
Randomised Algorithms
Lecture 8: Solving a TSP Instance using Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

Outline

Introduction

Examples of TSP Instances

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 2

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances

Even this version is
NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances

Even this version is
NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 9

2 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

Outline

Introduction

Examples of TSP Instances

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 4

33 city contest (1964)

 Traveling Salesman 12

rather simple methods could be found to yield a tour much nearer optimal than 30

percent. However, even a few percent gain would be well worth-while in some

cases, so the problem does seem to have practical importance as well as

mathematical interest. (p. 65)

Thus Flood realized that the Nearest Neighbor method is not a good estimate of the TSP

but it created a decent first solution.

 In 1962 a contest brought the TSP national recognition through a contest given by

Proctor and Gamble. A flyer of the contest is pictured below.

The traveling salesman problem recently achieved national prominence when a

soap company used it as the basis of a promotional contest. Prizes up to $10,000

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 5

532 cities (1987 [Padberg, Rinaldi])

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 6

13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 7

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, AND S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as
follows: Find the shortest route (tour) for a salesman starting from a

given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d1i), where doi represents the 'distance' from I to J,
arrange the points in a cyclic order in such a way that the sum of the d1j
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most (n - 1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,3"78 little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the djj used representing road distances as
taken from an atlas.

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.10 It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game' which is concerned with finding
the number of different tours possible over a specified network. The latter problem
is cited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem). The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.4 5'6

393

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 8

The 42 (49) Cities
394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia was selected:

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala.
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass.
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me.

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md.

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del.
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn.
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dj=
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles
between I and J. The d1i have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, * * *, G, successively,
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the d1j of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 9

Combinatorial Explosion

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 10

Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 11

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

Road Distances

Hence this is an instance of the Metric TSP, but not Euclidean TSP.

\0)
cO

 0O

00
n

00
e

cn
C

- I-
tr\

o
C

N
C

cl

cn cn -t
00

rN

C
4

f
0

00\,O

0
tn

0 \
'

C
C

,
C

-)
n

n\ ,O

c
0

t
Q

>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

O
.

0
q O

 00
ol

o
e

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
c

C
t'I t n

+
+ t-oo

0
N

0

0
>

n
cn

0
t-

z
>

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
,

C
,>

e
?-\,

roo +r"
0

e
0

?
0

?
\o

0
c

o
O

-

t" 00]00 C
~

H

F
,,

E
m

N

>
+

>
>

t
+

+
?

+?t
+

O

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t

t
Q

'
m

+m
O

>

tw
#)b

.-w
9

C
-4 C

,
C

4
Q

o
\1-

\0
0

00 ac
s

(0
iC

it

3
i0

t
00

I- ,

t1
?

t (~~~~~~~n
Itm

-<
. r -\o

,O
 C

o ~O
 rO

o
e 4

? 6>t
I

00
M

M

f-

4 r
> 00

C
6 O

 H
e %4

00)
Q

o

an
~

b
6

on
6

H

X

?
O

H

ct

+
tn

a> a>
4

0

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn
r

X
bt

X
e\o \0

to
00

0
0 C

, O
 0

O
n m

?i

? 00
0tC

I
0

0 0 00
.

00 ??o
00

L"O

tO

ci t es) c i
t'Thf?ci

.00'
000

cn
st 0,

4i

~ ~4-~0)
00

ci
C

)
C

S) t~ 'tci\O

'-ci t0-~ ~,
j.0

t 0-
H

00

0C

i

cd
-,o

o-o
r-

coZ\~
00

oo
O

(7

0
ft+m

?
s

SA
?

c
H

cn

ocall 0
0

0
W

C

S-
o

tn
o

cic~~-000000
00m

000-'-'M
~

c
00c

Z
t '.'

t0
t"-'t00

ci)
0

i
0

H

a
-

tc
t Z-000

ci
00

V
-.

t O

0)'
C

,
0

0
0

0"0o
C

it
N

',
''

kf
~~

)'t'ci0000
-~~~~~~~ci'C

00
0000

d
I0~0

cic
-p\

-
0

ci
0

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00 
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00

