# **Randomised Algorithms**

Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2023



Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)















# 

#### Remarks:

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems



Question: How can we reduce the Vertex-Cover problem to the Set-Cover problem?



 $S_1 S_2 S_3 S_4 S_5 S_6$ c: 2 3 3 5 1 2

#### Remarks:

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems

#### Setting up an Integer Program



**Exercise:** Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)





| Linear Program - |                                                 |                                         |
|------------------|-------------------------------------------------|-----------------------------------------|
| minimize         | $\sum_{S\in\mathcal{F}} c(S) y(S)$              |                                         |
| subject to       | $\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1$ | for each $x \in X$                      |
|                  | $y(S) \in [0,1]$                                | for each $oldsymbol{S} \in \mathcal{F}$ |







Weighted Set Cover





Idea: Interpret the  $\overline{y}$ -values as probabilities for picking the respective set.

#### Idea: Interpret the $\overline{y}$ -values as probabilities for picking the respective set.

Randomised Rounding -----

- Let  $C \subseteq \mathcal{F}$  be a random set with each set *S* being included independently with probability  $\overline{y}(S)$ .
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution y by:

$$y(S) = \begin{cases} 1 & ext{with probability } \overline{y}(S) \\ 0 & ext{otherwise.} \end{cases}$$
 for all  $S \in \mathcal{F}$ 

#### Idea: Interpret the $\overline{y}$ -values as probabilities for picking the respective set.

Randomised Rounding -

- Let  $C \subseteq F$  be a random set with each set *S* being included independently with probability  $\overline{y}(S)$ .
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution y by:

$$y(S) = \begin{cases} 1 & ext{with probability } \overline{y}(S) \\ 0 & ext{otherwise.} \end{cases}$$
 for all  $S \in \mathcal{F}$ 

• Therefore,  $\mathbf{E}[y(S)] = \overline{y}(S)$ .

Idea: Interpret the  $\overline{y}$ -values as probabilities for picking the respective set.

| Lemma - |  |  |  |  |
|---------|--|--|--|--|
| Lomma   |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |



Idea: Interpret the  $\overline{y}$ -values as probabilities for picking the respective set.



The expected cost satisfies

$$\mathsf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$$

Idea: Interpret the  $\overline{y}$ -values as probabilities for picking the respective set.

Lemma -

The expected cost satisfies

$$\mathsf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$$

■ The probability that an element *x* ∈ *X* is covered satisfies

$$\mathbf{P}\left[x\in\bigcup_{S\in\mathcal{C}}S\right]\geq 1-\frac{1}{e}.$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

• Step 1: The expected cost of the random set C

**E**[*c*(*C*)]

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

$$\mathsf{E}[c(\mathcal{C})] = \mathsf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right]$$

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{P}[S \in \mathcal{C}] \cdot c(S)$$

- Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}} \mathbf{1}_{S\in\mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}} \mathbf{P}[S\in\mathcal{C}] \cdot c(S) = \sum_{S\in\mathcal{F}} \overline{y}(S) \cdot c(S).$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

 $\mathsf{P}[x \notin \cup_{S \in \mathcal{C}} S]$ 

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F} \colon x \in S} \mathbf{P}[S \notin \mathcal{C}]$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F} : x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F} : x \in S} (1 - \overline{y}(S))$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$1 + x \leq e^x$$
 for any  $x \in \mathbb{R}$ 

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F} : x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F} : x \in S} (1 - \overline{y}(S))$$
$$\leq \prod_{S \in \mathcal{F} : x \in S} e^{-\overline{y}(S)}$$
$$1 + x \leq e^{x} \text{ for any } x \in \mathbb{R}$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

Step 1: The expected cost of the random set C ✓

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F} : x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F} : x \in S} (1 - \overline{y}(S))$$
$$\leq \prod_{S \in \mathcal{F} : x \in S} e^{-\overline{y}(S)}$$
$$= e^{-\sum_{S \in \mathcal{F} : x \in S} \overline{y}(S)}$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

• Step 1: The expected cost of the random set  $\mathcal{C} \checkmark$ 

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)}$$

$$\overline{y \text{ solves the LP!}}$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

• Step 1: The expected cost of the random set  $\mathcal{C} \checkmark$ 

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)} \underbrace{\overline{y} \text{ solves the LP!}}_{= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)} \leq e^{-1}$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

• Step 1: The expected cost of the random set  $\mathcal{C} \checkmark$ 

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

■ Step 2: The probability for an element to be (not) covered ✓

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)} \underbrace{\overline{y} \text{ solves the LP!}}_{= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)} \leq e^{-1}$$

– Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability  $\overline{y}(S)$ .

