Randomised Algorithms

Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

QuickSort

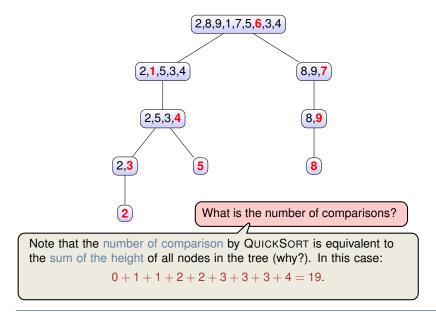
QUICKSORT (Input *A*[1], *A*[2], ..., *A*[*n*])

1: Pick an element from the array, the so-called pivot

2: If
$$|A| = 0$$
 or $|A| = 1$ then

- 3: return A
- 4: **else**
- 5: Create two subarrays A_1 and A_2 (without the pivot) such that:
- 6: A_1 contains the elements that are smaller than the pivot
- 7: A_2 contains the elements that are greater (or equal) than the pivot
- 8: QUICKSORT(A1)
- 9: QUICKSORT(A₂)
- 10: return A
 - Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot. $\Rightarrow A_1 = (2, 1, 5, 3, 4)$ and $A_2 = (8, 9, 7)$
 - Worst-Case Complexity (number of comparisons) is $\Theta(n^2)$, while Average-Case Complexity is $O(n \log n)$.

We will now give a proof of this "well-known" result!



How to pick a good pivot? We don't, just pick one at random.

This should be your standard answer in this course ©

Let us analyse QUICKSORT with random pivots.

- 1. Assume A consists of *n* different numbers, w.l.o.g., {1, 2, ..., *n*}
- 2. Let H_i be the deepest level where element *i* appears in the tree. Then the number of comparison is $H = \sum_{i=1}^{n} H_i$
- 3. We will prove that exists C > 0 such that

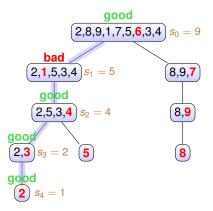
$$\mathbf{P}\left[H \leq Cn \log n\right] \geq 1 - n^{-1}.$$

4. Actually, we will prove sth slightly stronger:

$$\mathbf{P}\left[\bigcap_{i=1}^{n} \{H_i \leq C \log n\}\right] \geq 1 - n^{-1}.$$

Randomised QuickSort: Analysis (2/4)

- Let P be a path from the root to the deepest level of some element
 - A node in P is called good if the corresponding pivot partitions the array into two subarrays each of size at most 2/3 of the previous one
 - otherwise, the node is bad
- Further let s_t be the size of the array at level t in P.



■ Element 2: $(2, 8, 9, 1, 7, 5, 6, 3, 4) \rightarrow (2, 1, 5, 3, 4) \rightarrow (2, 5, 3, 4) \rightarrow (2, 3) \rightarrow (2)$

Randomised QuickSort: Analysis (3/4)

- Consider now any element $i \in \{1, 2, ..., n\}$ and construct the path P = P(i) one level by one
- For *P* to proceed from level *k* to k + 1, the condition $s_k > 1$ is necessary

How far could such a path *P* possibly run until we have $s_k = 1$?

We start with s₀ = n
First Case, good node: s_{k+1} ≤ ²/₃ ⋅ s_k. This even holds always, i.e., deterministically!
⇒ There are at most T = log n / log(3/2) < 3 log n many good nodes on any path P.
Assume |P| ≥ C log n for C := 24 ⇒ number of bad vertices in the first 24 log n levels is more than 21 log n. Let us now upper bound the probability that this "bad event" happens!

Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log *n* vertices of *P* to the deepest level of element *i*.
- For any level $j \in \{0, 1, ..., 24 \log n 1\}$, define an indicator variable X_j : • $X_j = 1$ if the node at level j is **bad** • $X_j = 0$ if the node at level j is good. • $\mathbf{P}[X_j = 1 \mid X_0 = x_0, ..., X_{j-1} = x_{j-1}] \le \frac{2}{3}$ • $X := \sum_{j=0}^{24 \log n - 1} X_j$ satisfies relaxed independence assumption (Lecture 2) Question: But what if the path *P* does not reach level j? Answer: We can then simply define X_j as the result of an independent coin flip with probability 2/3.

Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n vertices of P to the deepest level of element i.
- For any level $i \in \{0, 1, \dots, 24 \log n 1\}$, define an indicator variable X_i : bad good bad $\ell/3$ $2\ell/3$ ℓ
 - $X_j = 1$ if the node at level *j* is **bad** $X_i = 0$ if the node at level *j* is good.

h

• **P** [
$$X_j = 1 \mid X_0 = x_0, \dots, X_{j-1} = x_{j-1}$$
] $\leq \frac{2}{3}$

$$X := \sum_{j=0}^{24 \log n-1} X_j$$
 satisfies relaxed independence assumption (Lecture 2)

We can now apply the "nicer" Chernoff Bound!

• We have $\mathbf{E}[X] < (2/3) \cdot 24 \log n = 16 \log n$

• Then, by the "nicer" Chernoff Bounds
$$\begin{array}{c} \mathbf{P}[X \ge \mathbf{E}[X] + t] \le e^{-2t^2/n} \\ \mathbf{P}[X > 21 \log n] \le \mathbf{P}[X > \mathbf{E}[X] + 5 \log n] \le e^{-2(5 \log n)^2/(24 \log n)} \\ = e^{-(50/24) \log n} \le n^{-2}. \end{array}$$

- Hence *P* has more than 24 log *n* nodes with probability at most n^{-2} .
- As there are in total n paths, by the union bound, the probability that at least one of them has more than 24 log n nodes is at most n^{-1} .

pivot

- Well-known: any comparison-based sorting algorithm needs Ω(n log n)
- A classical result: expected number of comparison of randomised QUICKSORT is $2n \log n + O(n)$ (see, e.g., book by Mitzenmacher & Upfal)

Supervision Exercise: Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QUICKSORT is much easier to implement!