0
C

X
~~~~~~~~~~~~~~~~~~~~- 

*0 
C

' 
- 

)+ mo 
v00 

1c H
F 

tl 
C

A
 C

 n 
C

 
,oo 

t- 
o 

_I 

-o 
o 

ci 
~cif-~0 

O
 

0 
0 

', 
-, 

, 
00 

- 
t 

r 
0 

o 
0 

C
 

C
 

c 
F4 

i 
" 

0 
\O

'-ci00 
ci 

0N
00\0 

00 
f--0000 

-00X
-= 

~-A
 

tit- 
c 

C
A

 
"C

, 
00 

0N
0c'c 

ci 
0 

c 
c 

i 
c00 roN

 
C

o\ 
r' 

" 
04 

r 
r0 

00 
-\ 

"O
 

cm
 

C
\ 

m
 

0 
rb4 

t- 
-t 

r\. 
o 

m
O

O
 

C
P\ 0 

0 
t3n C

n 
\ d 

U
N

 CP\00 
r-0 

0 
0 

c 
0 

i 
0 

't 
' 

0 
N

 
, 

' 
b0 

""O
 

-- 
m

0 
00 

ci 
m

m
00 0 

't 
'tci)00 

080 O
N

 
i00 

fm
 cN

 
' 

0 
'0 

' 

0) 
ci 

ci 
'-'~0 

'-ci'~0 'tf--00 
000000 

O
N

O
 

c 
\.O

 
ci 

t- 
',tr 

~\C
 0 

w
m

 

ci 
'tci)'-ci00 

00 
f--i 

c 
o 

it N ci 
m

 
4 c 

cO
 

n 
q- tn 

W
 

0e 
ci'- 

O
~ci 

0-?O
 ci 

~i't"0 
'ciO

N
O

 
ci 

c 
I-,0 O

N
- 

'-cic'o 
-,o 

O
C

) C
O

 C
 

)'c\ 
. tO

 X
 

o0 0) 
Q

r0 
F- 

0 
C

')'t 
t-4 

4 
0 

0 
f- 

C
= 

f\ 
C

%
 

f 
00 

-* 

c')t 
C

4 
" 

) 
'cX

Io --\O
 

t 
-f 

O
N

 
0 

ci 
c 

c 
cn 

t 
- 

'tO
-00 

+ 
 

00 
.) 

- 
I 

C
, ) 0) 

F- 
H

 
-00 

0)0 
O

N
 

O
N

O
C

= 
0 

- 

\O
 

-C
O

 
ciO

N
 rC

 
' 

C
A

 
o 

't00 
)o 

n 
O

N
 O

 
rt 

O
 

C
' )\00 

ci ' 
rcic 

o 
00- o"- 

- 

-0 
00 

000 
'- 

c 
ci 

\i' 
C

) 
"0f--00 

0 
0 

M
 

0 
0 

- 
O

N
 

C
IA

 
O

 0C
i-' 

0 
0 

0- 
r0 

00 
C

0 ci 
C

 
00 

0-O
N

 I- 
c 

i 
' 

- 
0 

-c 
c 

0 

ci 
i 

- 
00 

0-0 
c 

0 
'H

'tc 
C

n 
C

Y
'o 

-I 
'. 

-0 
00 

O
t 

) 
0000 

- 
C

A
 

11- 
-00 

C
i ci 

000 
? 

W
 

0 
C

c 
" 

' 
- 

- 
- 

- 
O

 
- -00N

 
0 

M
'- 

\o 
0 

c 
M

q0-~ 
0N

 
cc-\,O

N
'.0 

"C
 ci 

O
O

N
 ci 

\,O
 00 \000 

ci 
't~~~ci00ciC

')C
00c~~ic0 

'-~ 
\O

C
ic 

C
A

ic 
cn -,i,-4t 

tj 

t 
- 

O
 

M
O

O
 ', 

O
 

O
 

V
 

- 
0\, 

C
) 

',) 
'.O

O
N

N
C

) 
00 

" 
C

) 
, -- 

-C
 

C
'\00 

0 
ci 

'I 
O

 
O

'4 
. 

C
l C

n 0 
000 

O
 

t 
0 

0M
 

- 
O

 
-??? 

r 

f-o- 
0 

C
, 

-'t 
O

0 
0 

C
0 

' t 
--C

-) 
o 

0 
00 

0\, 
- O

 
'ci00 

O
C

A
 

t 
00 

0 
M

 
t 

ci 
C

')'-ci 
f--- 

C
''- 

' t '3 t o ci 
o)0000 

'-cit 
' t't 

0'-t 
c')'-+W

'c 
) 

t 
ci 

0 
V

6 
V

 
c 

ci 
ci ~~~ 

~ 't'0 
0-C

 
f- -'c 

ci 
(' 

''c 
)0 

0'-- 
'-i- 

-vi 
-l0'" 

'C
A

~ici 
c 

0c 
0 X

ci 
0- 

ci 
0 't0"0 

0-'-800c C
"C

i 
0 

, 
0 

C
')'t 

', 
00 

C
,) 

cn 
i'c 

tl 
''' 

-i 
i'c 

f 
cici 

C
A

ci 
I- 

\- 
.-0 

-N
#- 

C
A

 
-, 

c 
N

.t 
'' 

C
'. 

iN
-tc'c) 

' 
o~~~~~~~~~~~~~~~~~~~~~~~C

 
H

7O
 

r- 
-1 

r 
tn 

3 
\3 ,O

 
45 

m
 

C
4 

C
A

 
-n+< 

t6> 
c n 