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Proof:

• Step 1: The expected cost of the random set  $\mathcal{C} \checkmark$ 

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

• Step 2: The probability for an element to be (not) covered  $\checkmark$ 

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)} \underbrace{\overline{y} \text{ solves the LP!}}_{= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)} \leq e^{-1} \square$$

Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$ .

Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $\mathbf{P}[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$ .

Problem: Need to make sure that every element is covered!

Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{s \in C} S] \ge 1 \frac{1}{e}$ .

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of  $\Omega(\log n)$  random sets C.

Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{s \in C} S] \ge 1 \frac{1}{e}$ .

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of  $\Omega(\log n)$  random sets C.

WEIGHTED SET COVER-LP( $X, \mathcal{F}, c$ )

- 1: compute  $\overline{y}$ , an optimal solution to the linear program
- 2:  $\mathcal{C} = \emptyset$
- 3: repeat 2 ln n times
- 4: for each  $S \in \mathcal{F}$
- 5: let  $C = C \cup \{S\}$  with probability  $\overline{y}(S)$
- 6: return  $\mathcal{C}$

Lemma

Let  $C \subseteq F$  be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies  $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$ .
- The probability that x is covered satisfies  $P[x \in \bigcup_{s \in C} S] \ge 1 \frac{1}{e}$ .

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of  $\Omega(\log n)$  random sets C.

WEIGHTED SET COVER-LP( $X, \mathcal{F}, c$ )

1: compute  $\overline{y}$ , an optimal solution to the linear program

2: 
$$\mathcal{C} = \emptyset$$

- 3: repeat 2 ln n times
- 4: for each  $S \in \mathcal{F}$
- 5: let  $C = C \cup \{S\}$  with probability  $\overline{y}(S)$
- 6: return  $\mathcal{C}$

clearly runs in polynomial-time!

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

Step 1: The probability that C is a cover

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

- Step 1: The probability that C is a cover
  - By previous Lemma, an element x ∈ X is covered in one of the 2 ln n iterations with probability at least 1 − 1/a, so that

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \le \left(\frac{1}{e}\right)^{2 \ln n}$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}[x \notin \bigcup_{\mathcal{S} \in \mathcal{C}} \mathcal{S}] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathsf{P}[X = \cup_{S \in \mathcal{C}} S] =$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

 $P[A \cup E]$ 

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\underbrace{\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B]}_{x \in X} \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S]$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\underbrace{\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B]}_{X \in X} \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2}$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\underbrace{\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B]}_{X \in X} \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\underbrace{\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B]}_{\geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

This implies for the event that all elements are covered:

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \ge 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

Step 2: The expected approximation ratio

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that  ${\mathcal C}$  is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \ge 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that  ${\mathcal C}$  is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{a}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
  - Linearity  $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that  ${\mathcal C}$  is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
  - Linearity  $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S) \leq 2\ln(n) \cdot c(\mathcal{C}^*)$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that  ${\mathcal C}$  is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio ✓
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
  - Linearity  $\Rightarrow \mathbf{E}[c(\mathcal{C})] \leq 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S) \leq 2\ln(n) \cdot c(\mathcal{C}^*)$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that  ${\mathcal C}$  is a cover  $\checkmark$ 
  - By previous Lemma, an element  $x \in X$  is covered in one of the  $2 \ln n$  iterations with probability at least  $1 \frac{1}{e}$ , so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio ✓
  - By previous lemma, the expected cost of one iteration is  $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$ .
  - Linearity  $\Rightarrow \mathbf{E}[c(\mathcal{C})] \le 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S) \le 2\ln(n) \cdot c(\mathcal{C}^*)$

Theorem

- With probability at least  $1 \frac{1}{n}$ , the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

By Markov's inequality,  $\mathbf{P}[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)] \geq 1/2$ .







Typical Approach for Designing Approximation Algorithms based on LPs



Typical Approach for Designing Approximation Algorithms based on LPs



Typical Approach for Designing Approximation Algorithms based on LPs

[Exercise Question (9/10).10] gives a different perspective on the amplification procedure through non-linear randomised rounding.

