.2-2)

v) + c(v, w).

8. Solving TSP via Linear Programming © T. Sauerwald

Introduction 3

Outline

Examples of TSP Instances

8. Solving TSP via Linear Programming © T. Sauerwald

Examples of TSP Instances

33 city contest (1964) 532 cities (1987 [Padberg, Rinaldi])

asssssssssas
Ty

<" HELP! WERE LOST

HERE’S THE CORRECT START...

(©PROCTER & GAMBLE 1%62 OFFICIAL RULES ON REVERSE SIDE

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 5 8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook]) The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,®”* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

AL

i
" {
ISt

!
n

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 7 8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

The 42 (49) Cities

Combinatorial Explosion

O © 00 I D U W

14

. Manchester, N. H.

Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.

. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

15.
16.
17.

Portland, Ore.
Boise, Idaho
Salt Lake City, Utah

18.
19.
20.
21.
22.

24.
25.
26.
27.
28.
29.

30.

31.
32,

Carson City, Nev.
Los Angeles, Calif.
Phoenix, Ariz.
Santa Fe, N. M.
Denver, Colo.

. Cheyenne, Wyo.

Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.

Oklahoma City, Okla.

Dallas, Tex.
Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.

. New Orleans, La.

34. Birmingham, Ala.
35. Atlanta, Ga.

36. Jacksonville, Fla.
37. Columbia, 8. C.
38. Raleigh, N. C.
39. Richmond, Va.
40. Washington, D. C.
41. Boston, Mass.
42. Portland, Me.

A. Baltimore, Md.
B. Wilmington, Del.

C. Philadelphia, Penn.

D. Newark, N. J.
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

& WolframAlpha

(@212 ol

5 NATURAL LANGUAGE | [MATH INPUT B EXTENDED KEYBOARD

XAMPLES £ UPLOAD 34 RANDOM

Input

1
s@2-!
2

Result
16726263 306581903 554085 031 026720375 832576 000000000
Scientific notation

1.6726263306581903554085031026720375832576 x 10*

Number name Fullname
16 quindecillion

Number length

50 decimal digits

Alterative representations. More
1 r42)

S@2-n=—

2 2

1 42,0

—@-nr= ——

2 2

1 (1),

—@2-nr= —2

2 2

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 9
Solution of this TSP problem
Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.
http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 11

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 10
[Hence this is an instance of the Metric TSP, but not Euclidean TSP.]
2 8 TABLE I
i 39 45 Roap Disrances BETWEEN CITIEs IN ApJusTED UnITS
HIEA The figures in the table are mileages between the two specified numbered cities, less 11,
6| b1 62 divided by 17, and rounded to the nearest integer.
1 62 21 20 17
7| 8 6o 16 17 18 6
8| 39 60 15 20 26 17 1o
9| 62 66 256 25 31 22 15 §
10| 81 81 40 43 50 41 35 23 20
11] 103107 62 67 72 63 §7 46 41 23
12| 108 117 66 71 77 68 b1 1 46 26 11
13| 145 149 104 108 114 106 99 88 84 63 49 40
14| 181 185 140 144 150 142 135 124 120 99 85 76 35
15| 187 191 146 150 136 142 137 130125 105 90 81 41 10
16| 161 170 120 124 130 115 110104 10§ 90 72 64 34 31 2
17142 146 101 104 111 g7 91 85 86 75 51 59 29 53 48 21
18174 178 133 138 143 129 123 117 118 107 83 84 54 46 35 26 3
19 185 186 142 133 140 130 126 124 128 118 93101 72 b9 §8 8 43 26
20| 163 165 120 123 124 106 106 105 110 To4 86 g7 71 93 B2 62 42 45 22
21|137139 94 96 94 80 78 77 84 77 56 64 65 go 87 8 36 68 50 30
2[117132 77 80 83 68 62 60 61 30 34 42 49 82 77 Bo Jo 62 70 39 21
23| 114118 73 78 84 69 63 57 59 48 28 36 43 77 72 45 27 59 69 55 27 ¢
24| 85 89 43 48 53 41 34 28 29 22 23 35 69105102 73 56 88 99 BI 54 32 2
25| 77 80 36 40 35 34 27 19 20 14 29 30 77114111 84 64 96107 87 bo 40 37 8
26| 87 89 44 46 46 30 28 29 32 27 36 47 7816112 84 66 98 95 75 47 36 39 12 I
27| o1 93 48 S0 48 34 32 33 36 30 3¢ 45 77115110 83 63 97 9 72 44 32 36 9 15 3
28| 105 106 62 b3 63 47 46 49 54 48 46 5o 85119115 88 66 98 79 59 3U 36 42 28 33 21 2
29| 117113 69 71 66 51 53 s6 61 S7 59 71 96130126 98 75 98 85 62 38 47 53 39 42 29 30 12
30| g1 92 50 51 46 30 34 38 43 49 6o 71103141136109 90115 99 81 53 61 62 36 34 24 28 20 20
31| 83 85 42 43 38 22 26 32 36 51 63 75106142 140112 93126108 88 6o 64 66 39 36 27 31 28 28 8
32| 89 g1 5% 25 S0 34 39 44 49 63 76 87120155150123 100123109 86 62 71 78 52 49 39 44 35 24 15 12
33| g5 g7 b3y 63 56 42 39 56 60 75 86 97126160155 128 104128113 9o 67 76 82 62 59 49 53 40 29 25 23 II
34| 74 81 44 43 35 23 30 39 44 62 78 8921159155127 108136124101 75 79 8L S4 50 42 46 43 39 23 14 I4 21
35| 67 69 42 41 31 25 32 41 46 64 83 90130164160133114 146134111 85 84 86 39 52 47 ST 33 49 32 24 24 30 9
36| 74 76 61 60 42 44 51 60 66 83102110147 185179 155133159 146122 98105107 79 71 66 70 70 60 48 40 36 33 25 18
37| 57 59 46 41 25 30 36 47 52 71 93 98136172172148 nmés 147124121 97 99 71 65 59 63 67 62 46 38 37 43 23 13 17
38| 45 36 41 33 20 34 38 48 33 73 96 99137176 178151 131 163 159135 108102103 73 67 b4 69 75 72 54 46 49 £4 34 24 29 12
39| 35 37 35 26 18 34 36 46 ST 70 93 97134171 176151129161 163139 118 102 101 71 65 65 70 84 78 I8 5o 56 b2 41 32 g8 a1 g
40| 29 33 30 21 18 35 33 40 45 b3 87 i 117166171 134125157 156139113 95 97 67 60 62 67 79 82 62 53 39 66 45 38 45 27 13 6
41 o4r 37 4 5 §8 63 83105 109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101 108 88 80 86 92 71 64 7I 54 41 32 25
2 I BT 00 L @ Baigii186102168 14y 100188 167 130124 119 g0 87 90 94107115 77 8 92 o8 Bo 74 77 o 48 38 53 6
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 12

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {i,j} (in either direction)

minimize S o e)x (i)
subject to
D X)) + 220 xU, 1) =2 foreach 1 <ij <42
0<x(i,j)<1 foreach1 <j<i<42
N

[Constraints x(/,/) € {0, 1} are not allowed in a LP!]