'-f 
0 

O
 C
i4 

\ 
- 'I- 

i 
O

 
\cO

 
O

 
00 

0)0 
cn 

')ci 
'-'- 

i-I 
O

- 
O

N
-C

 
f--"-, 

'-) 
m

 

i ' 
0 

%
,O

 
0O

 
' 

tt-\ 
00\ )O

 
c\ 

0 
04 

0) 
O

N
C

 
f 

O
N

 
-\ C

> 
Y

 
C

f- O
 

ci'3 
' 

+ + 
+ 

)00 0 
O

a 
-0 

00 
ooci 

C
",00 

'-ci'-o 
C

-- 
ci 

't'-ci 
f--f-- 

f-i 
' 

i- 
00 

i 
cO

N
cO

N
 

0 
0- 

0C
 

- 

C
'O

cim
 -c 

-n 
--N

o 
000 

o 0 
0w

'0000 
1. 

t-0 
C

" ,'- 
r- 

00 
'T0 

C
O

N
 00 

O
 

sf-C
-A

 
f- 

' 
iti 

c 

N
m

 
m

 
M

) 
'i s) 

ooO
 

O
O

 
y 

Q
tN

 130dt 
000 C

~, 
O

 
i 

Z 
o 

o 
M

c 
\O

 
8-Q

-) 
C

\ 

S~~~~~~~diF~~~~~~~" 
r*tO

 
"_ G

e 
.- 

V
d iU4(" 

N
6~h 

N
eez 

F#0 
) 

-m
m

etm
 

m
bo 

m
m

 

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 12



Road Distances

Hence this is an instance of the Metric TSP, but not Euclidean TSP.
\0) 

cO
 0O

 

00 
n 

00 
e 

cn 
C

- I- 
tr\ 

o 
C

N
C

 
cl 

cn cn -t 
00 

rN
 

C
4 

f 
0 

00\,O
 

0 
tn 

0 \ 
' 

C
C

, 
C

-) 
n 

n\ ,O
 

c 
0 

t 
Q

 
>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 

O
. 

0 
q O

 00 
ol 

o 
e 

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i 
c 

C
t'I t n 

+ 
+ t-oo 

0 
N

 
0 

0 
> 

n 
cn 

0 
t- 

z 
> 

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
, 

C
,> 

e 
?-\, 

roo +r" 
0 

e 
0 

? 
0 

? 
\o 

0 
c 

o 
O

 
- 

t" 00 ]00 C
~ 

H
 

F 
,, 

E 
m

N
 

> 
+ 

> 
> 

t 
+ 

+ 
? 

+?t 
+ 

O
 

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t 

t 
Q

' 
m

+m
O

 
> 

tw
#)b 

.-w
9 

C
-4 C

, 
C

4 
Q

o 
\1- 

\0 
0 

00 ac 
s 

(0 
iC

 
it 

3 
i0 

t 
00 

I- , 

t1 
? 

t (~~~~~~~n 
Itm

-< 
. r -\o 

,O
 C

o ~O
 rO

o 
e 4 

? 6>t 
I 

00 
M

 
M

 
f- 

4 r 
> 00 

C
6 O

 H
e %4 

00) 
Q

 
o 

an 
~ 

b 
6 

on 
6 

H
 

X
 

? 
O

 
H

 
ct 

+ 
tn 

a> a> 
4 

0 

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn 
r 

X
bt 

X
e\o \0 

to 
00 

0 
0 C

, O
 0 

O
n m

 
?i 

? 00 
0tC

I 
0 

0 0 00 
. 

00 ??o 
00 

L"O
 

tO
 

ci t es ) c i 
t'Thf?ci 

.00' 
000 

cn 
st 0, 

4i 

~ ~4-~0) 
00 

ci 
C

) 
C

S) t~ 'tci\O
 

'-ci t0-~ ~, 
j.0 

t 0- 
H

 
00 

0C
 

i 

cd 
-,o 

o-o 
r- 

coZ\~ 
00 

oo 
O

 
(7 

0 
ft+m

? 
s 

SA
? 

c 
H

 
cn 

ocall 0 
0 

0 
W

 
C

S- 
o 

tn 
o 

cic~~-000000 
00m

000-'-'M
~ 

c 
00c 

Z 
t '.' 

t0 
t"-'t00 

ci) 
0 

i 
0 

H
 

a 
- 

tc 
t Z-000 

ci 
00 

V
-. 

t O
 

0)' 
C

, 
0 

0 
0 

0"0o 
C

it 
N

', 
'' 

kf 
~~ 

)'t'ci0000 
-~~~~~~~ci'C

00 
0000 

d 
I0~0 

cic 
-p\ 

- 
0 

ci 
0 

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00 

0 
C

 

X
~~~~~~~~~~~~~~~~~~~~- 