Weighted Set Cover

#### MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

Recall:

MAX-3-CNF Satisfiability ——

- Given: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

- MAX-CNF Satisfiability (MAX-SAT) -

Recall:

MAX-3-CNF Satisfiability —

- Given: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

- MAX-CNF Satisfiability (MAX-SAT)
- Given: CNF formula, e.g.:  $(x_1 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Recall:

MAX-3-CNF Satisfiability -

- Given: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.:  $(x_1 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.:  $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

- MAX-CNF Satisfiability (MAX-SAT)
- Given: CNF formula, e.g.:  $(x_1 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

Assign each variable true or false uniformly and independently at random.







Proof:



#### Proof:

 First statement as in the proof of Theorem 35.6. For clause *i* not to be satisfied, all ℓ occurring variables must be set to a specific value.



#### Proof:

- First statement as in the proof of Theorem 35.6. For clause *i* not to be satisfied, all  $\ell$  occurring variables must be set to a specific value.
- As before, let  $Y := \sum_{i=1}^{m} Y_i$  be the number of satisfied clauses. Then,

$$\mathbf{E}[\mathbf{Y}] = \mathbf{E}\left[\sum_{i=1}^{m} \mathbf{Y}_i\right] = \sum_{i=1}^{m} \mathbf{E}[\mathbf{Y}_i] \ge \sum_{i=1}^{m} \frac{1}{2} = \frac{1}{2} \cdot m. \qquad \Box$$

First solve a linear program and use fractional values for a **biased** coin flip.











- In the corresponding LP each  $\in \{0, 1\}$  is replaced by  $\in [0, 1]$
- Let  $(\overline{y}, \overline{z})$  be the optimal solution of the LP
- Obtain an integer solution y through randomised rounding of  $\overline{y}$

– Lemma –

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

– Lemma –

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

– Lemma ·

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Proof of Lemma (1/2):

 Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \vee \cdots \vee x_\ell)$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \vee \cdots \vee x_\ell)$ 
  - $\Rightarrow$  **P**[clause *i* is satisfied] =

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \lor \cdots \lor x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{i=1}^{n} \mathbf{P}[y_i \text{ is false }]$$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \lor \cdots \lor x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{P}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - \overline{y}_j)$$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \lor \cdots \lor x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{i=1}^{\ell} \mathbf{P}[y_i \text{ is false }] = 1 - \prod_{i=1}^{\ell} (1 - \overline{y}_i)$$

Arithmetic vs. geometric mean:  $\frac{a_1 + \ldots + a_k}{k} \ge \sqrt[k]{a_1 \times \ldots \times a_k}.$ 

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \vee \cdots \vee x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{P}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - \overline{y}_j)$$

$$\xrightarrow{\text{rithmetic vs. geometric mean:}}_{k} \ge \sqrt[k]{a_1 \times \ldots \times a_k} \ge 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell}$$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \vee \cdots \vee x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{P}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - \overline{y}_j)$$
withmetic vs. geometric mean:
$$\frac{a_1 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \times \dots \times a_k}.$$

$$\geq 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell}$$

$$= 1 - \left(1 - \frac{\sum_{j=1}^{\ell} \overline{y}_j}{\ell}\right)^{\ell}$$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x<sub>i</sub> by x̄<sub>i</sub> in the whole formula)
- Further, by relabelling assume  $C_i = (x_1 \vee \cdots \vee x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{P}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - \overline{y}_j)$$
Arithmetic vs. geometric mean:
$$\frac{a_1 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \times \dots \times a_k}.$$

$$\geq 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell}$$

$$= 1 - \left(1 - \frac{\sum_{j=1}^{\ell} \overline{y}_j}{\ell}\right)^{\ell} \ge 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}.$$

– Lemma –

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

– Lemma -

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any  $\ell \geq 1$ , define  $g(z) := 1 - \left(1 - \frac{z}{\ell}\right)^{\ell}$ .

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any  $\ell \ge 1$ , define  $g(z) := 1 - (1 - \frac{z}{\ell})^{\ell}$ . This is a concave function with g(0) = 0 and  $g(1) = 1 - (1 - \frac{1}{\ell})^{\ell} =: \beta_{\ell}$ .