Branch & Bound to solve an Integer Program:

= As long as solution of LP has fractional x(/, /) € (0,1):
= Add x(i,j) = 0 to the LP, solve it and recurse
= Add x(i,j) = 1 to the LP, solve it and recurse
= Return best of these two solutions

Bound-Step: If the best known
integral solution so far is better
than the solution of a LP, no
need to explore branch further!

= If solution of LP integral, return objective value

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Outline

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

In the following, there are a few different runs of the demo. In the example
class, we choose a different branching variable in iteration 7 (x6,17) and

found the optimal very quickly.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 1: Eliminate Subtour 1,2,41,42

[Disallow subtour (1,2,42,41) by adding this constraint to the LP:]

14
l X(2,1) +x(41,1) + x(42,1) + x(41,2) + x(42,2) + x(42,41) < 8
| / /L \

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

Equivalent to: S = {1,2,41,42},
16 J n
o S x(max(i,), min(i,j)) > 2
ieSjev\s X
T 2 1 %
8 . 23 5 X
’ I tk? 10
1P 2 -
8 31 ,‘
20/@/ S ongi 35
' % e
16

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 2: Eliminate Subtour 3 — 9

Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

R

l‘“\@\‘%f'/@/ |

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 4: Eliminate Cut 11 — 23
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

F\ P

i

40
\
|
31 a “
30/./

Tour has to include at least two edges between S = {11,12,...,23} and V \ S:

Z x(max(i,), min(i,j)) > 2.

i€S,jeV\S

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 3: Eliminate Subtour 24,25, 26, 27
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

\D\Z('/E}/ 28\@\513‘1 35 3
"’ B
9 /E]/

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 5: Eliminate Subtour 13 — 23
Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations

1p 2
24 31 3
ZO/E]/

N

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 20

Iteration 6: Eliminate Cut 13 — 17
Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations

p\ /'1

T

23
40
\@\‘v ; ; £
il 2 ; ®
\m\m e (0] S o 8l 5
Do " k
- . {
39 %\
8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 21

Iteration 7: Branch 1a xig 15 = 0
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations

2 42
oS
“
i 3
g
7 40,
’ 41
? . o
Jngl u 35 d
39 \
8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 22

Iteration 8: Branch 2a x;7,13 =0
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations

| :
EK? é@ 0
W\E\ZO T E— 30 y 35 ,
9 % :

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 23

Iteration 9: Branch 2b xy7 13 = 1
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations

14
1 w
[i1 <
16 10 ml[ﬁj
1
2 3
18 ¥\17 23 24 » m 11
LY .
27 2 [

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24

Iteration 10: Branch 1b xig 15 = 1
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

T —
Branch & Bound procedure would stop here, since value of the best]

\?{D\[LP solution for x1g 15 = 0 is worse than a previously found tour.
1
i 13

it
? é@ 40,

; o 3
20 K 31)/“/

b oL e
TN

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 11: Branch & Bound terminates
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations

14

O "
. 2 42
6 10 1
i 3
L 25 4
18 23 24
" —
! Y
27 2¢ ﬁ@ Qﬁ
1p 2 o
\D\2(I/D/ 7 - A 3
, Gy ® r
H /E}/)
19
63 3
8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 26

Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2, 41,42

2: LP solution 676

Eliminate Subtour 3 — 9

Eliminate Subtour 24, 25, 26, 27

(4: LP solution 682.5)
Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11,12

(6: LP solution 694.5)
Eliminate Cut 13 — 17
7: LP solution 697

X18,15 =0 X185 = 1
8: LP solution 698 11: Valid tour 701

x17,413 =0 17,13 =1
[9: Valid tour 699] [10: LP solution 700]{ LD e S TR]

than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Iteration 8: Objective 697

2 42
1 :m U
b
3 3
! 23 24 2 m l0%
L 0] 7 o
2* ! g N
#
41
31 W)I(

o

[What about choosing a different branching variable?]

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28

Solving Progress (Alternative Branch 1)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24,25, 26, 27
(4: LP solution 682.5)
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 29

Alternative Branch 1: xi3 15, Objective 697

14
lﬁ
J 13
s) S
2 4
0.50 :
. 10
9 .
: 3
T4
S T 23 o P m A
40
37 2¢
:

; Sut

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 30

Alternative Branch 1a: xig 15 = 1, Objective 701 (Valid Tour)

14
fu |
p 1f12
2 4
6 10 m%
I8 f 23 u B m Clo
g N

1 2
: 3 2 M o
20 %] 30 a o
1

Ao

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 31

Alternative Branch 1b: xi5 15 = 0, Objective 698

; e) S
\-\ ng
Nl
16 10 |
g 2
u
; 2 3
y ! @ put
Y o S n h
E,] m / 40
i 0 S 2 o! i o)

0.50 P
. < 28, 31
0.50 o - A;7)I(
2 0 $(J/n/ K
1

A

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 32

Solving Progress (Alternative Branch 1)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676

Eliminate Subtour 3 — 9
3: LP solution 681

Eliminate Subtour 24,25, 26, 27
(4: LP solution 682.5]

Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23

X18,15 = 1 X18,15 =0
e Ty
8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 33

Alternative Branch 2: x»7 2>, Objective 697

Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676

Eliminate Subtour 3 — 9

Eliminate Subtour 24,25, 26, 27
(4: LP solution 682.5]

Eliminate Cut 13 — 17
5: LP solution 686

Eliminate Subtour 10, 11,12
Eliminate Subtour 13 — 23

Eliminate Subtour 11 — 23
8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

2 42
3 10 "m ;
L : ~ k
‘S ”\m\?)
| il E} o4
® —ow ﬁk

?3
[

{1}

24
7 40
=1 % 4

2

; : N ‘
~o_, s () SO o B .;ﬂ

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 35

Alternative Branch 2a: x»7 »> = 1, Objective 708 (Valid tour)

/ 23 g m er
E | Ek? 7
27 24 b

T m ¢ oA

g 5 35 ¢
. 4 8
9 al (]

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 36

Alternative Branch 2b: x»7 2> = 0, Objective 697.75

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 37

Solving Progress (Alternative Branch 2)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24,25, 26, 27
(4: LP solution 682.5]
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

