Randomised Algorithms

Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

$$
\text { s.t. } \quad X=\bigcup_{S \in \mathcal{C}} S
$$

The Weighted Set-Cover Problem

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$
Sum over the costs of all sets in \mathcal{C}

$$
\text { s.t. } \quad X=\bigcup_{S \in \mathcal{C}} S
$$

The Weighted Set-Cover Problem

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$
Sum over the costs of all sets in \mathcal{C}

$$
\text { s.t. } \quad X=\bigcup_{S \in \mathcal{C}} S
$$

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
$c:$	S_{6}				
2	3	3	5	1	2

The Weighted Set-Cover Problem

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$
Sum over the costs of all sets in \mathcal{C}

$$
\text { s.t. } \quad X=\bigcup_{S \in \mathcal{C}} S .
$$

Remarks:

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
$c:$	S_{6}				
2	3	3	5	1	2

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems

The Weighted Set-Cover Problem

Set Cover Problem

- Given: set X and a family of subsets \mathcal{F}, and a cost function $c: \mathcal{F} \rightarrow \mathbb{R}^{+}$
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$
Sum over the costs s.t. $\quad X=\bigcup_{S \in \mathcal{C}} S$.

23
Question: How can we reduce the Vertex-Cover problem to the Set-Cover problem?

Remarks:

$\begin{array}{llllll}S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6}\end{array}$ c: $2 \begin{array}{lllll}2 & 3 & 5 & 1\end{array}$

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems

Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

Setting up an Integer Program

0-1 Integer Program
$\begin{array}{lll}\text { minimize } & \sum_{S \in \mathcal{F}} c(S) y(S) & \\ \text { subject to } & \sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1 & \text { for each } x \in X \\ & y(S) & \in\{0,1\}\end{array} \quad$ for each $S \in \mathcal{F}$

Setting up an Integer Program

0-1 Integer Program
minimize
subject to

$$
\sum_{S \in \mathcal{F}} c(S) y(S)
$$

$$
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1 & & \text { for each } x \in X \\
y(S) & \in\{0,1\} & & \text { for each } S \in \mathcal{F}
\end{aligned}
$$

Linear Program
minimize

$$
\sum_{S \in \mathcal{F}} c(S) y(S)
$$

subject to

$$
\begin{aligned}
\sum_{S \in \mathcal{F}: x \in S} y(S) & \geq 1 & & \text { for each } x \in X \\
y(S) & \in[0,1] & & \text { for each } S \in \mathcal{F}
\end{aligned}
$$

Back to the Example

Back to the Example

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Back to the Example

Back to the Example

The strategy employed for Vertex-Cover would take all 6 sets!

Back to the Example

The strategy employed for Vertex-Cover would take all 6 sets!
Even worse: If all \bar{y} 's were below $1 / 2$, we would not even return a valid cover!

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Randomised Rounding

- Let $\mathcal{C} \subseteq \mathcal{F}$ be a random set with each set S being included independently with probability $\bar{y}(S)$.
- More precisely, if \bar{y} denotes the optimal solution of the LP, then we compute an integral solution y by:

$$
y(S)=\left\{\begin{array}{ll}
1 & \text { with probability } \bar{y}(S) \\
0 & \text { otherwise }
\end{array} \quad \text { for all } S \in \mathcal{F}\right.
$$

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Randomised Rounding

- Let $\mathcal{C} \subseteq \mathcal{F}$ be a random set with each set S being included independently with probability $\bar{y}(S)$.
- More precisely, if \bar{y} denotes the optimal solution of the LP, then we compute an integral solution y by:

$$
y(S)=\left\{\begin{array}{ll}
1 & \text { with probability } \bar{y}(S) \\
0 & \text { otherwise }
\end{array} \quad \text { for all } S \in \mathcal{F}\right.
$$

- Therefore, $\mathbf{E}[y(S)]=\bar{y}(S)$.

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Lemma

- The expected cost satisfies

$$
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)
$$

Randomised Rounding

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$c:$	2	3	3	5	1	2
$\bar{y}():$.	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	$1 / 2$

Idea: Interpret the \bar{y}-values as probabilities for picking the respective set.

