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More Remarks on MAX-CUT & Related Work (non-examinable)

All Graphs (Worst-Case)
“naive” randomised algorithm from the first lecture

achieves approximation ratio of 2, that is eopt
E[ e(S,Sc ) ]

≤ 2

further results on the distribution of e(S,Sc) [Question 1.4,1.5]
not too hard to derandomise the algorithm [Question 1.3]

“more clever” randomised algorithm
combines the ideas of linear programming, randomised rounding (but also
semi-definite programming)
achieves approximation ratio of 1

0.878 ≈ 1.14 [book by Shmoys, Williamson]

Special Graphs
If G is a random graph with edge probability 1/2, then the naive algorithm
achieves approximation ratio of 1 + o(1) [Question 2.9]

For any ε > 0, there is a randomised algorithm with running time
O(n2)2O(1/ε2) with E [ e(S,Sc) ] ≥ eopt −O(εn2)
[Mathieu, Schudy: “Yet Another Algorithm for Dense Max Cut: Go Greedy”,
SODA’2008, pages 176–182]
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Outline

How to Derive Chernoff Bounds

Application 1: Balls into Bins
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General Recipe for Deriving Chernoff Bounds

The three main steps in deriving Chernoff bounds for sums of indepen-
dent random variables X = X1 + · · ·+ Xn are:

1. Instead of working with X , we switch to the moment generating
function eλX , λ > 0 and apply Markov’s inequality ; E

[
eλX ]

2. Compute an upper bound for E
[

eλX ] (using independence)

3. Optimise value of λ to obtain best tail bound

Recipe
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Chernoff Bound: Proof

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

Chernoff Bound (General Form, Upper Tail)

Proof:

1. For λ > 0,

P [ X ≥ (1 + δ)µ ] ≤
eλx is incr

P
[

eλX ≥ eλ(1+δ)µ
]
≤

Markov
e−λ(1+δ)µE

[
eλX

]

2. E
[

eλX ] = E
[

eλ
∑n

i=1 Xi
]

=
indep

∏n
i=1 E

[
eλXi

]
3.

E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

epi (e
λ−1)
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any 0 < δ < 1 it holds that

P [ X ≤ (1− δ)µ ] ≤
[

e−δ

(1− δ)1−δ

]µ
,

and thus, by substitution, for any t < µ,

P [ X ≤ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Lower Tail)

Exercise on Supervision Sheet
Hint: multiply both sides by −1 and repeat the proof of the Chernoff Bound
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Nicer Chernoff Bounds

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then,

For all t > 0,
P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X ≤ E [ X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P [ X ≥ (1 + δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

3

)

P [ X ≤ (1− δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

2

)

“Nicer” Chernoff Bounds

All upper tail bounds hold even under a relaxed independence assumption:
For all 1 ≤ i ≤ n and x1, x2, . . . , xi−1 ∈ {0, 1},

P [ Xi = 1 | X1 = x1, . . . ,Xi−1 = xi−1 ] ≤ pi .
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Balls into Bins

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

A very natural but also rich mathematical model

In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.
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Balls into Bins: Bounding the Maximum Load (1/4)

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

Question 1: How large is the maximum load if m = 2n log n?

Focus on an arbitrary single bin. Let Xi the indicator variable which is 1 iff
ball i is assigned to this bin. Note that pi = P [ Xi = 1 ] = 1/n.

The total balls in the bin is given by X :=
∑n

i=1 Xi .

Since m = 2n log n, then µ = E [ X ] = 2 log n

P [ X ≥ t ] ≤ e−µ(eµ/t)t

here we could have used
the “nicer” bounds as well!

By the Chernoff Bound,

P [ X ≥ 6 log n ] ≤ e−2 log n
(

2e log n
6 log n

)6 log n
≤ e−2 log n = n−2
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The total balls in the bin is given by X :=
∑n

i=1 Xi .

Since m = 2n log n, then µ = E [ X ] = 2 log n

P [ X ≥ t ] ≤ e−µ(eµ/t)t

here we could have used
the “nicer” bounds as well!

By the Chernoff Bound,

P [ X ≥ 6 log n ] ≤ e−2 log n
(

2e log n
6 log n

)6 log n
≤ e−2 log n = n−2
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Balls into Bins: Bounding the Maximum Load (2/4)

Let Ej := {X (j) ≥ 6 log n}, that is, bin j receives at least 6 log n balls.

We are interested in the probability that at least one bin receives at least
6 log n balls⇒ this is the event

⋃n
j=1 Ej

By the Union Bound,

P

 n⋃
j=1

Ej

 ≤ n∑
j=1

P [ Ej ] ≤ n · n−2 = n−1.

Therefore whp, no bin receives at least 6 log n balls

By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability :
An event E (that implicitly depends on an input parameter n) occurs whp if

P [ E ]→ 1 as n→∞.
This is a very standard notation in randomised algorithms

but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:(
e log log n

4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))
The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P [ X ≥ 4 log n/ log log n ] ≤ n−2,

thus by the Union Bound, no bin receives more than Ω (log n/ log log n) balls
with probability at least 1− 1/n.
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Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms (cov-
ered in Chapter 17 of the textbook by Mitzenmacher and Upfal)
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ACM Paris Kanellakis Theory and Practice Award 2020

For “the discovery and analysis of balanced allocations, known as the
power of two choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft
and Dropbox, which are all based on variants of the power of two
choices paradigm. There are many other software systems that use
balanced allocations as an important ingredient.”
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Simulation

https://www.dimitrioslos.com/balls_and_bins/visualiser.html
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