(10: LP solution 697.75)

Xo7,0 = 1

9: valid tour 708

s DY

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 38

Solving Progress (Alternative Branch 3)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9
Eliminate Subtour 24, 25, 26, 27
(4: LP solution 682.5]

Eliminate Cut 13 — 17

5: LP solution 686
Eliminate Subtour 10,11, 12
6: LP solution 686
Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 39

Alternative Branch 3: x»7 o4, Objective 697

? 42
' 9
/ 23 24 % m o
m g o
D b

m 5

f g 5 35 ¢
. 4 8
9 al (]

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 40

Alternative Branch 3a: x;7 24 = 1, Objective 697.75

i \61\21)/@/ g {050} 2 %0 . 37)1{
) 35
= 4 :
%]9 %E

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

41

Alternative Branch 3b: x»7 24 = 0, Objective 698

s) S

0.50
w
: | .
? 3
/ % i !
' 2 24 "
| : 7

20 d(l/n/
[;]9

é “
™

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

42

Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27
(4: LP solution 682.5)

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

6: LP solution 686
Eliminate Subtour 13 — 23

Eliminate Subtour 11 — 23

8: LP solution 697
[9: LP solution 697.75] 10: LP solution 698

= N\ " "

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

43

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

* Eliminate Subtour 10,11,12

* Eliminate Subtour 11 — 23

* Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24, 25, 26, 27

THE 49-CITY PROBLEM*

The optimal tour Z is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(z) is a minimum for Z. We distinguish the following subsets of the

CPLEX

€& = C' [enwikipedia.org/wiki/CPLEX

WIKIPEDIA

‘The Free Encyclopedia CP LEX
Main page From Wikipedia, the free encyclopedia
Contents pecia, cyeiop

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages

IBM ILOG CPLEX Optimization Studio (often informally CPLEX
referred to simply as CPLEX) is an optimization software — e
package. In 2004, the work on CPLEX earned the first SEEGE,

Stable release 126

INFORMS Impact Prize.
Development status Active

The CPLEX Optimizer was named for the simplex Type Technical computing
method as implemented in the C programming language, | |icense Proprietary
although today it also supports other types of Website ibm.com/software
mathematical optimization and offers interfaces other /products

than just C. It was originally developed by Robert E. /ibmilogepleoptistud/&
Bixby and was offered commercially starting in 1988 by
CPLEX Optimization Inc., which was acquired by ILOG in 1897; ILOG was subsequently acquired by

IBM in January 2009.'] CPLEX continues to be actively developed under IBM.

The IBM ILOG CPLEX Optimizer solves integer programming problems, very largel! linear
programming problems using either primal or dual variants of the simplex method or the barrier interior

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 46

42 cities:
Si1={1, 2, 41, 42} S;={13, 14, - - -, 23}
Se=1{3,4, -+, 9]} Se={13, 14, 15, 16, 17}
S:={1,2,---,9,29,30, ---, 42} S»=1{24, 25, 26, 27}.
Sy=1{11,12, ---,23
8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 45
Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0
with Simplex, Mixed Integer & Barrier Optimizers

5725-AR6 5725-A29 5724-Y48 5724-Y49 5724-¥54 5724-¥55 5655-Y21

Copyright IBM Corp. 1988, 2814. All Rights Reserved.

Type 'help' for a list of awvailable commands.

Type 'help' followed by a command name for more

information on commands.

CPLEX> read tsp.lp

Problem 'tsp.lp' read.

Read time = @.80 sec. (@.86 ticks)

CPLEX> primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 868 columns, and 2483 nonzeros.

Presolve time = @.8@ sec. (©.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999

Iteration: 26 Objective = 151@.000000

Iteration: 9@ Objective = 923.000000

Iteration: 155 Objective = 711.e000080

Primal simplex - Optimal: Objective = 6.9900000000e+B2

Solution time = .90 sec., Iterations = 168 (25)

Deterministic time = 1.16 ticks (288.86 ticks/sec)

cPLEx= I

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 47

CPLEX> display solution variables -

Variable Name

x_13_12

x
"
Y
"
w

x
"
«
(N
=

x
s
@
"
o

x
"
=}
"
@

x
s
@
("
=}

x
s
©
"
®

x
N
=
"
©

x
N
g
n
®

x
N
[N
~
=

x
N
w
]
[N}

x
N
=
N
w

x
N
]
X
S

x
N
o
N
w

x
]
3
18]
3

x
Y]
®
~
3

x
N
0
1]
@

x
w
®
18]
©

x
w
bt
w
®

x
W
N
w
e

x
w
w
w
N

x
w
&
w
w

x
W
o
w
i

x
w
@
w
«

x
w
3
w
@

x
W
@
w
S

x
w
0
w
@

x
B
°
w
©

x_41_40
x_42_41

Solution Value

1.0008000
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
@ee000
eeoeee
oeeede
1.000000

e e e B R e e R e e s

ALl other variables in the range 1-861 are @.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 48

Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

UNIVERSITY OF
CAMBRIDGE

Outline

Randomised Approximation

9. Approximation Algorithms © T. Sauerwald

Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(521 5) <0

(not covered here... j
Randomised Approximation Schemes LA

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.
= |tis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).j
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_]

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Outline

MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

MAX-3-CNF Satisfiability

appears more than once in the same clause.
——— MAX-3-CNF Satisfiability Y

v

Assume that no literal (including its negation) 1

= Given: 3-CNF formula, e.9.: (x1 VXa VXa) A (X2 V Xz V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(I VXsVX)A(XIVXEVXE)A (X2 VXV Xs)A (X1 V X2V X3)
N
[x1 =1,x%=0,x=1,xs =0and xs = 1 satisfies 3 (out of 4 clauses)j

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclausei=1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i/,

P[clause iis notsatisfied]:l-l-lz1
2 2 2 8
. - 1 7
= P[clausellssatlsfled]:1—5:g
7
= E[V]=P[¥=1]-1= .

= Let Y : =3, Y, be the number of satisfied clauses. Then,

m m m 7 7
E[Y] —E{ZY,-] =Y E[Y] :Zgzg"” O
=1 /] i=t i=1 N
(Linearity of ExpectationSJ (maximum number of satisfiable clauses is m]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Interesting Implications

——— Theorem 35.6 N
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

. J

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least g of all clauses.

y
{ Probabilistic Method: powerful tool to J

[There s € Wlsten el Vi) = 5[] show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

SN

[Follows from the previous Corollary.]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

/L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

[Y]:%-E[Y|x1:1]+%-E[Y|x1:0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [Y]]

GREEDY-3-CNF(¢, n, m)

1: forj=1,2,...,n

2 Compute E[Y | x1 =vi...,X_1 = Vj_1,x=1]

3: Compute E[Y | X1 =v1,...,X—1 = Vj_1, X = 0]

4 Let x; = v; so that the conditional expectation is maximized
5: return the assignment vq, Vo, ..., vy

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Analysis of GREEDY-3-CNF (¢, n,m)
[This algorithm is deterministic.]