Lemma

- The expected cost satisfies

$$
\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)
$$

- The probability that an element $x \in X$ is covered satisfies

$$
\mathbf{P}\left[x \in \bigcup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right]=\mathbf{E}\left[\sum_{s \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set \mathcal{C}

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random $\operatorname{set} \mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{s \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered
$\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S))
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S))
$$

$$
1+x \leq e^{x} \text { for any } x \in \mathbb{R}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{gathered}
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
\left(1+x \leq e^{x} \text { for any } x \in \mathbb{R} \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)}\right.
\end{gathered}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\mathbf{P}\left[x \notin \cup \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
& =e^{-\sum_{S \in \mathcal{F}: x \in S} \bar{y}(S)}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
\mathbf{P}[x \notin \cup S \in \mathcal{C} S]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
& =e^{-\sum_{S \in \mathcal{F}}: x \in S} \overline{\bar{y}(S)}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered

$$
\begin{aligned}
& \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
&=e^{-\sum_{S \in \mathcal{F}: x \in S} \bar{y}(S)} \leq e^{-1}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered \checkmark

$$
\begin{aligned}
& \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}]=\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
&=e^{-\sum_{S \in \mathcal{F}: x \in S} \bar{y}(S)} \leq e^{-1}
\end{aligned}
$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\bar{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{s \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Proof:

- Step 1: The expected cost of the random set $\mathcal{C} \checkmark$

$$
\begin{aligned}
\mathbf{E}[c(\mathcal{C})]=\mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] & =\mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\
& =\sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)=\sum_{S \in \mathcal{F}} \bar{y}(S) \cdot c(S)
\end{aligned}
$$

- Step 2: The probability for an element to be (not) covered \checkmark

$$
\begin{aligned}
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]=\prod_{S \in \mathcal{F}: x \in S} \mathbf{P}[S \notin \mathcal{C}] & =\prod_{S \in \mathcal{F}: x \in S}(1-\bar{y}(S)) \\
& \leq \prod_{S \in \mathcal{F}: x \in S} e^{-\bar{y}(S)} \\
& =e^{-\sum \sum_{s \in \mathcal{F}: x \in S} \bar{y}(S)} \leq e^{-1}
\end{aligned}
$$

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

The Final Step

Lemma
Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

Weighted Set Cover-LP (X, \mathcal{F}, c)
1: compute \bar{y}, an optimal solution to the linear program
2: $\mathcal{C}=\emptyset$
3: repeat $2 \ln n$ times
4: \quad for each $S \in \mathcal{F}$
5: \quad let $\mathcal{C}=\mathcal{C} \cup\{S\}$ with probability $\bar{y}(S)$
6: return \mathcal{C}

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $y(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})]=\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\mathbf{P}\left[x \in \cup_{S \in \mathcal{C}} S\right] \geq 1-\frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets \mathcal{C}.

Weighted Set Cover-LP (X, \mathcal{F}, c)
1: compute \bar{y}, an optimal solution to the linear program
2: $\mathcal{C}=\emptyset$
3: repeat $2 \ln n$ times
4: \quad for each $S \in \mathcal{F}$
5: \quad let $\mathcal{C}=\mathcal{C} \cup\{S\}$ with probability $\bar{y}(S)$
6: return \mathcal{C}

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right]$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio \checkmark
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover \checkmark
- By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1-\frac{1}{e}$, so that

$$
\mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \leq\left(\frac{1}{e}\right)^{2 \ln n}=\frac{1}{n^{2}}
$$

- This implies for the event that all elements are covered:

$$
\mathbf{P}\left[X=\cup_{S \in \mathcal{C}} S\right]=1-\mathbf{P}\left[\bigcup_{x \in X}\left\{x \notin \cup_{S \in \mathcal{C}} S\right\}\right]
$$

$\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B]\} \geq 1-\sum_{x \in X} \mathbf{P}\left[x \notin \cup_{S \in \mathcal{C}} S\right] \geq 1-n \cdot \frac{1}{n^{2}}=1-\frac{1}{n}$.

- Step 2: The expected approximation ratio \checkmark
- By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S)$.
- Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2 \ln (n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \bar{y}(S) \leq 2 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

By Markov's inequality, $\mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2$.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution is valid and within a factor of $4 \ln (n)$ of the optimum.

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution probability could be further is valid and within a factor of $4 \ln (n)$ of the optimum. increased by repeating

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution probability could be further is valid and within a factor of $4 \ln (n)$ of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

$$
\text { By Markov's inequality, } \mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2
$$

Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution probability could be further is valid and within a factor of $4 \ln (n)$ of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set \mathcal{C} is a valid cover of X.
- The expected approximation ratio is $2 \ln (n)$.