*0
C

'
-

)+ mo
v00

1c H
F

tl
C

A
 C

 n
C

,oo

t-
o

_I

-o
o

ci
~cif-~0

O

0
0

',
-,

,
00

-
t

r
0

o
0

C

C

c
F4

i
"

0
\O

'-ci00
ci

0N
00\0

00
f--0000

-00X
-=

~-A

tit-
c

C
A

"C

,
00

0N
0c'c

ci
0

c
c

i
c00 roN

C

o\
r'

"
04

r
r0

00
-\

"O

cm

C
\

m

0
rb4

t-
-t

r\.
o

m
O

O

C
P\ 0

0
t3n C

n
\ d

U
N

 CP\00
r-0

0
0

c
0

i
0

't
'

0
N

,

'
b0

""O

--
m

0
00

ci
m

m
00 0

't
'tci)00

080 O
N

i00

fm
 cN

'

0
'0

'

0)
ci

ci
'-'~0

'-ci'~0 'tf--00
000000

O
N

O

c
\.O

ci

t-
',tr

~\C
 0

w
m

ci
'tci)'-ci00

00
f--i

c
o

it N ci
m

4 c

cO

n
q- tn

W

0e
ci'-

O
~ci

0-?O
 ci

~i't"0
'ciO

N
O

ci

c
I-,0 O

N
-

'-cic'o
-,o

O
C

) C
O

 C

)'c\
. tO

 X

o0 0)
Q

r0
F-

0
C

')'t
t-4

4
0

0
f-

C
=

f\
C

%

f
00

-*

c')t
C

4
"

)
'cX

Io --\O

t
-f

O
N

0

ci
c

c
cn

t
-

'tO
-00

+

00
.)