Theorem 7
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj =1,2,...,n, Y = Y(¢) averages over 2"—/*1 assignments
= A smarter way is to use linearity of (conditional) expectations:

Yilxi=vi,., X1 =Vi_1,%=1]

- ble i
» Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|X1 =V, X :Vj_1,X]':Vj] EE[Y|X1 =Vi,. X :‘/j—1]
>E[Y|X1 :V1,4..,Xj,2:|/j,2]

m
E[YIx=vi.. x5 1=vx=1] =3 EJ
i=1

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF(y, n, m)

VX VX)AXVXeVX)A XV Xe VX)) A TV XaV X)) A (X1 V X2V Xg) A
(71\/72\/73)A(71VX2VX3)A(71V72VX3)A(X1 \/X3\/X4)/\(X2 V73V74)

?72?|.8.75
xy =0 xg =1
07??] 8.625 1?7?]| 8.875
X2:0 X2:1 X2:0 X2:1
X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:O X3:1

NTARS NTARS NTARS NTARS NTARS NTAYS NTARS NTARS
i

I \ I \
- -

>

1l \ I \ I \ I \ I \
- - - - -

S S S S (o) (o) (o) (o)
0000 || 0001 0010||0011 0100(|0101 0110|0111 1000|1001 1010|1011 1100|1101 1110|1111

\
-

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF(p,n, m)

TAAIAGGBY X)ATAGRYXB) ARV X3) AV X3)ATA (X VX5V X)

<) > o > o - o - o - o - o - o -

10.2

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF(p,n,m)

TATAIAGBY X)) ATATA(R)ATATA(GGV X)

<) > o > o - o > o > o - o - o -

10.3

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF(y, n, m)

Run of GREEDY-3-CNF(y, n, m)
TATATATATATAOATATAT

ITATATATATATAOATATAL

?7??].8.75 ?72?].8.75
x; =0 xg =1 x1 =0 xg =1
0???] 8.625 1?7?]| 8.875 0???] 8.625 172?| 8.875
X2:0 X2:1 Xz—o X2:1 X2:0 X2:1 X2:O X2:1
1072 9 1177] 8.75 1077] 9 1172) 8.75
X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:O X3:1
NTAYS NTAYS NTAYS NFAVS

r S\F SE S\E S)E ST\E SF S\F SN\E S\E S\E S)\E

I \ I \ I \ I \ 1 \ 1 \ 1 \ i \ /i \ I \ 1 \ 1 \ I \ I \ i \ /i \

<) - o - o - o - o - o - o - o - - - - - - - - -
9 9

&TVF

S S S S S S S S

0000|0001 [0010|(0011| (0100|0101 [O110[{0111 1000 (1001 1010({ 1011 110011101 111011111
9 9

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF 10.4

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

10.5
Run of GREEDY-3-CNF(p,n, m)

MAX-3-CNF: Concluding Remarks

(X1 \/X2\/X3)/\(X1 \/X72VX74)/\(X1 V Xo VX74)/\(X71\/X73\/X4)/\(X1 V Xo VY4)/\
AVXRVXEB)AKVXeVX)AXI VXV X3)A (X1 VX3V Xa)A(Xe VX3V Xg)

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)

J Ll L L L L L L2 \ For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

rithm of MAX3-CNF unless P=NP.

N\
A\
[Essentially there is nothing smarter than just guessing!j
[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF 10.6

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

Outline

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) e
= Goal: Find a minimum-weight subset V' C V such e
that if (u,v) € E(G),thenue V' orve V. 5
N
A\
[This is (still) an NP-hard problem.] @_@
3 1
Applications:

» Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1
2
3
4
5
6
7

C=9
E'=G.E
while £ # 0
let (u, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

N
[This algorithm is a 2-approximation for unweighted graphs!]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

14.1

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E' =G.E

3 while £ # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® ©© O ©
1 1 1 1
)
[Computed solution has weight 101]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14.2

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© @ ©
1 1 1 1
!
[Optimal solution has weight 4]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14.3

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize Z w(v)x(v)
veV
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
) weight of a minimum weight-cover.
Linear Program
——
minimize Z w(v)x(v)
veV
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € [0,1] foreachv e V
2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]’

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
1 C=9

2 compute X, an optimal solution to the linear program
3 foreachv el

4 if x(v) >1/2

5 C =CU{v}

6 return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

/)

L
[is polynomial-time because we can solve the linear program in polynomial timej

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

[?(a) = X(b) = X(e) = 1, X(d) = 1, %(c) = o] [x(a) — x(b) = x(€) = 1, x(d) = 1, x(c) = o]
==

S

3
b b

4 4 4
(@) (@) (@)
Rounding
—_ e

()
2

o

()
2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
N>z o % 11
w(C)=z"=> wWx(v) = > w(v) 5 =5w(C). O

vev vev: x(v)>1/2

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Randomised Algorithms
Lecture 10: Approximation Algorithms: Set-Cover and MAX-k-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

57 UNIVERSITY OF
¥ CAMBRIDGE

Outline

Weighted Set Cover

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

The Weighted Set-Covering Problem

) o o
Set Cover Problem Sy
= Given: set X and a family of subsets F, d il e))
and a cost function ¢ : F — R*
* Goal: Find a minimum-cost subset ° ° S2 °
CCF —
Sum over the costs | S-t- X= U S. o ° °
of all sets in C sec
L S. S
%/ >/

81 82 83 84 85 86

Remarks: c:2 3 3 5

= generalisation of the weighted vertex-cover problem
= models resource allocation problems

1

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

2

Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of
the weighted SET-COVER problem (solution on next slide!)

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dooys) = for each x € X
SeF: xeS8
y(S) € {0,1} foreach S e F
Linear Program
minimize > c(S)y(S)
SeF
subject to > oy = A for each x € X
SeF: xe8
y(S) € [0,1] foreach S e F
10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 4

Back to the Example

| @
o

o o [
Ss Ss

Sy S Ss3 S S S

Cc: 2 3 3 5 1 2

y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
N

7 \

[The strategy employed for Vertex-Cover would take all 6 sets!]
N

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Randomised Rounding

81 Sg 83 84 85 SB
c: 2 3 3 5 1 2
y(): t1/2 1/2 1/2 1/2 A 1/2

Randomised Rounding

* Let C C F be arandom set with each set S being included
independently with probability y(S).