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any  $\ell \ge 1$ , define  $g(z) := 1 - (1 - \frac{z}{\ell})^{\ell}$ . This is a concave function with g(0) = 0 and  $g(1) = 1 - (1 - \frac{1}{\ell})^{\ell} =: \beta_{\ell}$ .  $\Rightarrow \quad g(z) \ge \beta_{\ell} \cdot z$  for any  $z \in [0, 1]$   $1 - (1 - \frac{1}{3})^3 = \frac{1 - 1}{1 - 1 - \frac{1}{3}}$ 

– Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

– Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any  $\ell \ge 1$ , define  $g(z) := 1 - (1 - \frac{z}{\ell})^{\ell}$ . This is a concave function with g(0) = 0 and  $g(1) = 1 - (1 - \frac{1}{\ell})^{\ell} =: \beta_{\ell}$ .  $\Rightarrow \quad g(z) \ge \beta_{\ell} \cdot z \quad \text{for any } z \in [0, 1] \quad 1 - (1 - \frac{1}{3})^3 \xrightarrow{1 - \frac{1}{\ell}}$ • Therefore, **P** [ clause *i* is satisfied ]  $\ge \beta_{\ell} \cdot \overline{z}_i$ .

- Lemma ·

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/ $e) \approx$  1.5820 randomised approximation algorithm for MAX-CNF.

- Lemma ·

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem ·

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

#### Proof of Theorem:

• For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

#### Proof of Theorem:

- For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.
- Then the expected number of satisfied clauses is:

 $\mathbf{E}\left[ \right. Y \left. \right] = \sum_{i=1}^{m} \mathbf{E}\left[ \right. Y_{i} \left. \right] \ge$ 

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

- For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[\mathbf{Y}] = \sum_{i=1}^{m} \mathbf{E}[\mathbf{Y}_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot \overline{z}_i$$
By Lemma

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

- For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot \overline{z}_i \ge \sum_{i=1}^{m} \left(1 - \frac{1}{e}\right) \cdot \overline{z}_i$$
  
By Lemma  
Since  $(1 - 1/x)^x \le 1/e$ 

- Lemma

For any clause *i* of length  $\ell$ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

#### Theorem

Randomised Rounding yields a 1/(1 - 1/e)  $\approx$  1.5820 randomised approximation algorithm for MAX-CNF.

- For any clause i = 1, 2, ..., m, let  $\ell_i$  be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot \overline{z}_i \ge \sum_{i=1}^{m} \left(1 - \frac{1}{e}\right) \cdot \overline{z}_i \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e})$$

#### Summary

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses



- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches



- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*)

- 1: Let  $b \in \{0, 1\}$  be the flip of a fair coin
- 2: If b = 0 then perform random guessing
- 3: If b = 1 then perform randomised rounding
- 4: return the computed solution





- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches



Theorem -

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

Theorem -

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

Proof:

• It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$ 

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_{i}$ .

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_i$ .
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_i$ .
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$ .

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_i$ .
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2}=3/4$  for  $\ell\in\{1,2\}$ ,

Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_i$ .
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_{i} + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_{i}$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)



Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability 1 − 2<sup>-ℓ</sup> = α<sub>ℓ</sub> ≥ α<sub>ℓ</sub> · z<sub>i</sub>.
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)



Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability 1 − 2<sup>-ℓ</sup> = α<sub>ℓ</sub> ≥ α<sub>ℓ</sub> · z<sub>i</sub>.
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_{i} + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_{i}$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)



Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability 1 − 2<sup>-ℓ</sup> = α<sub>ℓ</sub> ≥ α<sub>ℓ</sub> · z<sub>i</sub>.
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)



Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability 1 − 2<sup>-ℓ</sup> = α<sub>ℓ</sub> ≥ α<sub>ℓ</sub> · z<sub>i</sub>.
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_{i} + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_{i}$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)



Theorem

HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) is a randomised 4/3-approx. algorithm.