-
I

C
,) 0)

F-
H

-00

0)0
O

N

O
N

O
C

=
0

-

\O

-C
O

ciO

N
 rC

'

C
A

o

't00
)o

n
O

N
 O

rt

O

C
')\00

ci '
rcic

o
00- o"-

-

-0
00

000
'-

c
ci

\i'
C

)
"0f--00

0
0

M

0
0

-
O

N

C
IA

O

 0C
i-'

0
0

0-
r0

00
C

0 ci
C

00

0-O
N

 I-
c

i
'

-
0

-c
c

0

ci
i

-
00

0-0
c

0
'H

'tc
C

n
C

Y
'o

-I
'.

-0
00

O
t

)
0000

-
C

A

11-
-00

C
i ci

000
?

W

0
C

c
"

'
-

-
-

-
O

- -00N

0

M
'-

\o
0

c
M

q0-~
0N

cc-\,O

N
'.0

"C
 ci

O
O

N
 ci

\,O
 00 \000

ci
't~~~ci00ciC

')C
00c~~ic0

'-~
\O

C
ic

C
A

ic
cn -,i,-4t

tj

t
-

O

M
O

O
 ',

O

O

V

-
0\,

C
)

',)
'.O

O
N

N
C

)
00

"
C

)
, --

-C

C
'\00

0
ci

'I
O

O

'4
.

C
l C

n 0
000

O

t
0

0M

-
O

-???

r

f-o-
0

C
,

-'t
O

0
0

C
0

' t
--C

-)
o

0
00

0\,
- O

'ci00

O
C

A

t
00

0
M

t

ci
C

')'-ci
f---

C
''-

' t '3 t o ci
o)0000

'-cit
' t't

0'-t
c')'-+W

'c
)

t
ci

0
V

6
V

c

ci
ci ~~~

~ 't'0
0-C

f- -'c

ci
('

''c
)0

0'--
'-i-

-vi
-l0'"

'C
A

~ici
c

0c
0 X

ci
0-

ci
0 't0"0

0-'-800c C
"C

i
0

,
0

C
')'t

',
00

C
,)

cn
i'c

tl
'''

-i
i'c

f
cici

C
A

ci
I-

\-
.-0

-N
#-

C
A

-,

c
N

.t
''

C
'.

iN
-tc'c)

'
o~~~~~~~~~~~~~~~~~~~~~~~C

H

7O

r-
-1

r
tn

3
\3 ,O

45

m

C
4

C
A

-n+<

t6>
c n

'-f
0

O
 C
i4

\
- 'I-

i
O

\cO

O

00

0)0
cn

')ci
'-'-

i-I
O

-
O

N
-C

f--"-,

'-)
m

i '
0

%
,O

0O

'

tt-\
00\)O

c\

0
04

0)
O

N
C

f

O
N

-\ C

>
Y

C

f- O

ci'3
'

+ +
+

)00 0
O

a
-0

00
ooci

C
",00

'-ci'-o
C

--
ci

't'-ci
f--f--

f-i
'

i-
00

i
cO

N
cO

N

0
0-

0C

-

C
'O

cim
 -c

-n
--N

o
000

o 0
0w

'0000
1.

t-0
C

" ,'-
r-

00
'T0

C
O

N
 00

O

sf-C
-A

f-

'
iti

c

N
m

m

M

)
'i s)

ooO

O
O

y

Q
tN

 130dt
000 C

~,
O

i

Z
o

o
M

c
\O

8-Q

-)
C

\

S~~~~~~~diF~~~~~~~"
r*tO

"_ G

e
.-

V
d iU4("

N
6~h

N
eez

F#0
)

-m
m

etm

m
bo

m
m

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 12

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Outline

Introduction

Examples of TSP Instances

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 14

In the following, there are a few different runs of the demo. In the our lecture,
we choose a different branching variable in iteration 7 (x12,13), and set it first
to 0 and then to 1.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 15

Iteration 1:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations

1

1

0.5
0.5

0.5

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1 1

1

1

1

Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2,41,42

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations

1

1

0.5
0.5

0.5

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1 1

1

1

1

Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2,41,42

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations

1

1

0.5
0.5

0.5

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1 1

1

1

1

Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2,41,42

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations

1

1

0.5
0.5

0.5

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1 1

1

1

1

Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 2:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −676.000000, 861 variables, 946 constraints, 1802 iterations