* More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

y(S) = 1 with pr?bablllty y(S) forall S e F.
0 otherwise.
= Therefore, E[y(S)] = y(S).
10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6.1

Randomised Rounding

Si Se Ss3 S S S
Cc: 2 3 3 5 1 2
yO): 1/2 1/2 1/2 1/2 1 1/2

Lemma

= The expected cost satisfies

E[c(C)] =) c(S) - ¥(S)

SeF
= The probability that an element x € X is covered satisfies

Plxel]s|>1-1.
<eUsl=

Sec

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6.2

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

* The expected cost satisfies E[¢(C)] = > s €(S) - ¥(S).
* The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [20(3)] =E [Z Tsec - c(S)]
Sec SeF

=> P[Sec]-¢(S)=D_¥(S5)-c(S).
SeF SeF
= Step 2: The probability for an element to be (not) covered

Plx¢usecSl = [[PIs¢cl= [(1-%9)
SeF: xeS8 ScF: xe8

<

-¥(s
< II ¢ (FsohestheLP!
(1 + x < eX for any Xﬁ e xes

= e Z56]:: xe$s ¥(S) S 971 O

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)]| = > g £ ¢(S) - y(S).
= The probability that x is covered satisfies P[x € UsecS] > 1 — 2—9

é";

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, ¢)

1: compute y, an optimal solution to the linear program
2C=0

3: repeat 2In ntimes

4: foreach S e F

5: let C = C U {S} with probability y(S) __ ~~_
6: return C

clearly runs in polynomial-time!]

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

Theorem

= With probability at least 1 — ‘5 the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

1 2Iinn 1
PIx#usecSI< () =

= This implies for the event that all elements are covered:

P[X=UgecS]=1-P [U {x QUSGCS}]

xeX

1 1
(PrauBI < PIAT+PIBI > > 1- S PlxguseS] 2 1-n- L =1-1
xeX
= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is > sc = ¢(S) - ¥(S).

® Linearity = E[c(C)] < 2In(n) - > sc 7 €(S) - ¥(S) < 2In(n) - ¢(C*) O

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

9.1

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — ‘5 the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

\
[By Markov’s inequality, P [¢(C) < 4In(n) - c(C*)] > 1/2.]

[

Hence with probability at least 1 — 2 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs l

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9.2

Outline

MAX-CNF

MAX-CNF

Recall:

MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VX)) A (X2 V Xz V X5) A - -«

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (X1 VXa) A (e VXsV Xa V X5) A - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

A X

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF 10

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
P [clause i is satisfied] = 1 —27° := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
* First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
* As before, let Y := Y7, Y; be the number of satisfied clauses. Then,

E[Y]zE[in] _SEvIEY Al o
i=1 i=1 i=1

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

[The same as randomised rounding!]

—— 0-1 Integer Program

o m These auxiliary variables are used to
maximize)z reflect whether a clause is satisfied or not
i=1
V/d
subjectto > y+ > (1-y) > z foreachi=1,2,....m
ject jec;
1 zz € {0,1} foreachi=1,2,....m
C;" is the index set of the un- y, € {01} foreachj=1,2,...,n
negated variables of clause i. ’ Y

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (¥, Z) be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. - 1\¢\ =
P [clause i is satisfied] > (1 - <1 - —) > - Zj.

Proof of Lemma (1/2):
» Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)
l

4
= P[clause i is satisfied] =1 - [[P[yjisfalse | =1 -] (1 - 7))
j=1 j=1

Arithmetic vs. geometric mean: L - £
Z/:1 1-v)

a+ ...+ ak K >q1 (== 77
— 2> Va1 X ... X &. - ¢

k

e =* ¢
Z':1 Y V4
= _<1 fé ’) 21—(1—’)
10. Approximation Algorithms © T. Sauerwald MAX-CNF 14 1

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. - 1\¢\ —
P[clause i is satisfied] > <1 - (1 — —) > - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P [clause / is satisfied] > 1 — (1 — Z’)

* Forany ¢ > 1, define g(z) :==1— (1 — %)[This is a concave function
4
with g(0) = 0 and g(1) = 1 — (1 - %) = Be. 9(2)

= 9(z)>p-z foranyze[0,1] 1-(1-1)3

= Therefore, P [clause i is satisfied] > 3. - Z;. O

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14.2

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

4
P[clause i is satisfied] > (1 — (1 — —)) - Zj.

——— Theorem N

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

. J

Proof of Theorem:
* Forany clause i =1,2,..., m, let {; be the corresponding length.
= Then the expected number of satisfied clauses is:

I

j i=1 / = N
: B X LP solution at least
By Lemma [Slnce 1-1/x)< 1/e] L as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14.3

m
1

E[Y]=§:E[Yi]2 i<1—(1—;)£’>-z;zz<1—;>~z,-z(1—;)-OPT

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (¢, n, m) >

L)

. Letb € {0, 1} be the flip of a fair coin X %/\
~<Y¢c

\A

: If b = 0 then perform random guessing

o
: If b =1 then perform randomised rounding e ‘y
return the computed solution dc 2

c/e

A ON =

Algorithm sets each variable x; to TRUE with prob. - 3 + 1 - ;.
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(¢, n, m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coyg - Zj+ % -Be - Z;.
= Note 2¢2¢ = 3/4 for £ € {1,2}, and for ¢ > 3, 1Pt > 3/4 (see figure)
= = HYBRID-MAX-CNF(¢, n. m) satisfies it with prob. at least 3/4 - Z; O

10. Approximation Algorithms © T. Sauerwald MAX-CNF

MAX-CNF Conclusion

Summary

= Since oz = B> = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
* The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution

* The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

Outline

10. Approximation Algorithms © T. Sauerwald MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 18

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)
1: select a vertex r € G.V to be a “root” vertex
2: compute a minimum spanning tree Tnin for G from root r
3 using MST-PRIM(G, ¢, r)
4: let H be a list of vertices, ordered according to when they are first visited
5 in a preorder walk of Trin
6: return the hamiltonian cycle H

[N

[Runtime is dominated by MST-PRIM, which is O(Vz).]

7
(Remember: In the Metric-TSP problem, G is a complete graph.)

