Randomised Algorithms

Lecture 11: Spectral Graph Theory

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023

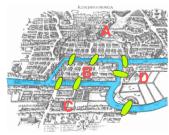
Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Origin of Graph Theory



Source: Wikipedia

Seven Bridges at Königsberg 1737

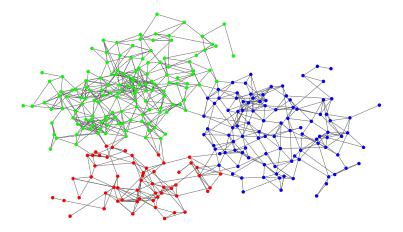
Source: Wikipedia

Leonhard Euler (1707-1783)



Is there a tour which crosses each bridge **exactly once**?

Graphs Nowadays: Clustering



Goal: Use spectrum of graphs (unstructured data) to extract clustering (communitites) or other structural information.

Graph Clustering (applications)

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - .
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means. k-medians. k-centres. etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

Graphs and Matrices

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths

_

Matrices

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

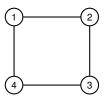
A Simplified Clustering Problem

Adjacency Matrix

Adjacency matrix —

Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u,v\} \in E \\ 0 & \text{otherwise.} \end{cases}$$



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Properties of A:

- The sum of elements in each row/column i equals the degree of the corresponding vertex i, deg(i)
- Since G is undirected, A is symmetric

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors -

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Graph Spectrum

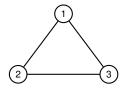
Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*.

For symmetric matrices: algebraic multiplicity = geometric multiplicity

Example 1

Bonus: Can you find a short-cut to $det(\mathbf{A} - \lambda \cdot \mathbf{I})$?

Exercise: What are the Eigenvalues and Eigenvectors?

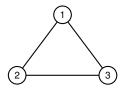


$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Example 1

Bonus: Can you find a short-cut to $det(\mathbf{A} - \lambda \cdot \mathbf{I})$?

Exercise: What are the Eigenvalues and Eigenvectors?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Solution:

- The three eigenvalues are $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$.
- The three eigenvectors are (for example):

$$f_1=\begin{pmatrix}1\\0\\-1\end{pmatrix},\quad f_2=\begin{pmatrix}-\frac{1}{2}\\1\\-\frac{1}{2}\end{pmatrix},\quad f_3=\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

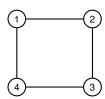
Laplacian Matrix

Laplacian Matrix -

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.



$$\boldsymbol{L} = \begin{pmatrix} 1 & -1/2 & 0 & -1/2 \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{pmatrix}$$

Properties of L:

- The sum of elements in each row/column equals zero
- L is symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

- Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Exercise: Proof this correspondence. Hint: Use that $\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A}$.

Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors ——

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M} \mathbf{x} = \lambda \mathbf{x}$$
.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum ——

Let **L** be the Laplacian matrix of a *d*-regular graph *G* with *n* vertices. Then, **L** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n .

Useful Facts of Graph Spectrum

Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector **1**
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
- 3. $\lambda_n < 2$
- 4. $\lambda_n = 2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

A Min-Max Characterisation of Eigenvalues and Eigenvectors

- Courant-Fischer Min-Max Formula

Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \ i \in \{1, \dots, k\} \\ x^{(i)} \perp x^{(i)}}} \max_{i \in \{1, \dots, k\}} \frac{x^{(i)^T} \mathbf{M} x^{(i)}}{x^{(i)^T} x^{(i)}}.$$

The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{\boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} \frac{\boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}\\ x \mid f_x}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by f_2

Quadratic Forms of the Laplacian

- Lemma

Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

$$x^T L x = \sum_{\{u,v\} \in E} \frac{(x_u - x_v)^2}{d}.$$

Proof:

$$x^{T} \mathbf{L} x = x^{T} \left(\mathbf{I} - \frac{1}{d} \mathbf{A} \right) x = x^{T} x - \frac{1}{d} x^{T} \mathbf{A} x$$

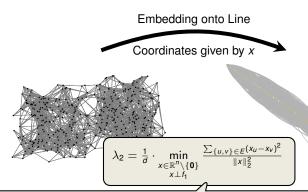
$$= \sum_{u \in V} x_{u}^{2} - \frac{2}{d} \sum_{\{u,v\} \in E} x_{u} x_{v}$$

$$= \frac{1}{d} \sum_{\{u,v\} \in E} (x_{u}^{2} + x_{v}^{2} - 2x_{u} x_{v})$$

$$= \sum_{\{v,v\} \in E} \frac{(x_{u} - x_{v})^{2}}{d}.$$

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?



The coordinates in the vector **x** indicate how similar/dissimilar vertices are. Edges between dissimilar vertices are penalised quadratically.

Outline

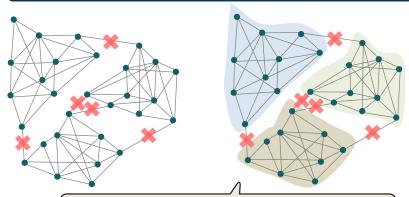
Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

A Simplified Clustering Problem

Partition the graph into **connected components** so that any pair of vertices in the same component is connected, but vertices in different components are not.



We could obviously solve this easily using DFS/BFS, but let's see how we can tackle this using the spectrum of L!

Example 2

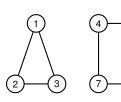
Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}$$

Example 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

Solution:

- The two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$.
- The corresponding two eigenvectors are:

Thus we can easily solve the simplified clustering prolem by computing the eigenvectors with eigenvalue

$$f_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ (or } f_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad f_{2} = \begin{pmatrix} -1/3 \\ -1/3 \\ -1/3 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix} \text{)}$$

Next Lecture: A fine-grained approach works even if the clusters are **sparsely** connected!

Proof of Lemma, 2nd statement (non-examinable)

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:

G has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

- Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
- Clearly, the χ_{C_i} 's are orthogonal
- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least k connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- $\Rightarrow f_1, \dots, f_k$ constant on connected components
- as f₁,..., f_k are pairwise orthogonal, G must have k different connected components.