- It suffices to prove that clause *i* is satisfied with probability at least  $3/4 \cdot \overline{z}_i$
- For any clause *i* of length  $\ell$ :
  - Algorithm 1 satisfies it with probability  $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_{i}$ .
  - Algorithm 2 satisfies it with probability  $\beta_{\ell} \cdot \overline{z}_i$ .
  - HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with probability  $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$ .
- Note  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$  for  $\ell \in \{1,2\}$ , and for  $\ell \geq 3$ ,  $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$  (see figure)
- $\Rightarrow$  HYBRID-MAX-CNF( $\varphi$ , *n*, *m*) satisfies it with prob. at least  $3/4 \cdot \overline{z}_i$



#### Summary

- Since  $\alpha_2 = \beta_2 = 3/4$ , we cannot achieve a better approximation ratio than 4/3 by combining Algorithm 1 & 2 in a different way
- The 4/3-approximation algorithm can be easily derandomised
  - Idea: use the conditional expectation trick for both Algorithm 1 & 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!

Weighted Set Cover

MAX-CNF

Appendix: An Approximation Algorithm of TSP (non-examin.)

APPROX-TSP-TOUR(G, c)

- 1: select a vertex  $r \in G.V$  to be a "root" vertex
- 2: compute a minimum spanning tree  $T_{\min}$  for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of  $T_{\min}$
- 6: return the hamiltonian cycle H

APPROX-TSP-TOUR(G, c)

- 1: select a vertex  $r \in G.V$  to be a "root" vertex
- 2: compute a minimum spanning tree  $T_{\min}$  for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let *H* be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of  $T_{\min}$
- 6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is  $\Theta(V^2)$ .

APPROX-TSP-TOUR(G, c)

- 1: select a vertex  $r \in G.V$  to be a "root" vertex
- 2: compute a minimum spanning tree  $T_{\min}$  for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let *H* be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of  $T_{\min}$
- 6: return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is  $\Theta(V^2)$ .

Remember: In the Metric-TSP problem, *G* is a complete graph.





1. Compute MST T<sub>min</sub>



1. Compute MST T<sub>min</sub>



1. Compute MST  $T_{\min} \checkmark$ 



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{min}$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{min} \checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$



- 1. Compute MST  $T_{\min} \checkmark$
- 2. Perform preorder walk on MST  $T_{\rm min}$   $\checkmark$
- 3. Return list of vertices according to the preorder tree walk  $\checkmark$

## **Approximate Solution: Objective 921**



## **Optimal Solution: Objective 699**



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:



solution H of APPROX-TSP

#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

#### Proof:

Consider the optimal tour H\* and remove an arbitrary edge



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

#### Proof:

Consider the optimal tour H\* and remove an arbitrary edge



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H*<sup>\*</sup> and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree *T* and  $c(T_{\min}) \leq c(T) \leq c(H^*)$



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

#### Proof:

- Consider the optimal tour *H*<sup>\*</sup> and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$

exploiting that all edge costs are non-negative!



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H*<sup>\*</sup> and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H*<sup>\*</sup> and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min})$$



#### - Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$ 



#### - Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree  $T_{min}$  (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$ 



#### - Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree  $T_{min}$  (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$ 



#### - Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree  $T_{min}$  (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$ 



#### - Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$ 



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

$$c(H) \leq c(W)$$



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

$$c(H) \leq c(W) \leq 2c(H^*)$$



#### Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree  $T_{\min}$  (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

$$c(H) \leq c(W) \leq 2c(H^*)$$



#### - Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

### Proof:

- Consider the optimal tour H\* and remove an arbitrary edge
- $\Rightarrow$  yields a spanning tree T and  $c(T_{\min}) \leq c(T) \leq c(H^*)$ 
  - Let W be the full walk of the minimum spanning tree T<sub>min</sub> (including repeated visits)
- $\Rightarrow$  Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!



#### Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)

- 1: select a vertex  $r \in G.V$  to be a "root" vertex
- 2: compute a minimum spanning tree  $T_{\min}$  for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching  $M_{min}$  with minimum weight in the complete graph
- 5: over the odd-degree vertices in  $T_{\min}$
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of  $T_{\min} \cup M_{\min}$
- 8: return the hamiltonian cycle H

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)

- 1: select a vertex  $r \in G.V$  to be a "root" vertex
- 2: compute a minimum spanning tree  $T_{\min}$  for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching  $M_{\min}$  with minimum weight in the complete graph
- 5: over the odd-degree vertices in  $T_{\min}$
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of  $T_{\min} \cup M_{\min}$
- 8: return the hamiltonian cycle H

### - Theorem (Christofides'76)

There is a polynomial-time  $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.