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 19

Run of APPROX-TSP-TOUR

1. Compute MST Thin

Run of APPROX-TSP-TOUR

1. Compute MST Tyin v/
2. Perform preorder walk on MST Tpin

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 20.1
Run of APPROX-TSP-TOUR
1. Compute MST Tiin v/
2. Perform preorder walk on MST Tin v/
3. Return list of vertices according to the preorder tree walk
10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 20.3

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 20.2
Run of APPROX-TSP-TOUR
[Solution has cost ~ 19.704 - not optimal!]
| | | |
————+———@———\— — -t - ———F - - —-
| | | | |
| | | | |
| | | ‘ |
RS S O
| | | |
| | | |
| | I |
e 00
| | I
| | | | | |
| | | | |
,,,@,,,L,,,,\,)
| | | | |
| I | | | |
| ! | | | |
| | | | |
****#’****F**“@***ﬂ****i’****\ —————
| | | | | |
| | | | | |
| | | | | |
| | | | | |
1. Compute MST Tiin v/
2. Perform preorder walk on MST T.in v/
3. Return list of vertices according to the preorder tree walk v/
10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 20.4

Run of APPROX-TSP-TOUR

1. Compute MST Tuin v/
2. Perform preorder walk on MST Tiin v/
3. Return list of vertices according to the preorder tree walk v/

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

20.5

Run of APPROX-TSP-TOUR

[This is the optimal solution (cost ~ 14.715).]

1. Compute MST Tyin v/
2. Perform preorder walk on MST Trin v/
3. Return list of vertices according to the preorder tree walk v/

Approximate Solution: Objective 921

12

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

21

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 20.6
Optimal Solution: Objective 699
14
1¢
o 13
” 12
2 42
. 0 o
u
g 3
18 7 23 24 25 0 ‘Elf
0 /ﬁ 7 49
27 24
3
1 2 =
® ® 24 31 ‘;7)I(
2)[) P Sf“ . - &
}9 B
10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.) 22

Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge

costs are non-negative!

= yields a spanning tree T and ¢(Tmin) < c(T) < c(H*)ﬁ exploiting that all edge]

o oo O 0
BCEy SRR, BCOSST AR R,
e e

solution H of APPROX-TSP spanning tree T as a subset of H*

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

23.1

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and ¢(Tmin) <c¢(T) < c(H*)

= Let W be the full walk of the minimum spanning tree T, (including repeated visits)
=- Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H)

Walk W = (a,b,c, b, h,b,a,d, e, f,eg,e,d,a) optimal solution H*

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

23.2

Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and ¢(Trmin) < ¢(T) < c(H*)
= Let W be the full walk of the minimum spanning tree T, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H™)

[exploiting triangle inequality!]

/
= Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) < e(W) < 2¢(H") O

| | |
| | | |
Walk W = (a,b,c, b, h, b, 4., 6.1, f.0. ¢, 4. 2)

optimal solution H*

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

23.3

Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
. select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T, for G from root r
using MST-PRIM(G, ¢, r)
. compute a perfect matching M,,;, with minimum weight in the complete graph
over the odd-degree vertices in Tyin
. let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of Trin U Mmin
: return the hamiltonian cycle H

Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling salesman
problem with the triangle inequality.

10. Approximation Algorithms © T. Sauerwald Appendix: An Approximation Algorithm of TSP (non-examin.)

24

Outline

Introduction to (Spectral) Graph Theory and Clustering

Randomised Algorithms
Lecture 11: Spectral Graph Theory

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2023
11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 2
Origin of Graph Theory Graphs Nowadays: Clustering
| sEga
, '4@&&%‘&%

S;ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

0 Is there a tour which crosses
. each bridge exactly once?
" Goal: Use spectrum of graphs (unstructured data) to extract clustering
(communitites) or other structural information.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 3 11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 4

Graph Clustering (applications)

Graphs and Matrices

= Applications of Graph Clustering
= Community detection
= Group webpages according to their topics
= Find proteins performing the same function within a cell
= Image segmentation
= |dentify bottlenecks in a network

* Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

= Different formalisations for different applications

= Geometric Clustering: partition points in a Euclidean space
k-means, k-medians, k-centres, etc.

= Graph Clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering

Graphs Matrices

0 1 0 1
1 0 1 0
0O 1 0 1
1 0 1 0

= Connectivity = Eigenvalues

= Bipartiteness = Eigenvectors

= Number of triangles = Inverse

= Graph Clustering = Determinant

= Graph isomorphism = Matrix-powers

= Maximum Flow -

= Shortest Paths

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering

Outline

Matrices, Spectrum and Structure

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

Auv:

i

{1 if {u,v}eE

0 otherwise.

0o =0
= R RN
Y Y
= R o R

Properties of A:

» The sum of elements in each row/column i/ equals the degree of the
corresponding vertex i, deg(/)

= Since G is undirected, A is symmetric

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™", X\ € Cis an eigenvalue of M if and only if there exists
x € R"\ {0} such that

Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue A.

N
An undirected graph G is d-regular if every degree

is d, i.e., every vertex has exactly d connections.

Graph Spectrum

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues \y < --- < X, and n corresponding

orthonormal eigenvectors fi, ..., f,. These eigenvalues associated with
their multiplicities constitute the spectrum of G.
\\\

[For symmetric matrices: algebraic multiplicity = geometric multiplicity J

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 9

Example 1

Example 1

[Bonus: Can you find a short-cut to det(A — X - 1)?]

N
A Exercise: What are the Eigenvalues and Eigenvectors?

0 1 1
A=1[1 0 1
110

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

10.1

[Bonus: Can you find a short-cut to det(A — X - 1)?]

N
A Exercise: What are the Eigenvalues and Eigenvectors?

>

I
VY
—_ - O
—_ 0 —
o = -
N————

Solution:
= The three eigenvalues are A\ = \o = —1,\3 = 2.

= The three eigenvectors are (for example):
1

1 —1 1

f‘l - 0) f2 - 1) f3 — 1
1

-1 —1 1

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 10.2

Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

y
L=1- HA’
where | is the n x nidentity matrix.
1 -1/2 0 -1/2
L— -1/2 1 -1/2 0
o 0 -1/2 1 -1/2

—1/2 0 -1/2 1

Properties of L:

= The sum of elements in each row/column equals zero
= Lis symmetric

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix

A and L have the same eigenvectors.

A Exercise: Proof this correspondence. Hint: Use that L = 1 — JA.

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 12

Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors

Let M € R™" X € Cis an eigenvalue of M if and only if there exists
x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues \y < --- <), and n corresponding
orthonormal eigenvectors fi, ..., fn.

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < Ap.

1. A1 = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

3. <2

4. \, = 2 iff there exists a bipartite connected component.

N
AN

[The proof of these properties is based on a]

powerful characterisation of eigenvalues/vectors!