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

- Besides sums of independent bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the X_i may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.

• Hoeffding's Lemma helps us here:
Hoeffding's Extension Lemma
Let X be a random variable with mean 0 such that
$$a \le X \le b$$
. Then for
all $\lambda \in \mathbb{R}$,
 $\mathbf{E} \left[e^{\lambda X} \right] \le \exp \left(\frac{(b-a)^2 \lambda^2}{8} \right)$

We omit the proof of this lemma!

Hoeffding Bounds

- Hoeffding's Inequality -

Let X_1, \ldots, X_n be independent random variable with mean μ_i such that $a_i \leq X_i \leq b_i$. Let $X = X_1 + \ldots + X_n$, and let $\mu = \mathbf{E}[X] = \sum_{i=1}^n \mu_i$. Then for any t > 0

$$\mathbf{P}[X \ge \mu + t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right),$$

and

$$\mathbf{P}\left[X \le \mu - t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Proof Outline (skipped):

• Let
$$X'_i = X_i - \mu_i$$
 and $X' = X'_1 + \ldots + X'_n$, then **P** [$X \ge \mu + t$] = **P** [$X' \ge t$]

•
$$\mathbf{P}[X' \ge t] \le e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X'_{i}}\right] \le \exp\left[-\lambda t + \frac{\lambda^{2}}{8} \sum_{i=1}^{n} (b_{i} - a_{i})^{2}\right]$$

• Choose
$$\lambda = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$$
 to get the result.

This is not magic! you just need to optimise λ !

Framework -

Suppose, we have independent random variables X_1, \ldots, X_n . We want to study the random variable:

$$f(X_1,\ldots,X_n)$$

Some examples:

1.
$$X = X_1 + \ldots + X_n$$

- 2. In balls into bins, X_i indicates where ball *i* is allocated, and $f(X_1, \ldots, X_m)$ is the number of empty bins
- 3. X_i indicates if the *i*-th edge is present in a graph, and $f(X_1, \ldots, X_m)$ represents the number of connected components of *G*

In all those cases (and more) we can easily prove concentration of $f(X_1, \ldots, X_n)$ around its mean by the so-called **Method of Bounded Differences**.

Method of Bounded Differences

A function *f* is called Lipschitz with parameters $\mathbf{c} = (c_1, \dots, c_n)$ if for all $i = 1, 2, \dots, n$,

 $|f(x_1, x_2, \ldots, x_{i-1}, \mathbf{x}_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, \mathbf{\widetilde{x}}_i, x_{i+1}, \ldots, x_n)| \leq c_i,$

where x_i and \tilde{x}_i are in the domain of the *i*-th coordinate.

McDiarmid's inequality Let $X_1, ..., X_n$ be independent random variables. Let f be Lipschitz with parameters $\mathbf{c} = (c_1, ..., c_n)$. Let $X = f(X_1, ..., X_n)$. Then for any t > 0,

$$\mathbf{P}\left[X \ge \mu + t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right),$$

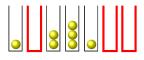
and

$$\mathbf{P}\left[X \le \mu - t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

- Notice the similarity with Hoeffding's inequality!
- The proof is omitted here (it requires the concept of martingales).

Extensions of Chernoff Bounds

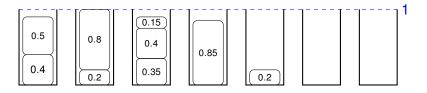
Applications of Method of Bounded Differences



- Consider again *m* balls assigned uniformly at random into *n* bins.
- Enumerate the balls from 1 to *m*. Ball *i* is assigned to a random bin X_i
- Let Z be the number of empty bins (after assigning the m balls)
- $Z = Z(X_1, ..., X_m)$ and Z is Lipschitz with $\mathbf{c} = (1, ..., 1)$ (If we move one ball to another bin, number of empty bins changes by ≤ 1 .)
- By McDiarmid's inequality, for any $t \ge 0$,

$$\mathbf{P}[|Z-\mathbf{E}[Z]| > t] \leq 2 \cdot e^{-2t^2/m}.$$

This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.



- We are given *n* items of sizes in the unit interval [0, 1]
- · We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes X_i are independent random variables in [0, 1]
- Let $B = B(X_1, ..., X_n)$ be the optimal number of bins
- The Lipschitz conditions holds with c = (1,...,1). Why?
- Therefore

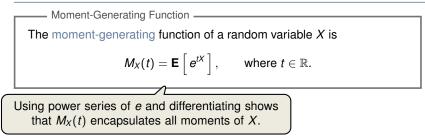
$$\mathbf{P}[|B-\mathbf{E}[B]| \ge t] \le 2 \cdot e^{-2t^2/n}.$$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Moment Generating Functions



Lemma

- 1. If *X* and *Y* are two r.v.'s with $M_X(t) = M_Y(t)$ for all $t \in (-\delta, +\delta)$ for some $\delta > 0$, then the distributions *X* and *Y* are identical.
- 2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Proof of 2: $M_{X+Y}(t) = \mathbf{E}\left[e^{t(X+Y)}\right] = \mathbf{E}\left[e^{tX} \cdot e^{tY}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{tX}\right] \cdot \mathbf{E}\left[e^{tY}\right] = M_X(t)M_Y(t) \quad \Box$