By Markov's inequality, $\mathbf{P}\left[c(\mathcal{C}) \leq 4 \ln (n) \cdot c\left(\mathcal{C}^{*}\right)\right] \geq 1 / 2$.
Hence with probability at least $1-\frac{1}{n}-\frac{1}{2}>\frac{1}{3}$, solution probability could be further is valid and within a factor of $4 \ln (n)$ of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

[Exercise Question (9/10).10] gives a different perspective on the amplification procedure through non-linear randomised rounding.

Outline

Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $\left(x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell}
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

- First statement as in the proof of Theorem 35.6. For clause i not to be satisfied, all ℓ occurring variables must be set to a specific value.

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis
For any clause i which has length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }]=1-2^{-\ell}:=\alpha_{\ell} .
$$

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

- First statement as in the proof of Theorem 35.6. For clause i not to be satisfied, all ℓ occurring variables must be set to a specific value.
- As before, let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m} \frac{1}{2}=\frac{1}{2} \cdot m
$$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

> The same as randomised rounding!

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program
$\operatorname{maximize} \sum_{i=1}^{m} z_{i}$
subject to $\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad$ for each $i=1,2, \ldots, m$

| $z_{i} \in\{0,1\}$ | for each $i=1,2, \ldots, m$ |
| :--- | :--- | :--- |
| $y_{j} \in\{0,1\}$ | for each $j=1,2, \ldots, n$ |

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program
$\begin{array}{llll}\text { maximize } & \sum_{i=1}^{m} z_{i} \\ \text { subject to } & \sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}\left(1-y_{j}\right) \geq z_{i} \quad \text { for each } i=1,2, \ldots, m \\ z_{i} \in\{0,1\} \quad \text { for each } i=1,2, \ldots, m \\ y_{j} & \in\{0,1\} \quad \text { for each } j=1,2, \ldots, n\end{array}$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program

C_{i}^{+}is the index set of the un- \quad| $z_{i} \in\{0,1\} \quad$ for each $i=1,2, \ldots, m$ |
| :--- |
| $y_{j} \in\{0,1\}$ for each $j=1,2, \ldots, n$ |

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program

$$
\begin{aligned}
& C_{i}^{+} \text {is the index set of the un- } \\
& \text { negated variables of clause } i .
\end{aligned}
$$

subject to $\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}$
$\begin{aligned} & C_{i}^{+} \text {is the index set of the un- } \\ & \text { negated variables of clause } i\end{aligned}$
subject to $\sum_{j \in C_{i}^{+}} y_{j}+\sum_{j \in C_{i}^{-}}(1$
$\begin{aligned} & C_{i}^{+} \text {is the index set of the un- } \\ & \text { negated variables of clause } i\end{aligned}$.
These auxiliary variables are used to reflect whether a clause is satisfied or not
for each $i=1,2, \ldots, m$
$z_{i} \in\{0,1\}$ for each $i=1,2, \ldots, m$
$y_{j} \in\{0,1\}$ for each $j=1,2, \ldots, n$

- In the corresponding LP each $\in\{0,1\}$ is replaced by $\in[0,1]$
- Let (\bar{y}, \bar{z}) be the optimal solution of the LP
- Obtain an integer solution y through randomised rounding of \bar{y}

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}[$ clause i is satisfied $]=$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}[$ clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$
Arithmetic vs. geometric mean:
$\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}$ [clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$

$$
\left\{\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} .
\end{array}\right\} \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)}{\ell}\right)^{\ell}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}$ [clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$

$$
\begin{aligned}
\left.\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} .
\end{array}\right\} & \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)}{\ell}\right)^{\ell} \\
& =1-\left(1-\frac{\sum_{j=1}^{\ell} \bar{y}_{j}}{\ell}\right)^{\ell}
\end{aligned}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_{j} by $\overline{x_{j}}$ in the whole formula)
- Further, by relabelling assume $C_{i}=\left(x_{1} \vee \cdots \vee x_{\ell}\right)$
$\Rightarrow \mathbf{P}$ [clause i is satisfied $]=1-\prod_{j=1}^{\ell} \mathbf{P}\left[y_{j}\right.$ is false $]=1-\prod_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)$

$$
\begin{aligned}
\left.\begin{array}{l}
\text { Arithmetic vs. geometric mean: } \\
\frac{a_{1}+\ldots+a_{k}}{k} \geq \sqrt[k]{a_{1} \times \ldots \times a_{k}} .
\end{array}\right\} & \geq 1-\left(\frac{\sum_{j=1}^{\ell}\left(1-\bar{y}_{j}\right)}{\ell}\right)^{\ell} \\
& =1-\left(1-\frac{\sum_{j=1}^{\ell} \bar{y}_{j}}{\ell}\right)^{\ell} \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
\end{aligned}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function
with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function
with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