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 14

A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula

Let M be an n by n symmetric matrix with eigenvalues Ay < -+ < Ap.
Then,
_ x0T x®
Ak = min max —————.
X xWerm (o}, i€{1,.. k3 x () x ()
) 1 x)
The eigenvectors corresponding to A1, ..., Ax minimise such expression.
.
;
A = min xTMx Ao = n}in ﬂ
xeRM{0} XTX xeRM {0} X' X
xLf

minimised by an eigenvector f; for A minimised by

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

Quadratic Forms of the Laplacian

Visualising a Graph

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R”,

T . (Xu — Xv)2
X Lx = Z g

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

minates givem

2
- X uvyeeu—xv)

: 2
x€R™M {0} llx1i5
X_Lfy

v
The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure

{u,v}€E
Proof:
1 1
x'lx=x"(1-=A)x=x"x— =x"Ax
d d
I
IR S
ueVv {u,v}eE
1 2 2
= D> (G A+ xE — 2xuxy)
{u,v}eE
2
=y
d .
{u,v}eE
11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 16
Outline

A Simplified Clustering Problem

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.

[We could obviously solve this easily using DFS/BFS, but]

let's see how we can tackle this using the spectrum of L!

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem

Example 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

ey

0

[cNoNeNeR N

[eNoNoNeR ol
QOO0 O = —
- OoO—=000O0o
oO—-0—+00O0
- OoO—-000O0

-
o
[SE
|
ISES B

SER B
[NE

- OO0 o
o O o

[eNeoNeoNe) oO—-0—+2000
o O o

nl—
Nl

o

|
-

|
=

OO OO =
|
nI=
-
=
|
=
o

[N NoNol
o O oo

|
LVES
o
|
—_

=

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem 20.1

Example 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

01t 1 0 0 0 O
1 0 1 0 O 0 O
1 1. 0 0 0 0 O
A=|0 0 0 O 1 0 1
o 0 o 1 0 1 O
o 0 0o o 1t 0 1
O—O 000 10 1 0
" 3 % 0o o0 0 0
-z 1z 0 0 0 0
I 11 0 0 0 0
e 6 L=1| 0 0 0 1 -3 0 -1
0 0 o -1 1 =1 o0
o o o o -5 1 =%
1 1
Solution: 0 0 0 2 0 —> _1 _
= The two smallest eigenvalues are Ay = Ao = 0. [Tlhus '\:I)VE‘ can easily iolvg the simplified rt:lustermgI prob-]
* The corresponding two eigenvectors are: em by computing the eigenvectors with eigenvalue 0
1 0 1 -1/3
1 0 1 -1/3
1 0 1 —-1/3 Next Lecture: A fine-grained
fi=10], fe=|1](or i=]1[, =] 1/4 [)] approach works even if the clus-
0 1 1 1/4 ters are sparsely connected!
0 1 1 1/4
0 1 1 1/4
11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem 20.2

Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example!]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Cy,...,Cx = M ==X =
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢¢, forallu € V
= Clearly, the x¢,’s are orthogonal

" xolxe = 5 Zpuneelxe () = xg (VP =0 = A==\ =

2. ("«<="cc(G) > mult(0)). We will show:
A =---=X=0 = Ghas atleast k connected comp. C, ..., Cx
= there exist fy, ..., fi orthonormal such that 3 "¢, ,y c(fi(U) — fi(v))?2=0
= = fi,..., fy constant on connected components

= asfi,..., f, are pairwise orthogonal, G must have k different connected
components.

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem 21

Randomised Algorithms
Lecture 12: Spectral Graph Clustering

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

Outline

Conductance, Cheeger’s Inequality and Spectral Clustering

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering

Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters

Let us for simplicity focus on the case of two clusters!]

Conductance

Conductance

Let G= (V, E) be a d-regular and undirected graphand # S C V.
The conductance (edge expansion) of S is

_ &S, 5%)

Moreover, the conductance (edge expansion) of the graph G is

?(G) = mi ¢(S)

n
SCV:1<|S|<n/2

/1

(NP-hard to compute!)

" 5(8) =3

= ¢(G) € [0,1] and ¢(G) = 0iff Gis
disconnected

= If Gis a complete graph, then
e(s, v\ S) = 5] (n—|S]) and
#(G) ~ 1/2.

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering

A2 versus Conductance (1/2)

#»(G) =0 < Gisdisconnected & M(G)=0

What is the relationship between ¢(G)
and X\z(G) for connected graphs?

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering

A2 versus Conductance (2/2)

1D Grid (Path) 2D Grid 3D Grid
o0 0 ©
02 6% o?
0000 T 00
o o o 0 0 0 0 © i 4
o o o o o o o
o0 10
o~ 0 0O
o0 -00© O— 00
Ao ~ n_2)\2 ~ n71)\2 ~ n’2/3
¢Nn71 ¢Nn—1/2 ¢Nn—1/3
Hypercube Random Graph (Expanders) Binary Tree
o} o o0 o
(o} o} e} o
o © o <]
o o It)
o 0 9 0 0 o
o9
o o o o
00000000
o o o=y ©
—1 —1
Az ~ (log n) X2 =©(1) X2~ N
—1 _ —1
¢ ~ (log n) ¢ =0(1) ¢~n
12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 6

Relating)\, and Conductance

Cheeger’s inequality

Proof of Cheeger’s Inequality (non-examinable)

Let G be a d-regular undirected graph and Ay < --- < A, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A,

2. Order the vertices so that xy < xo < --- < x, (embed V on R)

3. Try all n— 1 sweep cuts of the form ({1,2,...,k},{k+1,...,n})
and return the one with smallest conductance

= |t returns cluster S C V such that ¢(S) < V22 < 24/¢(G)

= no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

= very fast: can be implemented in O(|E|log|E|) time

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering

Proof (of the easy direction):
» By the Courant-Fischer Formula,

Optimisation Problem: Embed vertices on a line
such that sum of squared distances is minimised

]

v)
o oxTLx 1 Y (= x)
A2 = min Fo- = 5 min =
xeR? X'X d XER" Zu Xg
x7#0,x L1 x7#0,x L1

= Let S C V be the subset for which ¢(G) is minimised. Define y € R” by:

+ if uesS,
yu:{s 1

= Since y L 1, it follows that

s fueV\S

1 Zu~v(yu_yv)2 1 |E(S’V\S)|(ﬁ+|\/1ﬁ)2
)\ZSH 2 :a 1 1
Zuyu @"’m
1] 1
— _ . |E(S,V\'S <+)
g ESVASI (g + g
1 2B VS,
<4 9] =2-¢(G). O

12. Clustering © T. Sauerwald

Conductance, Cheeger’s Inequality and Spectral Clustering 8

Outline

lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

lllustration on a small Example

00110010 107;7%00750
00001110 0o 1 0 -3 -3 -3 0
1001000 1 -0 1 - o o o0 -}
A:1o1ooo1o|_:7§ofg1oofgo
01000 1 0 1 o -y o o 1 -3 0 -—%
0100100 1 07%007%10%
11010000 -4 - 0o -f 0o o 1 o0
00101100 0 -3 0 -3 -3 0 A

A=1-+v5/3~025
v = (—0.425, +0.263, —0.263, —0.425, +-0.425, +0.425, —0.263, +-0.263)"

4 7 8 6
Sweep: 4
Conductance: 0.166
1 3 2 5
—0.425-0.263 0 +0.26340.425 X

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 10

Let us now look at an example of a non-regular graph!