1

1

1

1

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

0.5

1

0.5

0.5

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17

Iteration 2: Eliminate Subtour 3− 9

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −676.000000, 861 variables, 946 constraints, 1802 iterations

1

1

1

1

1

1

1
1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

0.5

1

0.5

0.5

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17

Iteration 3:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −681.000000, 861 variables, 947 constraints, 1984 iterations

1

1

1

1

1

1

1

1

1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

11

1

1

1 1

0.5

1 1

0.5

0.5

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 18

Iteration 3: Eliminate Subtour 24,25,26,27

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −681.000000, 861 variables, 947 constraints, 1984 iterations

1

1

1

1

1

1

1

1

1

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

1

11

1

1

1 1

0.5

1 1

0.5

0.5

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 18

Iteration 4:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations

1

1

1

1

1

1

1

1

0.5

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

0.5

0.5

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 4: Eliminate Cut 11− 23

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations

1

1

1

1

1

1

1

1

0.5

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

0.5

0.5

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 4: Eliminate Cut 11− 23

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations

1

1

1

1

1

1

1

1

0.5

1
1

11

0.5

1

1

0.5

0.5

1

1 1

1

1

1

0.5

0.5

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:∑
i∈S,j∈V\S

x(max(i, j),min(i, j)) ≥ 2.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 5:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −686.000000, 861 variables, 949 constraints, 2446 iterations

1

1

1

1

1

1

1

1

1

1
1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 20

Iteration 5: Eliminate Subtour 13− 23

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −686.000000, 861 variables, 949 constraints, 2446 iterations

1

1

1

1

1

1

1

1

1

1
1

11

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 20

Iteration 6:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −694.500000, 861 variables, 950 constraints, 1690 iterations

1

1

1

1

1

1

1

1

0.5

1
1

11

0.5

1

1

0.5

0.5

1

1 1

0.5

1

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 21

Iteration 6: Eliminate Cut 13− 17

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −694.500000, 861 variables, 950 constraints, 1690 iterations

1

1

1

1

1

1

1

1

0.5

1
1

11

0.5

1

1

0.5

0.5

1

1 1

0.5

1

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 21

Iteration 7:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −697.000000, 861 variables, 951 constraints, 2212 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

11

0.5

0.5

1

0.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 22

Iteration 7: Branch 1a x18,15 = 0

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −697.000000, 861 variables, 951 constraints, 2212 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

11

0.5

0.5

1

0.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 22

Iteration 8:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −698.000000, 861 variables, 952 constraints, 1878 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

11

1

0.5

0.50.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 23

Iteration 8: Branch 2a x17,13 = 0

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −698.000000, 861 variables, 952 constraints, 1878 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

11

1

0.5

0.50.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 23

Iteration 9:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −699.000000, 861 variables, 953 constraints, 2281 iterations

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24

Iteration 9: Branch 2b x17,13 = 1

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −699.000000, 861 variables, 953 constraints, 2281 iterations

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24

Iteration 10:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −700.000000, 861 variables, 954 constraints, 2398 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

0.51

0.5

1

1

0.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 10:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −700.000000, 861 variables, 954 constraints, 2398 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

0.51

0.5

1

1

0.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 10: Branch 1b x18,15 = 1

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −700.000000, 861 variables, 954 constraints, 2398 iterations

1

1

1

1

1

1

1

1

1

0.5
1

0.5

0.51

0.5

1

1

0.5

0.5

1

1 1

0.5

0.5

0.5

1

0.5

0.5

1

0.5

0.5

0.5

1

0.5

0.5

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 11:

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −701.000000, 861 variables, 953 constraints, 2506 iterations

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 26

Iteration 11: Branch & Bound terminates

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

Objective value: −701.000000, 861 variables, 953 constraints, 2506 iterations

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 26

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 6762: LP solution 676

3: LP solution 6813: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 6762: LP solution 676