- Therefore, $\mathbf{P}[$ clause i is satisfied $] \geq \beta_{\ell} \cdot \bar{z}_{i}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Proof of Lemma (2/2):

- So far we have shown:

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq 1-\left(1-\frac{\bar{z}_{i}}{\ell}\right)^{\ell}
$$

- For any $\ell \geq 1$, define $g(z):=1-\left(1-\frac{z}{\ell}\right)^{\ell}$. This is a concave function with $g(0)=0$ and $g(1)=1-\left(1-\frac{1}{\ell}\right)^{\ell}=: \beta_{\ell}$.

$$
\Rightarrow \quad g(z) \geq \beta_{\ell} \cdot z \quad \text { for any } z \in[0,1]
$$

- Therefore, $\mathbf{P}[$ clause i is satisfied $] \geq \beta_{\ell} \cdot \bar{z}_{i}$.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Theorem
Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Theorem
Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i} .
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot \bar{z}_{i}$
By Lemma

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot \bar{z}_{i} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot \bar{z}_{i}$
By Lemma Since $(1-1 / x)^{x} \leq 1 / e$

Analysis of Randomised Rounding

Lemma

For any clause i of length ℓ,

$$
\mathbf{P}[\text { clause } i \text { is satisfied }] \geq\left(1-\left(1-\frac{1}{\ell}\right)^{\ell}\right) \cdot \bar{z}_{i}
$$

Theorem

Randomised Rounding yields a $1 /(1-1 / e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause $i=1,2, \ldots, m$, let ℓ_{i} be the corresponding length.
- Then the expected number of satisfied clauses is:
$\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right] \geq \sum_{i=1}^{m}\left(1-\left(1-\frac{1}{\ell_{i}}\right)^{\ell_{i}}\right) \cdot \bar{z}_{i} \geq \sum_{i=1}^{m}\left(1-\frac{1}{e}\right) \cdot \bar{z}_{i} \geq\left(1-\frac{1}{e}\right) \cdot$ OPT
By Lemma \quad Since $(1-1 / x)^{x} \leq 1 / e \quad \begin{gathered}\text { LP solution at least } \\ \text { as good as optimum }\end{gathered}$

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HybRID-MAX-CNF (φ, n, m)
1: Let $b \in\{0,1\}$ be the flip of a fair coin
2: If $b=0$ then perform random guessing
3: If $b=1$ then perform randomised rounding
4: return the computed solution

Approach 3: Hybrid Algorithm

Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF (φ, n, m)
1: Let $b \in\{0,1\}$ be the flip of a fair coin
2: If $b=0$ then perform random guessing
3: If $b=1$ then perform randomised rounding
4: return the computed solution

Algorithm sets each variable x_{i} to TRUE with prob. $\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \bar{y}_{i}$. Note, however, that variables are not independently assigned!

Analysis of Hybrid Algorithm

Theorem
$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Analysis of Hybrid Algorithm

- Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

Analysis of Hybrid Algorithm

Theorem
 $\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$,

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID}-\operatorname{MAX}-\operatorname{CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID-MAX-CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)

Analysis of Hybrid Algorithm

Theorem

$\operatorname{HYBRID}-\operatorname{MAX}-\operatorname{CNF}(\varphi, n, m)$ is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause i is satisfied with probability at least $3 / 4 \cdot \bar{z}_{i}$
- For any clause i of length ℓ :
- Algorithm 1 satisfies it with probability $1-2^{-\ell}=\alpha_{\ell} \geq \alpha_{\ell} \cdot \bar{z}_{i}$.
- Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \bar{z}_{i}$.
- HYBRID-MAX-CNF (φ, n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \bar{z}_{i}+\frac{1}{2} \cdot \beta_{\ell} \cdot \bar{z}_{i}$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3 / 4$ for $\ell \in\{1,2\}$, and for $\ell \geq 3, \frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3 / 4$ (see figure)
- \Rightarrow HYBRID-MAX-CNF (φ, n, m) satisfies it with prob. at least $3 / 4 \cdot \bar{z}_{i}$

- Since $\alpha_{2}=\beta_{2}=3 / 4$, we cannot achieve a better approximation ratio than $4 / 3$ by combining Algorithm $1 \& 2$ in a different way
- The 4/3-approximation algorithm can be easily derandomised
- Idea: use the conditional expectation trick for both Algorithm 1 \& 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!