The Laplacian Matrix (General Version)

r

The (normalised) Laplacian matrix of G = (V, E, w) is the n by n matrix
L=1-D"2AD""/2

where D is a diagonal n x n matrix s.t. D,, = deg(u) = Z{u,v}eE w(u, v),
and A is the weighted adjacency matrix of G.

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

.

oO—2
1 —16/25 0 -9/20
o 0 L —-16/25 1 —-9/20 0
- 0 -9/20 1 -7/16
—00@ -9/20 0 -7/16 1
=Ly = %foru;&v

= L is symmetric
* If Gis d-regular, L=1-— 1 - A.

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 12

Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and ® C S C V. The conductance (edge expansion)

of Sis
w(S, S°)

9(S) = min{vol(S), vol(S°)}’
where w(S, S°) := 3 s ese W(U, v) and vol(S) := 3~ s d(u). More-
over, the conductance (edge expansion) of G is

#(G) == min &(S).

PASCV

Spectral Clustering (General Version):
1. Compute the eigenvector x corresponding to X2 and y = D~"/2x.

2. Order the vertices so that yy < y» < --- < y, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,... .k}, {k+1,...,n})
and return the one with smallest conductance

Stochastic Block Model and 1D-Embedding

Stochastic Block Model Here:
G = (V,E)withclusters §;,S, C V,0<g<p<1 S| = 80,
" s |S2| = 120
p mmu,ve oo,
P[{u,v}eE]—{ : . * p=10.08
ifue S,veS,i#]j.
q j, [7 - g=0.01

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 13

Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : -1.1968431479565368e-16

Eigenvalue 2 0.1543784937248489
Eigenvalue 3 0.37049909753568877
Eigenvalue 4 0.39770640242147404
Eigenvalue 5 0.4316114413430584
Eigenvalue 6 0.44379221120189777
Eigenvalue 7 0.4564011652684181
Eigenvalue 8 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

Drawing the 2D-Embedding

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 15

Spectral Clustering

For the complete animation, see the full slides.

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

Best Solution found by Spectral Clustering Clustering induced by Blocks

e Step: 78

e Threshold: —0.0268

e Partition Sizes: 78/122
o Cut Edges: 84

e Conductance: 0.1448

e Step: 1

e Threshold: 0

e Partition Sizes: 80/120
e Cut Edges: 88

e Conductance: 0.1486

P Cut Edges
14 300
"'\«. 200
0.59 >
/"J% 100
0 i . } Step
0 100
12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 17 12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs
Additional Example: Stochastic Block Models with 3 Clusters How to Choose the Cluster Number k

Graph G = (V, E) with clusters
S1732783gv; 0§q<p§1
= |f k is unknown:

P El— p uves; = small \x means there exist k sparsely connected subsets in the graph
{u,vi€E]= g ueS,veS,i#j (recall: Ay = ... = Ax = 0 means there are k connected components)
b Jr = large A\t 1 means all these k subsets have “good” inner-connectivity
properties

|V| =300,|S;| =100
p=0.08,qg=0.01.

=- choose smallest k > 2 so that the spectral gap A1 — A is “large’

) * In the latter example A = {0,0.20,0.22,0.43,0.45,...} — k=3,
Spectral embedding
I = In the former example A = {0,0.15,0.37,0.40,0.43,...} — k=2.

» For k = 2 use sweep-cut extract clusters. For kK > 3 use embedding in
k-dimensional space and apply k-means (geometric clustering)

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 19 12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs

Summary: Spectral Clustering

)) Compute Sweep Cuts
Spectral Embedding onto Line

S-oco-—-0o
oa-aco0o0o0
~ococo-oco=
c-ococo-o0-
~o-ococo-o
~co-oco-o
cooco-oa=x
co-—so-o0o

.
N <

H EUNV(XU_XV)Z
MNxer™ {0} — 5 %
x11

= Given any graph (adjacency matrix) » Cheeger’s Inequality

= Graph Spectrum (computable in poly-time) = relates)\, to conductance
=)\, (relates to connectivity) = unbounded approximation ratio
=)\, (relates to bipartiteness) = effective in practice

12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs 21

Outline

Appendix: Relating Spectrum to Mixing Times (non-examinable)

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 22

Relation between Clustering and Mixing

= Which graph has a “cluster-structure”?
= Which graph mixes faster?

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 23

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution # = (1/n, ..., 1/n), which satisfies 7P = 7.

[Here all vector multiplications (including eigenvectors) will always be from the Ieft!]

Lemma

Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x,

prt B 7rH2 <A

with 1 =Xy > X2 > --- > X\, as eigenvalues and A := max{|Az|, | An|}.
= This implies for t = O(-2875) = O(+%2), N

log(1/X) 1—X
[due to laziness, \p > 0]

HXPt -7

tv Z

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 24

Proof of Lemma

= Express x in terms of the orthonormal basis of P, v{ = 7, vo, ..., Va:

n
X = Z ajVi.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to w, ay = 1.

= o n 2
P =l = || (3o ewi)P — =,
i=1
n 2
= HTF—{—ZQ,’A,‘V,’—TI‘HZ
i=2
|3 asn
= QA Y
=2 2

n
=" [laixvill3
=2

since the v;’s

are orthogonal

since the v;’s

are orthogonal

2

n
2 2 42 2 2
<A vl = A =X\ |x — 7|3
i—2

n
§ QijVi
i=2

= 2
* Hence [|xP! — 7|3 < M- |x — w3 < X201, <nx — 7l + lIwllz = x5 < 1]

References

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 25

B

B

Fan R.K. Chung.
Graph Theory in the Information Age.
Notices of the AMS, vol. 57, no. 6, pages 726—732, 2010.

Fan R.K. Chung.
Spectral Graph Theory.

Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.

S. Hoory, N. Linial and A. Widgerson.
Expander Graphs and their Applications.

Bulletin of the AMS, vol. 43, no. 4, pages 439-561, 2006.

Daniel Spielman.
Chapter 16, Spectral Graph Theory
Combinatorial Scientific Computing, 2010.

Luca Trevisan.
Lectures Notes on Graph Partitioning, Expanders and Spectral Methods,

2017.
https://lucatrevisan.github.io/books/expanders-2016.pdf

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable)

26

The End...

Thank you and Best Wishes for the Exam!

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 27