3: LP solution 6813: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 6813: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 6813: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0

x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0

x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0

x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699 10: LP solution 700

10: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 700

10: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 700

10: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 700

10: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 700

10: LP solution 700

11: Valid tour 701

11: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 676

2: LP solution 676

3: LP solution 681

3: LP solution 681

4: LP solution 682.5

4: LP solution 682.5

5: LP solution 686

5: LP solution 686

6: LP solution 694.5

6: LP solution 694.5

7: LP solution 697

7: LP solution 697

8: LP solution 698

8: LP solution 698

9: Valid tour 699

9: Valid tour 699

10: LP solution 700

10: LP solution 700

11: Valid tour 701

11: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Iteration 7: Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

What about choosing a different branching variable?

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28

Iteration 7: Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

What about choosing a different branching variable?

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28

Solving Progress (Alternative Branch 1)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x15,18 = 1 x15,18 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 29

Solving Progress (Alternative Branch 1)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x15,18 = 1 x15,18 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 29

Alternative Branch 1: x18,15, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 30

Alternative Branch 1: x18,15, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 30

Alternative Branch 1a: x18,15 = 1, Objective 701 (Valid Tour)

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 31

Alternative Branch 1b: x18,15 = 0, Objective 698

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

1

0.500.50

0.50 0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 32

Solving Progress (Alternative Branch 1)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: valid tour 701 10: LP solution 698

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x18,15 = 1 x18,15 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 33

Solving Progress (Alternative Branch 2)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,22 = 1 x27,22 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 34

Solving Progress (Alternative Branch 2)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,22 = 1 x27,22 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 34

Alternative Branch 2: x27,22, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 35

Alternative Branch 2: x27,22, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 35

Alternative Branch 2a: x27,22 = 1, Objective 708 (Valid tour)

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 36

Alternative Branch 2b: x27,22 = 0, Objective 697.75

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

0.75

0.25

0.50

0.75

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1 0.25

0.25

0.25

1 0.75

1

0.25

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 37

Solving Progress (Alternative Branch 2)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: valid tour 708 10: LP solution 697.75

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,22 = 1 x27,22 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 38

Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 39

Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 39

Alternative Branch 3: x27,24, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 40

Alternative Branch 3: x27,24, Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 40

Alternative Branch 3a: x27,24 = 1, Objective 697.75

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

0.75

0.25

0.50

0.75

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1 0.25

0.25

0.25

1 0.75

1

0.25

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 41

Alternative Branch 3b: x27,24 = 0, Objective 698

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 42

Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: LP solution 697.75 10: LP solution 698

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 43

Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: LP solution 697.75 10: LP solution 698

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 43

Conclusion (1/2)

How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON

It can be shown by introducing all links for which aI2 - A that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK
It is clear that we have left unanswered practically any question one

might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M.

Coxeter, 11th ed., Macmillan, New York, 1939.
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method

for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953).

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc-
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc.
Sixth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem," Contributions to the Theory of Games II,
Princeton University Press, 1953.

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal
XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc.
Am. Math. Soc. II, 6 (December, 1951).

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (2/2)

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3− 9

Eliminate Subtour 10, 11, 12

Eliminate Subtour 11− 23

Eliminate Subtour 13− 23

Eliminate Cut 13− 17

Eliminate Subtour 24, 25, 26, 27

408 DANTZIG FULKERSON, AND JOHNSON

use the remaining admissible links. By extending this type of combin-
atorial argument to the range of values of the 'slack' variables yK, it is
often possible at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remaining tours for
minimum length is a feasible approach.

THE 49-CITY PROBLEM*
The optimal tour x is shown in Fig. 16. The proof that it is optimal is

given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(x) is a minimum for L We distinguish the following subsets of the
42 cities:

Si= {1, 2, 41, 421 S5= 113, 14, , 231
S2i =3,4, ,91 S= 113, 14, 15, 16, 171
S ={1, 2, ,9, 29, 30, ..., 42} S7{= 24, 25, 26, 271.
S4= 111, 12, ...,23}

Except for two inequalities which we will discuss in a moment, the pro-
gramming problem may now be written as the following 65 relations:t

2; XIj=2 (I 1 42), X41,1 < 1 X4,3 < 1 X7,6 <1

X12,11<1, X14,13<1, X20,19<1

X23,22< 1, X25,24?l, X27,26<1, X29,28l< , X31,30<

X33,32 < 1, X3,34<1, X37,36?1, XIjj2, - XIjjB2,

2 xIJ >2, z xIJ>2, z xIJ?52, 2 xIJ<4, 2 xIJ?3.
88"93 S4,034 85,96 '86 8 7

The remaining two relations (66 and 67) are perhaps most easily described
verbally.