Outline

Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-Tour(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-Tour(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H
Runtime is dominated by MST-PRIM, which is $\Theta\left(V^{2}\right)$.

Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

Approx-Tsp-Tour(G, c)
1: select a vertex $r \in G . V$ to be a "root" vertex
2: compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
4: let H be a list of vertices, ordered according to when they are first visited
5: \quad in a preorder walk of $T_{\text {min }}$
6: return the hamiltonian cycle H
Runtime is dominated by MST-PRIM, which is $\Theta\left(V^{2}\right)$.
Remember: In the Metric-TSP problem, G is a complete graph.

Run of Approx-Tsp-Tour

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }}$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

1. Compute MST $T_{\text {min }} \checkmark$
2. Perform preorder walk on MST $T_{\text {min }} \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Run of Approx-Tsp-Tour

This is the optimal solution (cost ≈ 14.715).

1. Compute MST $T_{\min } \checkmark$
2. Perform preorder walk on MST $T_{\min } \checkmark$
3. Return list of vertices according to the preorder tree walk \checkmark

Approximate Solution: Objective 921

Optimal Solution: Objective 699

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

solution H of Approx-Tsp

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

solution H of APPROX-TSP

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2 -approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\min }\right) \leq c(T) \leq c\left(H^{*}\right)$ exploiting that all edge costs are non-negative!

solution H of Approx-Tsp

spanning tree T as a subset of H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2 -approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

solution H of Approx-Tsp

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

minimum spanning tree $T_{\text {min }}$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right)
$$

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, b, h, b, a, d, e, f, e, g, e, d, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Walk $W=(a, b, c, \not \subset, h, \not b, \not, d, d, e, f, \varnothing, g, \notin, \not, a, a) \quad$ optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

- Deleting duplicate vertices from W yields a tour H

Tour $H=(a, b, c, h, d, e, f, g, a)$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

> exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

> exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W)
$$

Tour $H=(a, b, c, h, d, e, f, g, a)$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

> exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

Tour $H=(a, b, c, h, d, e, f, g, a)$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

> exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H^{*} and remove an arbitrary edge
\Rightarrow yields a spanning tree T and $c\left(T_{\text {min }}\right) \leq c(T) \leq c\left(H^{*}\right)$
- Let W be the full walk of the minimum spanning tree $T_{\text {min }}$ (including repeated visits)
\Rightarrow Full walk traverses every edge exactly twice, so

$$
c(W)=2 c\left(T_{\min }\right) \leq 2 c(T) \leq 2 c\left(H^{*}\right)
$$

> exploiting triangle inequality!

- Deleting duplicate vertices from W yields a tour H with smaller cost:

$$
c(H) \leq c(W) \leq 2 c\left(H^{*}\right)
$$

$$
\text { Tour } H=(a, b, c, h, d, e, f, g, a)
$$

optimal solution H^{*}

Christofides Algorithm
Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Christofides Algorithm
Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2 -approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Christofides Algorithm

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2 -approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Christofides(G, c)
select a vertex $r \in G . V$ to be a "root" vertex
compute a minimum spanning tree $T_{\text {min }}$ for G from root r
3: using MST-PRIM(G, c, r)
compute a perfect matching $M_{\text {min }}$ with minimum weight in the complete graph
over the odd-degree vertices in $T_{\text {min }}$
let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of $T_{\text {min }} \cup M_{\text {min }}$
: return the hamiltonian cycle H

Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

```
Christofides(G, c)
select a vertex r\inG.V to be a "root" vertex
compute a minimum spanning tree }\mp@subsup{T}{\mathrm{ min }}{}\mathrm{ for }G\mathrm{ from root r
    using MST-PRIM(G, c,r)
compute a perfect matching }\mp@subsup{M}{\mathrm{ min }}{}\mathrm{ with minimum weight in the complete graph
    over the odd-degree vertices in }\mp@subsup{T}{\mathrm{ min}}{
let H}\mathrm{ be a list of vertices, ordered according to when they are first visited
    in a Eulearian circuit of }\mp@subsup{T}{\mathrm{ min }}{}\cup\mp@subsup{M}{\mathrm{ min}}{
    return the hamiltonian cycle H
```

 Theorem (Christofides'76)
 There is a polynomial-time $\frac{3}{2}$-approximation algorithm for the travelling salesman
problem with the triangle inequality.