66: X14,15 minus the sum of all other Xij on links out of 15, 16, 19, except for xm8,
X18,16 X17,16, x19,18, and x20 ,9, is not positive.

67: faijxij?42, where a23,22=2, a26.25=0, all other aij=l except aIJ=O if
Xjj is a non-basic variable and either (a) I is in S3, J not in S3, or (b) I or
J is 10, 21, 25, 26, 27, or 28.t

These two inequalities are satisfied by all tours. For example, if a
tour were to violate the first one, it must have successively X15,14=1,

* As indicated earlier, it was possible to treat this as a 42-city problem.

t 2,s sxIJ means the sum of all variables where only one of the subscripts I or J is
in S. Us XIj means the sum of all variables such that I and J are in S-see relations
(4), (5), (6).

I We are indebted to I. Glicksberg of Rand for pointing out relations of this
kind to us.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 45

Conclusion (2/2)

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3− 9

Eliminate Subtour 10, 11, 12

Eliminate Subtour 11− 23

Eliminate Subtour 13− 23

Eliminate Cut 13− 17

Eliminate Subtour 24, 25, 26, 27

408 DANTZIG FULKERSON, AND JOHNSON

use the remaining admissible links. By extending this type of combin-
atorial argument to the range of values of the 'slack' variables yK, it is
often possible at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remaining tours for
minimum length is a feasible approach.

THE 49-CITY PROBLEM*
The optimal tour x is shown in Fig. 16. The proof that it is optimal is

given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(x) is a minimum for L We distinguish the following subsets of the
42 cities:

Si= {1, 2, 41, 421 S5= 113, 14, , 231
S2i =3,4, ,91 S= 113, 14, 15, 16, 171
S ={1, 2, ,9, 29, 30, ..., 42} S7{= 24, 25, 26, 271.
S4= 111, 12, ...,23}

Except for two inequalities which we will discuss in a moment, the pro-
gramming problem may now be written as the following 65 relations:t

2; XIj=2 (I 1 42), X41,1 < 1 X4,3 < 1 X7,6 <1

X12,11<1, X14,13<1, X20,19<1

X23,22< 1, X25,24?l, X27,26<1, X29,28l< , X31,30<

X33,32 < 1, X3,34<1, X37,36?1, XIjj2, - XIjjB2,

2 xIJ >2, z xIJ>2, z xIJ?52, 2 xIJ<4, 2 xIJ?3.
88"93 S4,034 85,96 '86 8 7

The remaining two relations (66 and 67) are perhaps most easily described
verbally.

66: X14,15 minus the sum of all other Xij on links out of 15, 16, 19, except for xm8,
X18,16 X17,16, x19,18, and x20 ,9, is not positive.

67: faijxij?42, where a23,22=2, a26.25=0, all other aij=l except aIJ=O if
Xjj is a non-basic variable and either (a) I is in S3, J not in S3, or (b) I or
J is 10, 21, 25, 26, 27, or 28.t

These two inequalities are satisfied by all tours. For example, if a
tour were to violate the first one, it must have successively X15,14=1,

* As indicated earlier, it was possible to treat this as a 42-city problem.

t 2,s sxIJ means the sum of all variables where only one of the subscripts I or J is
in S. Us XIj means the sum of all variables such that I and J are in S-see relations
(4), (5), (6).

I We are indebted to I. Glicksberg of Rand for pointing out relations of this
kind to us.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 45

CPLEX

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 46

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 47

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 48

	Introduction
	Examples of TSP Instances
	Demonstration

